
Lyapunov functions for time varying systems

satisfying generalized conditions of Matrosov

theorem∗

F. Mazenc,
Projet MERE INRIA-INRA,
UMR Analyse des Systèmes
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Abstract

The classical Matrosov theorem concludes uniform asymptotic stability of time varying
systems via a weak Lyapunov function (positive definite, decrescent, with negative semi-
definite derivative along solutions) and another auxiliary function with derivative that is
strictly non-zero where the derivative of the Lyapunov function is zero [M1]. Recently, sev-
eral generalizations of the classical Matrosov theorem that use a finite number of Lyapunov-
like functions have been reported in [LPPT2]. None of these results provides a construction
of a strong Lyapunov function (positive definite, decrescent, with negative definite deriva-
tive along solutions) that is a very useful analysis and controller design tool for nonlinear
systems. We provide a construction of a strong Lyapunov function via an appropriate weak
Lyapunov function and a set of Lyapunov-like functions whose derivatives along solutions
of the system satisfy inequalities that have a particular triangular structure. Our results
will be very useful in a range of situations where strong Lyapunov functions are needed,
such as robustness analysis and Lyapunov function based controller redesign. We illustrate
our results by constructing a strong Lyapunov function for a simple Euler-Lagrange system
controlled by an adaptive controller.
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1 Introduction

Lyapunov second method is ubiquitous in stability and robustness analysis of nonlinear systems.
In recent years, its different versions were used for controller design, e.g. control Lyapunov
functions, nonlinear damping, backstepping, forwarding, and so on [K, SJK, ST, FP, M2].
While it is often useful to obtain a strong Lyapunov function (positive definite, decrescent,
with negative definite derivative along solutions) to analyze robustness or redesign the given
controller, it is often the case that only a weak Lyapunov function (positive definite, decrescent,
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with negative semi-definite derivative along solutions) can be constructed for a problem at
hand [A1, A2, JQ, L1, L2, NA]. For example, controller design methods that are based on
the passivity property typically require the use of the La Salle invariance principle [L1] which
exploits weak Lyapunov functions to conclude asymptotic stability.

The La Salle Theorem in its original form applies only to time-invariant systems. On
the other hand, the Matrosov Theorem [M1] concludes uniform asymptotic stability of time-
varying systems via a weak Lyapunov function and another auxiliary function with derivative
that is strictly non-zero where the derivative of the Lyapunov function is zero [M1]. Different
generalizations of the Matrosov theorem that use an arbitrary number of auxiliary functions
to conclude uniform asymptotic stability have been recently reported in [LPPT2]. Moreover,
results in [LPPT2] make use of the recently proposed notion of uniform δ persistency of exci-
tation (uδ-PE condition) [LPT2] that allows to further relax the original Matrosov conditions.
The proofs presented in [LPPT2, M1] do not provide a construction of a strong Lyapunov
function and they conclude uniform asymptotic stability by considering directly the behavior
of the trajectories of the system.

The main purpose of this paper is to construct strong Lyapunov functions using appropriate
generalized Matrosov conditions that are inspired by main results in [LPPT2]. In particular,
each of our results assumes existence of an appropriate weak Lyapunov function and a set
of Lyapunov-like functions, similar to [LPPT2], to provide explicit formulas for constructing
a strong Lyapunov function. Moreover, our results parallel main results in [LPPT2] and we
present constructions that exploit the uδ-PE condition. Constructions provided in this paper
will be useful in a range of situations when the knowledge of a strong Lyapunov function is
useful, such as robustness analysis and Lyapunov based controller redesign. Observe, in partic-
ular, that an ISS Lyapunov characterization was obtained in [SW] and that strong Lyapunov
functions have been used to design stabilizing feedback laws that render asymptotically control-
lable systems ISS (as defined in [S3]) to actuator errors and small observation noise (see [S4]).
Such control laws are expressed in terms of gradients of Lyapunov functions, and therefore
require explicit strong Lyapunov functions to be implemented. We illustrate our main results
by constructing a strong Lyapunov function for the pendulum equations controlled by an adap-
tive controller and, in a second step, by using this Lyapunov function to determine a feedback
rendering the closed loop system globally ISS with respect to an additive disturbance in the
input. We also comment on how our constructions apply to cases discussed in [LPPT2] where
an appropriate weak Lyapunov function is known and certain uniform observability conditions
are satisfied. Our results can also be applied to a class of nonholonomic systems studied, for
instance, in [S1] and [LPPT2]. We note that our results provide an alternative construction
of a strong Lyapunov function to the one presented in [MN] for time-invariant systems and a
special case of our results also generalizes the constructions of strong Lyapunov functions given
in [M3] and [MM].

The paper is organized as follows. In Section 2 we present mathematical preliminaries
and assumptions that are needed in the sequel. Section 3 is devoted to the case where the
assumptions of the classical Matrosov theorem are satisfied. Section 4 contains main results.
An illustration of our main results is presented in Section 5 and the proofs of all main results
are given in Section 6. Conclusions and some auxiliary results are given respectively in the last
section and the appendix.

2



2 Preliminaries

Unless otherwise stated, we assume throughout the paper that the functions encountered are
sufficiently smooth. We often omit arguments of functions to simplify notation. Throughout
this paper, | · | stands for the Euclidean norm vectors and induced norm matrices. A continuous
function k : R≥0 → R≥0 is said to be of class K if k(0) = 0 and k is increasing. It is said to
belong to class K∞ if it is unbounded. A function κ : R≥0 × R≥0 → R≥0 is said to be of class
KL if for each fixed s, the mapping β(r, s) belongs to class K with respect to r, and for each
fixed r, the mapping β(r, s) is decreasing with respect to s and lim

s→+∞
β(r, s) = 0. A continuous

function V : Rn → R is positive semi-definite if V (0) = 0 and V (x) ≥ 0 for all x ∈ Rn. It is
positive definite if V (0) = 0 and V (x) > 0 for all x 6= 0. It is negative semi-definite (definite)
if −V is positive semi-definite (definite).

Consider the time varying system:

ẋ = f(t, x) (1)

with t ∈ R, x ∈ Rn. For all x0 ∈ Rn and t0 ∈ R, we will denote by x(t; t0, x0), or simply by x(t),
the unique solution of (1) that satisfies x(t0; t0, x0) = x0. In order to simplify the notation, we
use the following notation:

DV :=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ,

where V : R× Rn → R.
We need the definitions and assumptions given below. The following definition is a slightly

modified version of [S2, Definition 5.14].

Definition 1 A continuous function φ(t, x) : R × Rn → Rp is called a function decrescent in
norm if, there exists a function β(·) of class K, such that such that for all x ∈ Rn and all t ∈ R
the following holds

|φ(t, x)| ≤ β(|x|) . (2)

Definition 2 The system (1) is uniformly globally asymptotically stable provided there exists
β ∈ KL such that |x(t; t0, x0)| ≤ β(|x0|, t− t0) for all x0 ∈ Rn, t0 ∈ R, and t ∈ R.

Definition 3 Suppose that there exist functions V : R × Rn → R, α1, α2, α4 ∈ K∞ and
α3 : Rn → R such that for all x ∈ Rn and all t ∈ R, the following holds:

α1(|x|) ≤ V (t, x) ≤ α2(|x|) , (3)
DV ≤ −α3(x) , (4)∣∣∣∣∂V

∂x
(t, x)

∣∣∣∣ ≤ α4(|x|) . (5)

If the function α3 is positive semi-definite, then we say that V is a weak Lyapunov function for
the system (1). If, on the other hand, α3 is positive definite, then V is referred to as a strong
Lyapunov function for the system (1).

Assumption 4 The function f in (1) is locally Lipschitz uniformly in t, f(t, 0) = 0 for all
t ∈ R, and a weak Lyapunov function V1 for the system (1) is known.
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Assumption 5 The following functions are known: Vi : R×Rn → R, i = 2, 3, . . . , j, such that
Vi and ∂Vi

∂x (t, x) are decrescent in norm; positive semi-definite functions Ni : R × Rn → R for
i = 2, . . . , j, decrescent in norm; continuous functions χi : R×Rn ×Ri−2 → R for i = 3, . . . , j
such that,

|χi(t, x, N2, . . . , Ni−1)| ≤ λi(N2, ..., Ni−1)ρi(x) (6)

where the functions ρi : Rn → R are positive and the functions λi : Ri−1 → R are positive semi-
definite, continuous but not necessarily of class C1. Moreover, for all t ∈ R and all x ∈ Rn,
we have:

DV2 ≤ −N2 ,

DV3 ≤ −N3 + χ3(t, x, N2) ,

DV4 ≤ −N4 + χ4(t, x, N2, N3) , (7)
...

...
...

DVj ≤ −Nj + χj(t, x, N2, . . . , Nj−1) .

Remark 6 According to [S2, Theorem 5.16], when the vector field of the system (1) is locally
Lipschitz uniformly in t, satisfies f(t, 0) = 0 for all t ∈ R and admits a strong Lyapunov
function, then it admits the origin as a globally uniformly asymptotically stable equilibrium
point.

Remark 7 All our main results will be using Assumptions 4 and 5, as well as some other con-
ditions. We note that Assumption 4 assumes existence of a weak Lyapunov function, whereas
Assumption 5 assumes existence of a set of auxiliary functions. We note that these auxiliary
functions do not have to be positive definite in general. Moreover, we note that the references
[LKT, LPPT2, LPPT1, LPT1, LPT2] present a range of different situations where Assump-
tions 4 and 5 hold. Moreover, the functions Vi are constructed for the cases of model reference
control [LKT, LPPT2], classical Matrosov theorem [LPT1], a class of nonholonomic systems
[LPPT1] and systems satisfying appropriate uniform observability conditions [LPPT2]. We
will recall and revisit this last construction in Section 4, Proposition 17.

Remark 8 If a function χi satisfies the inequality

|χi(t, x,N2, . . . , Ni−1)| ≤ ρm(x)

where ρm is a positive function and is such that, for all t, x, χ(t, x, 0, . . . , 0) = 0, then functions
λi and ρi such that (6) is satisfied can be determined. We do not give the proof of this result,
because, on the one hand, it is very technical and, on the other hand, it is easy, in pratice, to
determine the required functions λi and ρi.

3 Introductory result

The objective of this section, is to familiarize the reader with the technique used thoughout our
work. We explicitly construct a family of strong Lyapunov functions in the simple case where
the system (1) satisfies the conditions of the classical Mastrosov theorem. This construction
is the first construction of a strong Lyapunov function under the conditions of the Matrosov
theorem. Due to its introductory interest, we give it in this section, instead of putting it in
Section 6.
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Theorem 9 Consider the system (1) and suppose that Assumptions 4 and 5 hold with j = 3,
that f(t, x) is decrescent in norm and that V1 = V2. Suppose also that:

N2(t, x) + N3(t, x) ≥ ω(x) (8)

where ω is a positive definite function. Then, one can determine two nonnegative functions
p1, p3 such that the following function:

W (t, x) = p1(V1(t, x))V1(t, x) + p3(V1(t, x))V3(t, x) (9)

is a strong Lyapunov function for system (1).

Proof. Let
Sa(t, x) = V1(t, x) + V3(t, x) . (10)

From Assumption 5, we deduce that

DSa = DV1 + DV3 ≤ −N2 −N3 + χ3(t, x, N2) . (11)

Using Assumption 5, one can determine a function φ, of class K∞ such that

|χ3(t, x, N2)| ≤ φ(N2)ρ3(x) . (12)

(For instance, one can choose φ(r) = r + sup
{0≤l≤r}

λ2(l)). This inequality and (8) yield

DSa ≤ −ω(x) + φ(N2)ρ3(x) . (13)

Let
Sb(t, x) = p3(V1(t, x))Sa(t, x) (14)

where p3 is a positive definite function to be specified later. A simple calculation yields

DSb ≤ −p3(V1)ω(x) + p3(V1)φ(N2)ρ3(x) + p′3(V1)SaDV1 . (15)

Let us distinguish between two cases:
First case: N2 ≤ p3(V1). Since φ is nondecreasing, the inequality

p3(V1)φ(N2)ρ3(x) ≤ p3(V1)φ(p3(V1))ρ3(x) (16)

is satisfied.
Second case: N2 ≥ p3(V1). Then the inequality

p3(V1)φ(N2)ρ3(x) ≤ N2φ(N2)ρ3(x) (17)

is satisfied. It follows that, for all x ∈ Rn, t ∈ R,

p3(V1)φ(N2)ρ3(x) ≤ N2φ(N2)ρ3(x) + p3(V1)φ(p3(V1))ρ3(x) . (18)

From Lemma 22, we deduce that one can construct a positive definite function p3 such that

p3(V1) ≤ φ−1

(
ω(x)

2ρ3(x)

)
. (19)
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For such a choice, the inequality

p3(V1)φ(N2)ρ3(x) ≤ N2φ(N2)ρ3(x) +
1
2
p3(V1)ω(x) (20)

is satisfied. Combining (15) and (20), we obtain

DSb ≤ −1
2
p3(V1)ω(x) + N2φ(N2)ρ3(x) + p′3(V1)SaDV1 . (21)

Since V1 is a weak Lyapunov function, there is a function α1 of class K∞ such that the inequality

α1(|x|) ≤ V (t, x) (22)

is satisfied (see Definition 3). On the other hand, since φ(N2)ρ3(V1) and p′3(V1)Sa are decrescent
in norm, one can determine a function Γ, positive and nondecreasing, such that

2φ(N2)ρ3(x) ≤ Γ(α−1
1 (|x|)) , 2|p′3(V1)Sa| ≤ Γ(α−1

1 (|x|)) . (23)

It follows that
2φ(N2)ρ3(x) ≤ Γ(V1) , 2|p′3(V1)Sa| ≤ Γ(V1) . (24)

Using these inequalities and DV1 = DV2 ≤ −N2, we obtain

DSb ≤ −1
2
p3(V1)ω(x) +

1
2
(N2 −DV1)Γ(V1) ≤ −1

2
p3(V1)ω(x)−DV1Γ(V1) . (25)

We deduce that the function W given in (9) with p1(r) = 1
r

∫ r

0
Γ(l)dl + p3(r) and p3 satisfying

(19) satisfies

DW ≤ −1
2
p3(V1)ω(x) . (26)

Since V1 is a weak Lyapunov function, we deduce from (3) that there exists a positive definite
function α3 such that 1

2p3(V1)ω(x) ≥ α3(x). Therefore the requirement (4) is satisfied. Besides,
W is decrescent in norm and

Γ(0)α1(|x|) ≤ Γ(0)V1(t, x) ≤ W (t, x) (27)

and ∂V1
∂x (t, x), ∂V3

∂x (t, x) are decrescent in norm. Therefore W also satisfies the requirement (3)
and (5). It follows that W is a strong Lyapunov function for system (1).

4 Main results

In this section, we establish main results of this paper that are summarized in Theorem 10,
Theorem 12, Corollary 14, Theorem 15 and Proposition 17. Each of these results provides a
construction of a strong Lyapunov function using an existing weak Lyapunov function from
Assumption 4, a set of Lyapunov-like functions from Assumption 5 and other appropriate
conditions.

The first result of this section is an extention of Theorem 9 to the case where, instead of
only one auxiliary function, several auxiliary functions are available.
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Theorem 10 Consider the system (1) and suppose that Assumptions 4 and 5 hold and that
f(t, x) is decrescent in norm. Suppose also that:

j∑
i=2

Ni(t, x) ≥ ω(x) (28)

where ω(x) is a positive definite function. Then, one can determine nonnegative functions pi

such that the following function:

W (t, x) =
j∑

i=1

pi(V1(t, x))Vi(t, x) (29)

is a strong Lyapunov function for system (1).

Remark 11 We note that a construction of the functions pi in (29) is provided in the proof
of Theorem 10. Moreover, we emphasize that there is some flexibility in terms of choosing
functions pi in (29). This flexibility can be seen from the proof of Theorem 10. The same
comment applies to all the results of this section.

To state the second main result, we will suppose that the system (1) admits the decompo-
sition:

ẋ1 = f1(t, x) , ẋ2 = f2(t, x) (30)

with x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n. Note that we allow for the cases when either n1 = n or
n2 = n that correspond to x1 = x and x2 = x, respectively.

Theorem 12 Consider the system (30) and suppose that Assumptions 4 and 5 hold. Suppose
also that the following conditions hold:

C1. There exist a positive definite real-valued function ω, and a positive semi-definite con-
tinuously differentiable function M : R× Rn2 → R such that M(t, x2) and ∂M

∂x2
(t, x2) are

decrescent in norm and the following holds for all x ∈ Rn and t ∈ R,

j∑
i=2

Ni(t, x) ≥ ω(|x1|) + M(t, x2) (31)

and
|f2(t, x)| ≤ χf (t, x, N2, N3, . . . , Nj−1) , (32)

where χf is so that

0 ≤ χf (t, x, N2, . . . , Nj−1) ≤ λf (N2, ..., Nj−1)ρf (x) (33)

where the function ρf is positive and the function λf is positive semi-definite.

C2. There exist a differentiable function θ : R>0 → R>0 and a positive definite function
γ : R → R such that for all (t, x2) 6= (t, 0), we have:∫ t

t−θ(|x2|2)
M(s, x2)ds ≥ γ(|x2|) . (34)
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Then, one can determine nonnegative functions pi and a positive definite function δ such that
the following function:

W (t, x) =
j∑

i=1

pi(V1(t, x))Vi(t, x) + pj+1(V1(t, x))δ(|x2|2)A(t, x2) (35)

with

A(t, x2) =
∫ t

t−θ(|x2|2)

(∫ t

s
M(l, x2)dl

)
ds (36)

when x2 6= 0 and
A(t, 0) = 0 , ∀t (37)

is a strong Lyapunov function for system (30).

Remark 13 Conditions of Theorem 12 can be regarded as generalized Matrosov theorem con-
ditions and they are directly related to conditions used in [LPPT2, Theorem 1]. Indeed, our As-
sumption 4 corresponds to [LPPT2, Assumption 1]. Our Assumption 5 corresponds to [LPPT2,
Assumptions 2 and 3], and so on. In particular, our condition C2 corresponds to the so called
uδ-PE condition introduced in [LPT2]. Note, however, that our conditions are stronger in that
we assume that we know all the bounding functions since they are required in the construction
of the strong Lyapunov function W . For instance, we assume that we know the functions θ and
γ in the condition C2 of Theorem 12 whereas this is not needed in main results of [LPPT2].
This is the main difference between our conditions and those given in [LPPT2]. A consequence
of our stronger assumptions is that we construct a strong Lyapunov function W , which was not
done in [LPPT2].

The following corollary is devoted to the case where x2 = x. In particular, we can state:

Corollary 14 Consider the system (30) and suppose that Assumptions 4 and 5 hold. Suppose
also there exists a positive semi-definite continuously differentiable function M : R × Rn → R
such that M(t, x) and ∂M

∂x (t, x) are decrescent in norm and the following holds for all x ∈ Rn

and t ∈ R

j∑
i=2

Ni(t, x) ≥ M(t, x) (38)

and
|f(t, x)| ≤ χf (t, x, N2, N3, . . . , Nj−1) , (39)

where χf is so that

0 ≤ χf (t, x, N2, . . . , Nj−1) ≤ λf (N2, ..., Nj−1)ρf (x) (40)

where the function ρf is positive and the function λf is positive semi-definite. Moreover, there
exist a differentiable function θ : R>0 → R>0 and a positive definite function γ : R → R such
that for all (t, x) 6= (t, 0), we have:∫ t

t−θ(|x|2)
M(s, x)ds ≥ γ(|x|) . (41)
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Then, one can determine nonnegative functions pi, i = 1 to j+1 and a positive definite function
δ such that the following function defind by

W (t, x) =
j∑

i=1

pi(V1(t, x))Vi(t, x) + pj+1(V1(t, x))δ(|x|2)
∫ t

t−θ(|x|2)

(∫ t

s
M(l, x)dl

)
ds (42)

when x 6= 0 and
W (t, 0) = 0 , ∀t ∈ R (43)

is a strong Lyapunov function for system (30).

It is possible to strengthen the persistency condition (41) and at the same time relax the
condition (39) to provide a similar Lyapunov function construction that is presented in the
next corollary. Observe that the strong Lyapunov functions we obtain are given by expressions
slightly simpler than (35).

Theorem 15 Consider the system (1) and suppose that Assumptions 4 and 5 hold and that
f(t, x) is decrescent in norm. Suppose also that the following holds for all x ∈ Rn and t ∈ R

j∑
i=2

Ni(t, x) ≥ M(t, x) = p(t)µ(x) (44)

where µ is a positive definite function and p(t) is a nonnegative function such that, for all
t ∈ R, ∫ t

t−τ
p(l)dl ≥ pm , p(t) ≤ pM (45)

where τ > 0, pm > 0, pM > 0.
Then, one can determine nonnegative functions pi such that the following function:

W (t, x) =
j∑

i=1

pi(V1(t, x))Vi(t, x) + pj+1(V1(t, x))
(∫ t

t−τ

(∫ t

s
p(l)dl

)
ds

)
(46)

is a strong Lyapunov function for system (1).

Remark 16 We note that it is not clear how to construct a locally or globally quadratic Lya-
punov function under appropriate conditions that would guarantee uniform local or global ex-
ponential stability. More generally, it is not clear how to construct homogeneous Lyapunov
functions under appropriate conditions for homogeneous time varying systems. Constructing
Lyapunov functions with special properties under different stronger conditions is outside the
scope of this paper but they are very important and are left for further research.

The result below is an extension of the main result of [MN] to time-varying systems. Similar
observability conditions were used in [LPPT2, Section 3.3] to conclude uniform asymptotic
stability of time-varying systems.

Proposition 17 Consider the system (1) for which Assumption 4 holds, that is we have:

DV1(t, x) =: b1(t, x) ≤ 0 . (47)
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Define the following functions bi+1(t, x) := Dbi(t, x), i ≥ 1. Assume that all, for i ≥ 1, the
functions bi and ∂bi

∂x (t, x) are decrescent in norm. Then, given any integer N ≥ 3, the following
functions satisfy Assumption 5:

V2(t, x) := V1(t, x) ,
Vi(t, x) := −bi−2(t, x)bi−1(t, x) i ∈ {3, . . . , N} ,

(48)

with N2 = −b1, χ3(t, x, N2) = |b1||b3|, and, for i ≥ 3, Ni = b2
i−1, χi(t, x, N2, ..., Ni−1) =√

Ni−1|bi| = |bi−2||bi|.

Remark 18 It is obvious that if the functions Vi constructed in Proposition 17 further satisfy
conditions of one of the theorems 10, 12, 15, or Corollary 14, we can use Vi to construct a strict
Lyapunov function as outlined in the previous section. We do not state all of these corollaries
for space reasons.

5 Illustration

In this section, we illustrate our main results by means of a system resulting from an adaptive
tracking control problem for the well-known pendulum equations with an unknown friction
coefficient (see [K, Section 1.1.1]). First, we recall how an adaptive control law can be con-
structed, using a classical approach, which relies on the construction of a weak Lyapunov
function. In a second step, we use Theorem 15 to determine a strong Lyapunov function. At
last, we exploit this strong Lyapunov function to obtain a control law which renders the system
ISS with respect to additive disturbance in the input.

The system we consider is given by the equations{
ẋ1 = x2 ,
ẋ2 = −g

l sin(x1)− θx2 − 1
ml2

(T + d) ,
(49)

with θ unknown but constant, with g,m, l known, where T is the input and where d is a
disturbance. The controller will be designed to track the trajectory

x∗1(t) =
1
2

sin(t) , x∗2(t) =
1
2

cos(t) . (50)

This very simple adaptive control problem can been solved by classical Lyapunov-based design
techniques, presented for instance in [KKK]. The proof relies on a dynamic extention and the
construction of a weak Lyapunov function, which ensure convergence of the state variables to
the reference trajectory (50), when d ≡ 0. But the construction of a strong Lyapunov function
is still an open problem and therefore so is the problem of constructing a control law so that
the corresponding closed-loop system is globally ISS with respect to the additive disturbance
d. This absence of strong Lyapunov function in the broad literature devoted to mechanical
systems and adaptive control and the advantages inherent to the knowledge of strong Lyapunov
functions, such as the possibility of constructing a robust control law, are motivations for our
choice of illustrating example.

Step 1. Solution of the adaptive problem when d = 0.

First, we briefly recall a solution to the adaptive control problem in the absence of distur-
bance d, based on the Lyapunov technique of [KKK, Section 4.3].
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Lemma 19 Consider the system (49) with, for all t ∈ R, d(t) = 0 and the adaptive controller

T (t, x1, x2, θ̂) = −mlg sin(x1) + ml2
[
e1 + e2 + 1

2 sin(t)− θ̂x2

]
˙̂
θ = −x2[2e2 + e1]

(51)

with
e1 = x1 − x∗1(t) , e2 = x2 − x∗2(t) . (52)

Then this adaptive controller guarantees that global asymptotic tracking is achieved:

lim
t→+∞

[x1(t)− x∗1(t)] = 0 , lim
t→+∞

[x2(t)− x∗2(t)] = 0 . (53)

Besides,
lim

t→+∞
[θ − θ̂(t)] = 0 . (54)

Proof. Using the error variables e1, e2 and the expression of the control law in (51), we obtain

ė1 = e2 (55)

and
ė2 = −g

l sin(x1)− θx2 − ẋ∗2(t)
− 1

ml2
[−mlg sin(x1) + ml2[e1 + e2 + 1

2 sin(t)− θ̂x2]
= −e1 − e2 − θx2 + θ̂(e2 + x∗2(t))
= −e1 − e2 − θ(e2 + x∗2(t)) + θ̂(e2 + x∗2(t)) .

(56)

Hence, using the notation θ̃ = θ̂ − θ, we obtain the system
ė1 = e2 ,

ė2 = −e1 − e2 + θ̃(e2 + x∗2(t)) ,
˙̃
θ = −(e2 + x∗2(t))[2e2 + e1] .

(57)

To simplify the notations, let Z = (e1, e2, θ̃). The derivative of the positive definite and radially
unbounded function

V1(Z) = e2
1 + e2

2 + e1e2 +
1
2
θ̃2 (58)

along the trajectories of (57) satisfies

DV1 = 2e1e2 + (2e2 + e1)[−e1 − e2 + θ̃(e2 + x∗2(t))] + e2
2 − θ̃(e2 + x∗2(t))[2e2 + e1]

= −e2
1 − e1e2 − e2

2

(59)

and therefore DV1 < 0 when (e1, e2) 6= (0, 0). Since the system (57) is periodic in time, the
LaSalle Invariance Principle applies and ensures that (53), (54) are satisfied. Observe that V1

is a weak Lyapunov function for the system (57).

Step 2. Construction of a strong Lyapunov function.

By using Theorem 15, we construct now a strong Lyapunov function for the system (57).
Since V1 is a weak Lyapunov function a natural choice for V2 and N2 is V2 = V1 and

N2(Z) = e2
1 + e1e2 + e2

2 . (60)
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We select as auxiliary function V3 the function

V3(t, Z) = −1
2
θ̃ cos(t)e2 (61)

because its derivative along the trajectories of (57) satisfies

DV3 = −1
2 θ̃ cos(t)

[
−e1 − e2 + θ̃

(
e2 + 1

2 cos(t)
)]

+1
2

[(
e2 + 1

2 cos(t)
)
(2e2 + e1) cos(t) + θ̃ sin(t)

]
e2

= −N3(t, Z) + R3(t, Z)

(62)

with
N3(t, Z) =

1
4

cos2(t)θ̃2 ≥ 0 (63)

and
R3(t, Z) = 1

2 θ̃ cos(t)e1 + 1
2 θ̃ cos(t)e2 − 1

2 cos(t)θ̃2e2

+1
2

[(
e2 + 1

2 cos(t)
)
(2e2 + e1) cos(t) + θ̃ sin(t)

]
e2 .

(64)

Observe that DV3 < 0 when N2(Z) = 0 and θ̃ 6= 0, cos(t) 6= 0. More precisely, one can check
that, with our choice of functions V1, V2, V3, Theorem 15 applies:
i) Assumption 4 is satisfied because V1 defined in (58) is a weak Lyapunov function for the
system (57).
ii) One can easily prove that

|R3(t, Z)| ≤ 1
2 |θ̃e1|+ |θ̃e2|+ 1

2 θ̃2|e2|+ |e2|3 + 1
2 |e1e

2
2|+ 1

2e2
2 + 1

4 |e1e2| . (65)

Using successively the inequality N2(Z) ≥ 1
2 [e2

1+e2
2] and the inequality V1(Z) ≥ 1

2

[
e2
1 + e2

2 + θ̃2
]
,

we deduce that

|R3(t, Z)| ≤ 3
2 |θ̃|

√
2N2 + 1

2 θ̃2
√

2N2 +
[

5
2 |e2|+ 5

4

]
N2

≤ χ3(t, Z, N2)
(66)

with
χ3(t, Z, N2) =

[
3√
2

+
√

V1

]
|θ̃|
√

N2 + 5
2 [1 + V1)]N2

≤
[(

3√
2

+
√

V1

)
|θ̃|+ 5

2 (1 + V1)
] [√

N2 + N2

]
.

(67)

It follows that Assumption 5 is satisfied.
iii) The inequality

N2(Z) + N3(t, Z) ≤ p(t)µ(Z) (68)

is satisfied with
p(t) =

1
4

cos2(t) , µ(Z) = e2
1 + e2

2 + θ̃2 (69)

and
∫ t

t−π
p(l)dl =

1
8
π, 0 ≤ p(l) ≤ 1

4 .

Hence, all the conditions of Theorem 15 are satisfied and therefore one can construct a
strong Lyapunov function for the system (57). By performing explicitly this construction, we
obtain the following result:

12



Lemma 20 The function

W (t, Z) = π
2

[
sin(2t)

4 + π
4 + 79

]
V1(Z) + 21π

4 V1(Z)2 + πV3(t, Z) (70)

where V1 is the function defined in (58) and V3 is the function defined in (61), is a strong
Lyapunov function of the system (57). Its derivative along the trajectories of this system
satisfies

DW ≤ −π

8
V1(Z) . (71)

Proof. Observe that the function µ defined in (69) satisfies

µ(Z) ≥ 1
2
V1(Z) . (72)

This inequality and the proof of Theorem 15 lead us to consider the function

C(t, Z) = 1
2

(∫ t

t−π

(∫ t

s
cos2(l)dl

)
ds

)
V1(Z)

= π
8 [sin(2t) + π]V1(Z)

(73)

whose derivative along the trajectories of (57) is

DC =
π

4
cos(2t)V1(Z) +

π

8
[sin(2t) + π]DV1 . (74)

Since DV1 ≤ 0, [sin(2t) + π] ≥ 0 and cos(2t) = 2 cos2(t)− 1, it follows that

DC ≤ −π
4 V1(Z) + π

2 cos2(t)V1(Z) . (75)

Moreover, one can prove easily that derivative along the trajectories of (57) of V1 + V3 satisfies
the inequality

DV1 + DV3 ≤ −1
2 cos2(t)V1(Z) + R3(t, Z) , (76)

where R3 is the function defined in (64). It follows that the derivative of

V4(t, Z) = C(t, Z) + πV1(Z) + πV3(t, Z) (77)

along the trajectories of (57) satisfies

DV4 ≤ −π

4
V1(Z) + πR3(t, Z) . (78)

By using (66), the expression of χ3 in (67) and the triangular inequality, we deduce that

χ3(t, Z, N2) ≤ 1
16 θ̃2 + 4

(
3√
2

+
√

V1

)2
+ 5

1(1 + V1)N2

≤ 1
16 θ̃2 + 77

2 N2 + 21
2 V1N2 .

(79)

Combining (78) and (79), we obtain

DV4 ≤ −π
8 V1 + 77π

2 N2 + 21π
2 V1N2 . (80)

Since N2 = −DV1, it follows that the derivative of the function (70) along the trajectories
of (57) satisfies (71). By using the fact that V1 is a weak Lyapunov function and that the
functions V3 and ∂V3

∂x are decrescent in norm, and that W ≥ V1, one can check easily that W

13



is a strong Lyapunov function.

Step 3. Control law yielding the ISS property.

In this part we use our Lyapunov construction to robustify our controller and obtain the
desirable ISS property. Observe that the ISS property, introduced by E. Sontag in [S3] plays a
central role in modern non-linear control analysis, controller design and robustness analysis.

Theorem 21 Consider the system (49) with the adaptive controller

T (t, x1, x2, θ̂) = −mlg sin(x1) + ml2
[
e1 + e2 + 1

2 sin(t)− θ̂x2

]
+
[

π sin(2t)+π2

16 + 79π
4 + 21π

4 V1(e1, e2, θ̃)
] [

e2 + e1
2

]
− π

8 θ̃ cos(t)
˙̂
θ = −x2[2e2 + e1]

(81)

where V1 is the function defined in (58), e1, e2 defined in (52), θ̃ = θ̂ − θ. Then this adaptive
controller guarantees that there are a KL functions β and a function γ of class K (see the
preliminaries for the definitions of functions of class K and class KL) such that, for all t0 ∈ R,
Z0 ∈ Rn, t ≥ t0,

|Z(t; t0, Z0)| = β(|Z0|, t− t0) + γ

(
sup

{s∈[t0,t]}
d(s)

)
. (82)

Proof. We deduce directly from Lemma 20 and its proof that, when the adaptive controller is

T (t, x1, x2, θ̂) = −mlg sin(x1) + ml2[e1 + e2 − ẋ∗2(t)− θ̂(e2 + x∗2(t))] + v (83)

where v is an input to be specified later and when there is a disturbance d, then

DW ≤ −π

8
V1(Z)− 1

ml2
∂W

∂e2
(t, Z)(v + d) . (84)

The choice
v =

1
4

∂W

∂e2
(t, Z) (85)

gives

DW ≤ −π

8
V1(Z)− 1

4ml2

(
∂W

∂e2
(t, Z)

)2

− 1
ml2

∂W

∂e2
(t, Z)d . (86)

Thanks to the triangular inequality, we deduce that

DW ≤ −π

8
V1(Z) +

1
ml2

d2 . (87)

Since V1 is a weak Lyapunov function, it follows that W is a ISS Lyapunov function (see [ASW],
[SW] for the definition of ISS Lyapunov function). From the results of [S4] or [SW] (see also
[K, Theorem 5.2]), one can deduce that the closed-loop system is ISS.

To conclude, one can prove after lengthy but simple calculations that the function T given
in (83) with v defined in (85) admits the expression (81).
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6 Proofs of Main Results

The proof of main results is carried out by first proving Theorem 10. Then, the proof of
Theorem 12 is carried out by showing that under the given conditions it is possible to construct
a function Vj+1 such that the functions V2, . . . , Vj+1 satisfy all conditions of Theorem 10.
Theorem 15 is proved in a similar way.
Proof of Theorem 10: We prove this result by induction on the number of the auxiliary
functions. The result of Theorem 10 holds in the case where its assumptions are satisfied with
only one auxiliary function, i.e. when j = 2 because in that case N2 = ω(x) and one can
construct a strong Lyapunov function by following the proof of Theorem 9. Assume that the
result of Theorem 10 holds when its assumptions are satisfied with j − 1 auxiliary functions
with j ≥ 2. Let us prove that it is true as well when the assumptions are satisfied with j
auxiliary functions. To prove this, let us consider a system (1) satisfying the assumptions of
Theorem 10 with j auxiliary functions, with j ≥ 2, and let us construct a new set of j − 1
auxiliary functions for which the assumptions of Theorem 10 are satisfied.

Let us define

Sa(t, x) :=
j+1∑
i=2

Vi(t, x) . (88)

Then, according to Assumption 5 and (28),

DSa ≤ −
j+1∑
i=2

Ni +
j+1∑
i=3

χi(t, x, N2, . . . , Ni−1) ≤ −ω(x) +
j+1∑
i=3

χi(t, x,N2, . . . , Ni−1) . (89)

Using Assumption 5, one can determine a function φ, of class K∞ and a positive function ρ
such that ∣∣∣∣∣

j+1∑
i=3

χi(t, x, N2, . . . , Ni−1)

∣∣∣∣∣ ≤ φ

(
j∑

i=2

Ni

)
ρ(x) . (90)

It follows that

DSa ≤ −ω(x) + φ

(
j∑

i=2

Ni

)
ρ(x) . (91)

By following verbatim the proof of Theorem 9 from (15) to (25), one can determine a positive
definite function pj and a function Γa, positive and nondecreasing, such that the derivative of
the function

Sb(t, x) = pj(V1(t, x))Sa(t, x) (92)

along the trajectories of (1) satisfies

DSb ≤ −1
2
pj(V1)ω(x) +

1
2

(
j∑

i=2

Ni

)
Γa(V1)−

1
2
Γa(V1)DV1 . (93)

Let
νa(t, x) = Sb(t, x) +

1
2
Γa(V1(t, x))Vj(t, x) . (94)

Simple calculations yield

Dνa ≤ −1
2pj(V1)ω(x) + 1

2

(
j∑

i=2

Ni

)
Γa(V1)− 1

2Γa(V1)DV1 + 1
2Γ′a(V1)VjDV1

+1
2Γa(V1)DVj .

(95)
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Since the function −1
2Γa(V1) + 1

2Γ′a(V1)Vj is decrescent in norm, one can determine a function
Γb, positive and nondecreasing, such that∣∣∣∣−1

2
Γa(V1) +

1
2
Γ′a(V1)Vj

∣∣∣∣ ≤ Γb(V1) . (96)

Let

νb(t, x) = νa(t, x) +
∫ V1(t,x)

0
Γb(l)dl . (97)

Then, using (96), we straightforwardly obtain

Dνb ≤ −1
2pj(V1)ω(x) + 1

2

(
j∑

i=2

Ni

)
Γa(V1) + 1

2Γa(V1)DVj . (98)

Using Assumption 5, we deduce that

Dνb ≤ −1
2pj(V1)ω(x) + 1

2

(
j−1∑
i=2

Ni

)
Γa(V1) + 1

2Γ(V1)χj(t, x, N2, . . . , Nj−1) . (99)

One can easily prove that νb is decrescent in norm. It follows that the system (1) satisfies the
assumptions of Theorem 10 with j − 1 auxiliary functions, V2,...,Vj−1, νb. According to our
induction assumption, it follows that one can construct explicitly a strong Lyapunov function.
Consequently, our induction assumption is satisfied at the step j.
Proof of Theorem 12: The proof of this result consits in constructing a function Vj+1 such
that the condition (28) of Theorem 10 is satisfied.

The function A(t, x2), defined in (36), is continuously differentiable, except at x2 = 0.
This function is not necessarily bounded but the condition C1 ensures that both M(t, x2) and
∂M
∂x2

(t, x2) are decrescent in norm which guarantees the existence of a function σ2 of class K∞
such that, for all t ∈ R, x2 ∈ Rn2 ,

|M(t, x2)| ≤ σ2(|x2|) ,

∣∣∣∣∂M

∂x2
(t, x2)

∣∣∣∣ ≤ σ2(|x2|) (100)

and therefore, for all (t, x2) 6= (t, 0),

0 ≤ A(t, x2) ≤ θ(|x2|2)2σ2(|x2|) . (101)

On the other hand, the derivative of A(t, x2) along the trajectories of (30) satisfies, when
x2 6= 0,

DA = θ(|x2|2)M(t, x2)−

[∫ t

t−θ(|x2|2)
M(l, x)dl

] [
1− 2θ′(|x2|2)x>2 f2(t, x)

]
+
∫ t

t−θ(|x2|2)

(∫ t

s

∂M

∂x2
(l, x2)f2(t, x)dl

)
ds .

(102)

Using (100) and (32) in the condition C1, we deduce that, when x2 6= 0,

DA ≤ θ(|x2|2)M(t, x2)−

[∫ t

t−θ(|x2|2)
M(l, x2)dl

]
+2θ(|x2|2)σ2(|x2|)|θ′(|x2|2)||x2|χf (t, x, N2, N3, . . . , Nj−1)
+θ(|x2|2)2σ2(|x2|)χf (t, x, N2, N3, . . . , Nj−1) .

(103)
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Grouping the terms and using the inequality (34) in the condition C2, we obtain, when x2 6= 0,

DA ≤ θ(|x2|2)M(t, x2)− γ(|x2|)
+θ(|x2|2)σ2(|x2|)

[
2|θ′(|x2|2)||x2|+ θ(|x2|2)

]
χf (t, x, N2, N3, . . . , Nj−1) .

(104)

We define now a function B as follows

B(t, 0) = 0 , ∀t (105)

B(t, x2) = δ(|x2|2)A(t, x2) , ∀(t, x2) 6= (t, 0) (106)

where δ is a positive definite function such that, for all s ≥ 0,

0 ≤ δ(s) ≤ s√
1+s2

min
{

1
θ(s)[σ2(

√
s)+1]

, 1
2σ2(

√
s)[2θ(s)|θ′(s)|

√
s+θ(s)2]

}
,

|δ′(s)| ≤ s√
1+s2

1
4
√

sθ(s)2σ2(
√

s)
.

(107)

The inequalities (101) and (107) imply that, for all (t, x2),

0 ≤ B(t, x2) ≤ δ(|x2|2)θ(|x2|2)2σ2(|x2|) ≤
|x2|2√

1 + |x2|4
. (108)

This inequality and (37) imply that B is continuous. Moreover, by taking advantage of (107)
and (108), one can show that B(t, x2) is continuously differentiable on R × Rn2 by showing
that, for any (t, x2),

lim
l→0

B(t, lx2)−B(t, 0)
l

= 0

and, for all (t, x2) 6= (t, 0),∣∣∣∣∂B

∂t
(t, x2)

∣∣∣∣2 +
∣∣∣∣ ∂B

∂x2
(t, x2)

∣∣∣∣2 ≤ (4 + n2)
|x2|4

1 + |x2|4
. (109)

The derivative of B(t, x2) along the along the trajectories of (30) is given by

DB = δ(|x2|2)DA + δ′(|x2|2)2x>2 f2(t, x)A(t, x2) (110)

when x2 6= 0. From (104), (101) and (32) in the condition C1 we deduce that

DB ≤ δ(|x2|2)θ(|x2|2)M(t, x2)− δ(|x2|2)γ(|x2|)
+δ(|x2|2)θ(|x2|2)σ2(|x2|)

[
2|θ′(|x2|2)||x2|+ θ(|x2|2)

]
χf (t, x, N2, N3, . . . , Nj−1)

+δ′(|x2|2)2|x2|χf (t, x, N2, N3, . . . , Nj−1)θ(|x2|2)2σ2(|x2|)
(111)

when x2 6= 0. We deduce from the inequalities (107) that, for all (t, x2),

DB ≤ M(t, x2)− δ(|x2|2)γ(|x2|) + χf (t, x, N2, N3, . . . , Nj−1) . (112)

We define now the following function

Vj+1(t, x) =
j∑

i=2

Vi(t, x) + B(t, x2) . (113)
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Using Assumption 5 and (109), one can conclude that ∂Vj+1

∂x is decrescent in norm Then, from
Assumption 5 and (112), it follows that

DVj+1 ≤ −
j∑

i=2

Ni(t, x) +
j∑

i=2

χi(t, x, N2, N3, . . . , Ni−1) + M(t, x2)

−δ(|x2|2)γ(|x2|) + χf (t, x, N2, N3, . . . , Nj−1) .

(114)

Thanks to (31) in the condition C1, we deduce that

V̇j+1 ≤ −Nj+1(x) + χj+1(t, x, N2, N3, . . . , Nj−1, Nj) (115)

with
Nj+1(x) = ω(|x1|) + δ(|x2|2)γ(|x2|) (116)

and

χj+1(t, x, N2, N3, . . . , Nj−1, Nj) =
j∑

i=2

χi(t, x, N2, N3, . . . , Ni−1) + χf (t, x, N2, N3, . . . , Nj−1) .

(117)
One can check readily that Theorem 10 applies. This theorem provides a strong Lyapunov
function for the system (1) with the features of (35).
Proof of Theorem 15: The function µ is positive definite. Therefore, from Lemma 22, one
can deduce that on can determine a positive definite real-valued function γ of class C1 such
that

µ(x) ≥ γ(V1(t, x)) , |γ′(V1(t, x))| ≤ 1 , ∀(t, x) ∈ R× Rn . (118)

Next, let us consider the function

C(t, x) =
(∫ t

t−τ

(∫ t

s
p(l)dl

)
ds

)
γ(V1(t, x)) . (119)

This function and ∂C
∂x are decrescent in norm and the derivative of C along (1) satisfies

DC = τp(t)γ(V1(t, x))−
(∫ t

t−τ
p(l)dl

)
γ(V1(t, x))

+
(∫ t

t−τ

(∫ t

s
p(l)dl

)
ds

)
γ′(V1(t, x))DV1 .

(120)

Thanks to (45) and (118), we deduce that

DC ≤ τp(t)µ(x)− pmγ(V1(t, x)) + τ2pM |DV1| . (121)

Consider now the function

Vj+1(t, x) := C(t, x) + τ2pMV1(t, x) + τ

j∑
i=2

Vi(t, x) (122)

which is decrescent in norm as long as ∂Vj+1

∂x . From (121), we deduce that its derivative along
(1) satisfies

DVj+1 ≤ τp(t)µ(x)− pmγ(V1) + τ2pM |DV1|+ τ2pMDV1 + τ

j∑
i=2

DVi . (123)
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Using the fact that DV1 is nonpositive and Assumption 5, we deduce that

DVj+1 ≤ τp(t)µ(x)− pmγ(V1)− τ

j∑
i=2

Nj + τ

j∑
i=3

χi(t, x, N2, . . . , Ni−1) . (124)

Using (44) we obtain

DVj+1 ≤ −pmγ(V1) + τ

j∑
i=3

χi(t, x, N2, . . . , Ni−1) . (125)

One can check readily that Theorem 10 applies. This theorem provides with a strong Lyapunov
function for the system (1) with the features of (46).
Proof of Proposition 17: Simple calculations yield

DV2 = DV1 = b1 = −N2 ≤ 0 (126)

and, for i ∈ {3, . . . , N},
DVi = −Dbi−2bi−1 − bi−2Dbi−1

≤ −b2
i−1 + |bi−2||bi|

= −Ni + χi(t, x, Ni−1) .
(127)

In addition, the functions V1 and bi for i ≥ 1 are decrescent in norm as long as ∂V1
∂x and ∂bi

∂x for
i ≥ 1. It follows that all the functions Vi, ∂Vi

∂x and the functions Ni, χi are decrescent in norm.
Therefore Assumption 5 is satisfied.

7 Conclusion

We provided several constructions of strong Lyapunov functions for time-varying systems that
satisfy generalized conditions of the Matrosov theorem. We expect that our results will have
significant implications in several areas of nonlinear control, especially in the areas of tracking
and adaptive control. We will address these issues in our future work.
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A Technical lemma

Lemma 22 Let wi : Rn → R i = 1, 2 be two positive definite functions; V : R × Rn → R and
γ1, γ2 of class K∞ such that for all (t, x) we have:

γ1(|x|) ≤ V (t, x) ≤ γ2(|x|) . (128)

Then, one can construct a real-valued function L of class CN , where N ≥ 1 is an integer, such
that L(0) = 0, L(s) > 0 for all s > 0 and for all (t, x) ∈ R× Rn, we have:

L(V (t, x)) ≤ w1(x) , (129)

|L′(V (t, x))| ≤ w2(x) . (130)

Proof. We will prove at the end of this proof that one can construct a function ρ, positive,
increasing and of class CN , and a function α of class K∞ and of class CN such that

α(V (t, x)) ≤ w1(x)ρ(V (t, x)) , (131)

α(V (t, x)) ≤ w2(x)ρ(V (t, x)) . (132)

We introduce now the following function

L(s) :=
∫ s

s
2

α(l)
2(1 + l2)(1 + ρ(2l)2)

dl . (133)

Then L(0) = 0, L(s) > 0 for all s > 0, L is of class CN and, since both α and ρ are increasing,
for all s ≥ 0,

L(s) ≤
∫ s

s
2

α(s)

2
(
1 +

(
s
2

)2) (1 + ρ(s)2)
dl ≤ α(s)

4(1 + ρ(s)2)
≤ α(s)

ρ(s)
. (134)

It follows that
L(V (t, x)) ≤ α(V (t, x))

ρ(V (t, x))
≤ w1(x) . (135)
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Therefore (129) is satisfied. On the other hand, the first derivative of L is

L′(s) =
α(s)

2(1 + s2)(1 + ρ(2s)2)
− 1

2
α
(

s
2

)
2
(
1 +

(
s
2

)2) (1 + ρ(s)2)
. (136)

Since both α and ρ are increasing, it follows that

|L′(s)| ≤ α(s)
2(1+s2)(1+ρ(2s)2)

+ 1
2

α( s
2)

2
“
1+( s

2)
2

”
(1+ρ(s)2)

≤ α(s)
2(1+s2)(1+ρ(s)2)

+ 1
2

α(s)

2
“
1+( s

2)
2

”
(1+ρ(s)2)

≤ α(s)
2(1+ρ(s)2)

+ α(s)
4(1+ρ(s)2)

≤ α(s)
ρ(s) .

(137)

Consequently, the inequality

|L′(V (t, x))| ≤ α(V (t,x))
ρ(V (t,x)) ≤ w2(x) (138)

is satisfied and therefore (130) is satisfied.
We end this proof by constructing a function ρ, positive, increasing and of class CN , and a

function α of class K∞ and of class CN such that (131) and (132) are satisfied.
We introduce the constant

Wf = inf
{z:|z|=1}

w(z) (139)

and define four functions:
w(x) = inf{w1(x), w2(x)} , (140)

δl(r) =

{
inf

{z:|z|∈[1,r]}
w(z) if r ≥ 1 ,

Wf if r ∈ [0, 1] ,
(141)

δs(r) =

{
inf

{z:|z|∈[r,1]}
w(z) if r ∈ [0, 1] ,

Wf if r ≥ 1 ,
(142)

δ(r) =
1

Wf
δs(r)δl(r) . (143)

Observe that
i) If |x| ≤ 1, then δ(|x|) = 1

Wf
δs(|x|)δl(|x|) = δs(|x|) = inf

{z:|z|∈[|x|,1]}
w(z) ≤ w(x).

ii) If |x| ≥ 1, then δ(|x|) = 1
Wf

δs(|x|)δl(|x|) = δl(|x|) = inf
{z:|z|∈[1,|x|]}

w(z) ≤ w(x).

It follows that, for all x ∈ Rn,

w(x) ≥ δ(|x|) =
1

Wf
δs(|x|)δl(|x|) . (144)

Since w is a positive definite function, δl is a positive function on [0,+∞). Therefore, from
(144), it follows that, for all x ∈ Rn,

δs(|x|) ≤ w(x)
Wf

δl(|x|)
. (145)
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We introduce two functions

αa(r) = rδs(r) , ρa(r) =
Wf (1 + r)

δl(r)
, ∀r ≥ 0 . (146)

Then, from (145), we deduce that, for all x ∈ Rn,

αa(|x|) ≤ w(x)ρa(|x|) . (147)

Since w is positive definite and at least continuous, one can prove easily that δs(0) = 0,
δs(r) > 0 if r > 0 and δs is nondecreasing and continuous. It follows that αa is of class K∞.
For similar reasons, δl is continuous, positive and nonincreasing. It follows that ρa is well-
defined, positive and increasing. Using these properties of αa and ρa and (128), we deduce
that, for all (t, x) ∈ R× Rn,

αa(γ−1
2 (V (t, x)) ≤ w(x)ρa(γ−1

1 (V (t, x))) . (148)

As an immediate consequence, we have

V (t, x)Nαb(V (t, x)) ≤ w(x)[V (t, x) + 1]Nρb(V (t, x)) . (149)

with
αb(r) = αa(γ−1

2 (r)) , ρb(r) = ρa(γ−1
1 (r)) , ∀r ≥ 0 . (150)

We define now, for all r ≥ 0, two functions

α(r) =
∫ r

0

(∫ s1

0
. . .

∫ sN−1

0
αb(sN )dsN

)
. . . ds1 , (151)

ρ(r) =
∫ r+1

0

(∫ s1+1

0
. . .

∫ sN−1+1

0
(sN + 1)Nρb(sN )dsN

)
. . . ds1 . (152)

Observe that
α(r) ≤ rNαb(r) , ρ(r) ≥ (r + 1)Nρb(r) . (153)

These inequalities and (149) yield

α(V (t, x)) ≤ w(x)ρ(V (t, x)) . (154)

Since 0 ≤ w1(x) ≤ w(x), 0 ≤ w2(x) ≤ w(x), we deduce that (131) and (132) are satisfied. One
can check readily that ρ is positive, increasing and of class CN , and α is of class K∞ and of
class CN .
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