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Abstract

It is shown that uniform global exponential stability of the input-free discrete-time model of
a globally Lipschitz sampled-data time-varying nonlinear system with inputs implies finite gain
L, stability of the sampled-data system for all p € [1,00]. This result generalizes results on £,
stability of sampled-data linear systems and it is an important tool for analysis of robustness of
sampled-data nonlinear systems with inputs.
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1 Introduction

Prevalence of computer controlled systems strongly motivates investigation of sampled-data control
systems. Moreover, due to the fact that the plant model or the control law are often nonlinear,
we often need to consider nonlinear sampled-data systems. While the area of linear sampled-data
systems has matured into a well understood and developed discipline (see [1]), a range of open
problems still remains in the area of nonlinear sampled-data systems. In particular, a complete
analysis of £, stability properties of nonlinear sampled-data systems with inputs appears to be
lacking in the literature.

One of the first results on Lo stability of nonlinear sampled-data systems that we are aware
of can be found in [7]. A result on L of linear sampled-data systems can be found in [3] and a
complete characterization of £, stability for any p € [1, 00] of linear time-invariant and time-varying
sampled-data systems can be found respectively in [2] and [5]. Related results on integral stability
properties with nonlinear gains, such as input-to-state stability (ISS) and integral input-to-state
stability (iISS), for sampled-data systems with inputs were addressed respectively in [10, 9, 13] and
[8]. In particular, preservation of the ISS property under discretization (emulation) of the dynamic
controllers for nonlinear sampled-data systems were presented in [9, 13]. Results on achieving
iISS and ISS for nonlinear sampled-data systems via their approximate discrete-time models were
considered respectively in [8] and [10].
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It is the purpose of this paper to present a result on £, stability of globally Lipschitz nonlinear
sampled-data systems with inputs. In particular, it is shown that if the discrete-time model of
the input-free sampled-data system is uniformly globally exponentially stable, then the sampled-
data nonlinear system with inputs is £, stable for any p € [1,00]. This result generalizes similar
results on £, stability of linear time-invariant and time-varying sampled-data systems in [2] and
[5], respectively, and it is an important tool in analysis of robustness properties of sampled-data
nonlinear systems. Moreover, our proof technique is based on Lyapunov arguments and it is different
from the proof technique exploited in [2, 5]. We present detailed proofs only for global results and
then comment on how the same proof technique applies to local results. We also apply our results
to the case where the sampled-data system arises in feedback control schemes using discrete-time,
dynamic controllers.

The paper is organized as follows. Preliminaries are presented in Section 2. Section 3 contains
the main result and a discussion on how the same technique can be used to address several related
problems. The proof of the main result is presented in Section 4 and proofs of some auxiliary results
can be found in the appendix.

1.1 Notation

We use Z>; to denote all integers greater than or equal to the integer j. For a function v : R>¢ —
R™, we define the £, norm of v(-) as follows:

o)z, = </Ooo !v(t)\”dt> " for p € [1, 00)

and [|v(+)| ., := ess.sup.;>|v(t)|, where the underlying vector norm is, without loss of generality,
the Euclidean norm. Similarly, but in the discrete-time setting, given a sequence v : Z>o — R™,
we define the £, norm of v(-) as:

1/p
v ()le, : <Zyy ) for p € [1,00)

and [|1(-)[|es 7= supgzo|v (k)|

2 Preliminaries

In this paper, we consider explicitly time-varying sampled-data systems with inputs

&= [flx@),2([t]r),t,u(t))
ltlr = Tmax{jeZ: jg%}. (1)

In this system, T is the sampling period, u is an exogenous input and x is the “state” (more
precisely, values of = at the initial time ¢, and at the possibly earlier time |t,]r are needed to
compute the solution forward in time) which, in a closed-loop control problem, may include some
(possibly discrete-time) controller dynamics. The right-hand side’s dependence on z([t]7) may be
due to the sample and hold nature of the control system whose sampling times are fixed along the
t axis. See, for example, Section 3.2.



An equivalent representation of (1) which we will use is given by
p(t) = flx(t), z(ts(t)), p(t), u(t))
p(t) =1 (2)
ts(t) = [p(t)]r —p(0)

where the initial time ¢ is taken to be zero without loss of generality. For this system, the sampling
times are fixed along the p axis but their locations along the t axis depend on the initial value p(0).
We can enumerate the sampling times of interest as

tp = ts((ki + 1)T) = (k‘ + 1)T -0 ke szl (3)

where o := —t4(0) represents the distance between the nearest sampling time not in the future and
t = 0. See Figure 1 for further clarification.
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Figure 1: A trajectory of the sampled-data system with indications of its initial conditions.

Our main results for the system (1), equivalently (2), will establish different finite gain £,
stability (p € [1,00)]) properties from u(-) to (). In particular, we will use the following:

Definition 1 The sampled-data system (2) is said to be

1. finite gain L, to (Lp, Loo) stable if there exists ¢ > 0 such that for all p(0) > 0, z(0) € R",
z(ts(0)) € R" and u,

max{[[z(-)]lz, |2()llzo } < € ([2(0)] + |2(t:(0))] + [Jullz,) - (4)

2. finite gain L, to (p,l) stable if there exists ¢ > 0 such that for all p(0) > 0, z(0) € R,
z(ts(0)) € R" and u,

max{[[§( e, 1€ e } < € (J2(0)] + [z (ts(0)] + llullz, ) , ()
where §(k) := x(t), for all k > 0.



We will need the following assumption on the regularity and growth of f:

Assumption 1 The function f(-,-,-,) is globally Lipschitz in its first two arguments uniformly in
its third and fourth arguments, measurable in its third argument, continuous in its fourth argument,
£(0,0,p,0) =0 for all p > 0 and, for all (x1,x2,u) and p > 0,

|f($1ax2’p7u)_f(xlax2ap70)| S‘L|u| . (6)

In order to state our main results we use the stability properties of the zero-input discrete-time

model of (1) or (2), which is generated by (1) with initial times satisfying t, = |t, |7 or by (2) with
initial times satisfying [p(0) |7 — p(0) = 0. The discrete-time model of (2) with u = 0 uses

oree) = &+ [ 0060 a(s.6 0.0 .

q(r,§,0) = o+T
(these definitions are well-posed due to Assumption 1) and is defined by
&8 = o(T,¢ 0
=G, o 8
PR .0 )

The motivation for calling this the zero-input discrete-time model corresponding to (2) is that, with
the definition of sampling times given in (3), the trajectories of (2) with u = 0 satisfy

(k1) |
[ P(t::) } = Gla(te).p(te)) Yk € Zxo. 9)

To state our main results, we will use the following stability property of (8):

Definition 2 The system (8) is uniformly globally exponentially stable (UGES) if there exist M > 0
and X\ € (0,1) such that for all £(0) € R™, o(0) >0, and all k € Z>o, the solutions of (8) satisfy

£(k)| < MIE(0)A" . (10)

3 Main results

In this section we present our main result, which states that uniform global exponential stability of
the zero-input discrete-time model of (2) implies £, stability of the sampled-data system for any
p € [1,00]. The proof of this result is postponed until the next section. Then, in the second part of
this section we discuss several possible generalizations of our results and relation to some existing
results in the literature. The main result of this section is stated next.

Theorem 1 Suppose that Assumption 1 holds and the system (8) is UGES. Then, the system (2)
18

1. finite gain L, to ({p,ls) stable and

2. finite gain L, to (Lp,Lo) stable.

Proof. See Section 4.1. °

In the next two subsections, we state two local versions of the global result established in
Theorem 1, and we explicitly discuss the application of the results to the case where the sampled-
data system is characterized by a dynamic (discrete-time) feedback function. In all cases, we also
discuss how our results compare to some existing results in the literature.



3.1 Local results

Our methods also apply to the investigation of local stability properties of nonlinear systems that
are only locally Lipschitz and whose zero-input discrete-time model is only uniformly locally expo-
nentially stable, according to the following definition, which generalizes the property in Definition 2.

Definition 3 The system (8) is uniformly locally exponentially stable (ULES) if there exist M > 0,
¢ >0 and X € (0,1) such that the solutions of (8) satisfy (10) for all £(0) € R™ with [£(0)| < ¢,
0(0) >0, and all k € Z>y.

A first natural extension of Theorem 1 is to give sufficient conditions for the sampled-data
system (2) to satisfy the following local version of the stability property in Definition 1.

Definition 4 The sampled-data system (2) is said to be

1. small signal finite gain L, to (L, Loo) stable if there exist ¢ > 0, dy > 0 and dy > 0 such that
(4) holds for all p(0) > 0, |z(0)| < dy, |2(ts(0))| < dy, [Ju(-)lz, < da.

2. small signal finite gain L, to ({p,lx) stable if there exist ¢ > 0, dy > 0 and d2 > 0 such that
(5) holds for all p(0) > 0, |z(0)| < dy, |2(ts(0))| < di, [Ju(-)lz, < da.

The local result can then be stated based on the following relaxed version of Assumption 1.
Based on this assumption, we are able to prove the forthcoming Theorem 2, which is a first local
version of Theorem 1.

Assumption 2 The function f is locally Lipschitz in its first two arguments, uniformly in its
third and fourth arguments, measurable in its third argument, continuous in its fourth argument,
£(0,0,p,0) =0 for all p > 0, and there exists 6 > 0 such that for all |x1| < § and |z9| < 0, 0> 0
and for all u, the bound (6) holds.

Theorem 2 Suppose that Assumption 2 holds and the system (8) is ULES. Then, the system (2)
18

1. small signal finite gain L, to ({,,ls) stable and

2. small signal finite gain Ly, to (Lp, L) stable.

Proof. See Section 4.2. °

To establish Theorem 2 we impose that the bound (6) holds for small z1,z9 and all u. This is
assumed because signals that have small £, norm (p < oo) may have arbitrarily large £, norm.
We can relax Assumption 2, asking that the bound (6) holds for small z1, 22 and small u, if we
change the input-output stability definition so that only inputs with sufficiently small £, norm
are considered:

Definition 5 The sampled-data system (2) is said to be

1. small signal finite gain Ly, to (Lp, Loo) stable if there exist ¢ >0, dy > 0 and dy > 0 such
that (4) holds for all p(0) > 0, |2(0)] < da, [2(t,(0))] < di, [u() . < do.

2. small signal finite gain L, o to (by,ls) stable if there exist ¢ > 0, di > 0 and da > 0 such
that (5) holds for all p(0) 2 0, [2(0)] < d, a(ts(O))] < dy, [u(-)c < da.



Definition 5 enforces an alternative small signal bound on the infinity norm of u. (Note that
when p = oo, Definition 5 coincides with Definition 4.) The stability property in Definition 5
allows to draw conclusions that have interesting connections with standard continuous time input-
output stability results (see the following Remark 1). As a matter of fact, if we are interested in
guaranteeing the input-output properties in Definition 5 for the sampled-data system (2), then the
following relaxed version of Assumption 2 is sufficient, as stated in the forthcoming Theorem 3.

Assumption 3 The function f is locally Lipschitz in its first two arguments, uniformly in its
third and fourth arguments, measurable in its third argument, continuous in its fourth argument,
£(0,0,p,0) =0 for all p > 0 and there exists 6 > 0 such that for all |z1| <9, |z2| < 0, 0 > 0 and
|u| <0, the bound (6) holds.

Theorem 3 Suppose that Assumption 8 holds and the system (8) is ULES. Then, the system (2)
18

1. small signal finite gain L, to ({p, ) stable and

2. small signal finite gain Ly, o to (Ly, L) stable.
Proof. See Section 4.2. °

Remark 1 Theorem 3 is a sampled-data version of the continuous-time result [6, Theorem 6.1].
Moreover, it was shown in [4] that ULES of (1) can be deduced from ULES of the zero-input discrete-
time model of the linearization of the system (1). Hence, combining our results in Theorem 3 with
results of [4] we conclude that ULES of the discrete-time model of the linearization of the system
(1) implies small signal finite gain £, o to (£p, {) stability and £, ~ to (Lp, L) stability of the
nonlinear sampled-data system (1) for any p € [1, c0]. o

3.2 Application: dynamic feedback case

Our results cover the case of dynamic feedback if the system has the following form:

zp(t) = fp(:vp() P(t), ¢, u(t))
2(ltr +T) folwp(ltir), =([t]r) (11)
() = V(zp(lt]r), z([t)r))

where the first equation models the plant dynamics, the second equation models the discrete-time
controller dynamics and v is the control signal (output of the controller that is passed through
a zero order hold). Under appropriate assumptions on fp, fo and ¥ we can apply our re-
sults. Indeed, to see this we introduce fo(zp,2) = +(fc(zp,2) — 2) and ((t) = 2z(|t]r) +
(t — [t]7) fo(zp([t)r), 2([t]7)). The definition of the variable ¢ is similar to that of the “nu-
merical interpolant” that has found a widespread use in numerical analysis literature (see [12,
Definition 7.2.1]). Note that {(|t]7) = z(|t]r) and the variable ( is piecewise linear in ¢ and hence
it is absolutely continuous in ¢. Hence, we can write for almost all ¢:

¢ = Jolxp(t]r).¢(1t]r)) - (12)

Consider now the system

ip = fplxp(t), (xp([t]r), C([t]r)),t, u(t))

¢ = Jelap(ltln).c(ltlr)) | (13)



which has the same form as (1) if we identify a new “state” z := (xp, () and a new right hand side
of continuous-time part of the model

Fa ), 2 ([t ]7). £ u(t)) = ( JiP(m'P(t),\I/(l'P(I];tJT)aC(LtJT))vt,U@)) > . (14)

fe(@p(t]7),C([t]T))
Then we can state the following result:

Corollary 1 Suppose that Assumption 1 holds for the function (14) and the zero-input discrete-
time model of the system (11) is UGES. Then, the system (11) is

1. finite gain L, to ({p,l) stable and
2. finite gain Ly, to (Lp, Loo) stable.

Note that a sufficient condition for Assumption 1 to hold for the function (14) is that fp, fe, v
are all globally Lipschitz and zero at zero, uniformly in ¢.

Remark 2 The above corollary generalizes [2, Corollary 4] when f p,fc,\ll are linear and time
invariant and [5, Propositions 6 and 7] when fp, fo, ¥ are linear and time varying. To see this, we
note that the state of the system (11) that was used in [2, 5] is:

&(t) = (ep(t) VW (zp(|tlr), 2([t)r)) 2 (t))"

and the cited results prove that stability of the input-free discrete-time model of (11) implies that
u € L, yields € L, for all p € [1,00]. Note that in the linear case ¥ is globally Lipschitz and
zero at zero since it is linear. Moreover, whenever u € L, then item 2 of Corollary 1 implies
that xp € £, and since V is linear item 1 of Corollary 1 implies that W(xp(|t]7),2([t]7)) and
z(|t]r) are £,. Hence, we can conclude that £ € £,,p € [1,00]. Note that our conclusions are
somewhat stronger than the results of the cited references since, for instance, we can also conclude
from Corollary 1 that u € £, for p € [1,00) implies & € L, which is not explicitly stated in [2, 5].

[¢]

The following corollaries are the local generalizations of Corollary 1 corresponding, respectively,
to Theorems 2 and 3.

Corollary 2 Suppose that Assumption 2 holds for the function (14) and the zero-input discrete-
time model of the system (11) is ULES. Then, the system (11) is

1. small signal finite gain L, to ({p,l) stable and

2. small signal finite gain L, to (L,, L) stable.

Corollary 3 Suppose that Assumption 3 holds for the function (14) and the zero-input discrete-
time model of the system (11) is ULES. Then, the system (11) is

1. small signal finite gain L, o to ({y, ) stable and

2. small signal finite gain Ly, o to (Lp, L) stable.

Note that a sufficient condition for Assumption 3 to hold for the function (14) is that fp, fo, v
are all locally Lipschitz and zero at zero, uniformly in ¢. On the other hand, for Assumption 2 to
hold, we can impose a uniform sector growth property on fp(xp,v,t, ) — fp(xzp,1,t,0).



Remark 3 We emphasize that the plant in (11) is strictly proper with respect to the disturbance
input u (i.e., the disturbance u does not affect the controller dynamics directly). This structure
is crucial since there exists a linear counterexample (see [2]) which shows that if the plant is not
strictly proper, then £, stability can not be achieved. If the plant is not strictly proper, then
one can insert a continuous-time strictly proper stable filter at the output of the plant to make
the plant+filter system strictly proper with respect to the disturbance and then our results apply.
This approach was taken, for instance, in [2, 5]. We also note that input-output results for strictly
proper plants with outputs easily follow from our input-to-state results. o

4 Proof of Main Results

We will make use of the following fact which is proved using Holder’s inequality.

Fact 1 Let the sequence ty, k € Z>_1 be such that t_y <0 and tp11 —t,, =T for allk € Z>_;.
Given a function u(-) defined on [t_1,00) with u(t) =0 for allt € [t_1,0), define

T
0 ::/ Wty +T)ldr Yk € Zs s . (15)
0
Then, for each p € [1,00] (where for p = oo we let ijl =1),
17C- = Dllg, < T VP |lu()lz, - (16)

Proof. See Appendix A.1. °

The proof of our results will rely heavily on the input to state properties of the discrete-time
system

oo+ ] (17)

where G was defined in (8).

4.1 Proof of the global result

The following can be established:

Proposition 1 Suppose Assumption 1 holds and the system (8) is UGES. Then the discrete-time
system (17) is finite gain £, stable from v(-) to &(-) for allp € [1,00], i.e., for each p € [1,00], there
exists ¢, such that, for each £(0) € R™ and o(0) > 0,

1€ e, < ep (16O + 11 (lle,) - (18)

Proof. See Appendix A.2. °

We are now ready to prove our global result.
Proof of Theorem 1 Recall the definition of ¢ for k € Z>_; given in (3). Define

f(kﬁ) = ﬂj(tk) Vk € 22,1
Q(k) = p(tk) Vk € ZZO .



Then define

§-1) = [ig(_ol)) } ) = ﬁgi) } Vk € Zo . (20)
If t_; < 0 then, for all t € [t_1,0), define x(t) := z(t_1) and u(t) := 0. Also define
T
v(k) = / |u(ty + 7)|dT Vk € Z>_1 (21)
0
and
v(k) = O(T,&(k), o(k), ulty + ) — 6(T, E(k), 0(k),0) ¥k € Zxg (22)
where
Bt.60m() =€+ [ FGUr€ 0.6 0+ rulr)ar (23)

It follows from Assumption 1 that this definition is well-posed. From the definition of v(k) in (22),
G(-,-) in (8) and £(k) and p(k) in (19), it follows that

| =emem [ Y] keza. (24)

The following two claims (whose proofs are reported in Appendix A.l for completeness) are
based on a simple application of the Gronwall lemma and will serve to complete our proof.

Claim 1 Under Assumption 1, if v(-) and v(-) are defined as in (21) and (22), then

lv(k)| < cv(k) Vk € Z>o , (25)
with ¢ := Lexp(LT). [ |
Claim 2 Under Assumption 1, if U(-) and £(-) are defined as in (20) and (21), then

l2(t)] < col€(k)| + cT(k) , Vk € Zs_1, t € [ty thsl, (26)
with ¢ :== Lexp(LT) and ¢y := (1 + LT) exp(LT). [ ]

It follows from inequality (26), that

2l cal[€C- = Dllew +€llF(- = Dl

= it ) (27)
< (=] +c2ll§O)llew +ellZ( = Do
and
[EZQ]I (t)[Pdt
e k;;; 1]{
<7y (2@ k)P + (2c)pa(k)p) (28)

k€Z>_1
< T (e E=1P + e IO, + ePIFC — DI, -

We also have, using the definition of £(-), the relation (24), inequality (25), Proposition 1, and (26)
with k = —1 and ¢ = t,, that for all p € [1, o0],

1€OMe, < e (Jzto)l + [ ()lle,)

= - i (29)
< o (Cal€(=1)| + 26l = D, )
Combining (29) with (25), (27), (28), Fact 1 and using the fact that, for each ¢ : Z>9 — R™,
HCO e <ICCe, VP € [1,00] (30)
establishes the results of the theorem. .



4.2 Proof of the local results

The proofs of Theorems 2 and 3 are similar in nature to the proof of the global result. A key tool
for these proofs is the following local version of Proposition 1.

Proposition 2 Suppose that the function f(-,-,-,0) is locally Lipschitz in its first two arguments
uniformly in its third argument and that the system (8) is ULES. Then the discrete-time system
(17) is small signal finite gain £, stable from v(-) to £(-) for all p € [1,00], i.e., for each p € [1,00],
there exist positive constants ¢, and d such that, for each [£(0)] < d, 0(0) >0 and ||v(-)||e. < d,

1€ ewe < NEG e, < e (IEO) + 1V ()]le,) - (31)
Proof. See Appendix A.3. )

Based on Fact 1 and Proposition 2, the proof of Theorems 2 and 3 can be carried out in a
similar way as the proof of Theorem 1 reported in Section 4.1, with a special attention to the fact
that since the right hand side of (2) is only locally Lipschitz, solutions may escape in finite time
and the function G(€, p) in (8), (7) may be not well defined.

Proof of Theorems 2 and 3 The following two claims (whose proofs are omitted due to space
constraints) can be easily proven by contradiction, using Gronwall’s inequality and Fact 1.

Claim 3 Under Assumption 2 (respectively, Assumption 3), consider a value {(k) and a function
u(+) such that

Se—LT Se—LT
[E(R) < &nr = 51 IT) Ju()lle, <un = S (32)
Se—LT
< respectively, lu()| 2o < un = min{ 5T T ,5} ) .
Then, the value v(k) in (22), (23) is well defined and satisfies the bound
(k)] < cvplluC)lic,, p el ool
|

Claim 4 Under Assumption 2 (respectively, Assumption 3), given the discrete-time system (24)
with the selection (22), if

: Em et Em 6
d. M : qd.5M °
g <min{a S Ol < e min{a S5,
—-LT 5
(‘respectvety, uCllea <mind < minfa, 0 246 ).
LT » 2617 2
then £(k) and v(k) are well defined and &(k) satisfies (32) for all k > 0. [ |

Based on the two claims above, the proof can be completed following the guidelines of the proof
of Theorem 1. In particular, if t_1 < 0 then, for all ¢ € [t_1,0), define x(t) := z(t_1) and u(t) := 0.
By the definitions in (19), (20), (21), setting £(0) = x (o), ensures that, if

l2(to)] < min {d, %M} (33)

P
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then the discrete-time solution &£(-) to (24), (22) satisfies (k) = =z(t)) for all & > 0, and the
combination of Claims 3 and 4 implies that the samples z(t) are well defined and bounded by &/
for all kK > 0.

To ensure that (33) holds, by Fact 1 we can enforce an arbitrarily small bound on foto |u(T)|dT
by fixing a sufficiently small bound on [ju(-)||z, (respectively, ||u(-)||z.,). Moreover, following the
same approach as in the proof of Claim 3, it can be shown by contradiction that if |z(¢_1)| and
|z(0)| are sufficiently small, equation (33) holds.

Finally, the proof is completed as in the proof of Theorem 1 using Proposition 2, (25), (26),
(27), and (28). .
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A  Proofs of technical results

A.1 Proof of Fact 1 and Claims 1 and 2

Proof of Fact 1 Case 1: p < co. By the integral version of the Holder’s inequality written by
substituting ¢ = p/(p — 1) (see, e.g., [14, page 274]), we get

tk+1 tk+1 (p—l)/p tk+1 1/p
/ Llu(r)ldr < ( / dT) ( / yu(T)\PdT>
tr tr tr

tei1 1/p
— |T|(p—1)/p </ |u(7)|pd7-) )
tg

Taking the p-th power of both sides and summing between —1 and oo, we get

we-oi, = > ( [ u(r)idr )

k=-1

>0 tht1
< Tp—l(z / \umrpdT)
k=—1"7tk

_ el / lu(r)Pdr.
0

A

Case 2: p = oo. This case follows easily from the fact that (15) implies

PR <Tu(ew,  VEEZ>1.

Proof of Claim 1 First note that, by Assumption 1, we can write
’f(zlvmvpvu)_f(227x7p70)‘ < ’f(217x7p7u>_f(zlvxvpv())H_

]f(zl,x,p,O) - f(22,$7p70>| (34)
< L(ful + [z1 — 22)).

Given any k > 0, define 2 (t) = ¢(t,£(k), o(k), u(ty + -)) and z(t) = ¢(t,£(k), o(k),0) for all
t € [0,7] and note that, by equation (22), v(k) = 2z1(T) — 22(T"). Hence, equation (23) with (34)
implies that

21(t) = 22(8)] < L/O (lz1(7) = 22(7)[ + [ulty + 7)[) d7

< L/O |u(tk+7')|dT—I—L/0 |z1(7) — 2zo(7)|dT.

Finally, by the Gronwall-Bellman inequality, we can write
t
|z1(t) — z2(t)] < exp(Lt) <L/ |u(tx +T)|d7') ,
0
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which can be evaluated for ¢t = T to get inequality (25). .

Proof of Claim 2 By the definition (19), given any k > 1, we can write
t
tk

= LK)+ | (7). &(k), p(k), u(T))dr, V¥t € [t tia].

tg

Since by Assumption 1

|f(£L‘1,IE2,p,U)| < ‘f(l’l,fﬂg,p,U)—f(ﬂfl,fEQ,p,O)H‘
’f(x17x27p70) - f<07 07p70)’
< Lz ] + [we] + [ul),

then the proof can be completed using Gronwall-Bellman inequality and definition (21) in a similar
way as the proof of Claim 1. °

A.2 Proof of Proposition 1

The following two lemmas (whose proofs are omitted due to space constraints) will be useful for
the proof of Proposition 1. The first is a straightforward application of Gronwall’s lemma (similar
in nature to the proof of Claim 2). The second one is a converse Lyapunov statement (a similar
lemma can be found, e.g., in [7]).

Lemma 1 Under Assumption 1 the map § — G(&, ) defined in (8) is globally Lipschitz, uniformly
m Q.

Lemma 2 (Converse Lyapunov theorem) If the system (8) is UGES and Assumption 1 holds then
there exists a (Lyapunov) function (§,0) — V(& 0) which is globally Lipschitz in &, uniformly in
0 > 0, and there exist M > 0 and & > 0 such that the following holds for all o € R>q and for all
EeR:

Sl < V(g0 < M¢
V(G 0)-V(0) < —all

IN

(35)

Proof of Proposition 1 Case 1: p < oco. By Assumption 1 and Lemma 1, the map (&, 0) — G(§, 0)
in (8) is globally Lipschitz in &, uniformly in p. Then, by UGES of the system (8) and Lemma 2,
there exists a Lyapunov function V'(-,-) globally Lipschitz in the first argument (uniformly in the
second), satisfying (35). Then, by the global Lipschitz property of V (-, ), the following holds:

36
el + Lyl (36)

<
<

Consider now the Lyapunov function p(V) := VP. Applying [11, Lemma 1] with a;(s) = s,
as(s) = Ms, v(s) = Lys, a(s) = a@s and T = 1, equation (36) and the first equation in (35) are
sufficient for the following to hold:

V(G(E0) + ,0)" = V(0" < —celéf + vl (37)

13



where
-1
Yy B oM p
¢ =5p ¢, =pLy [Lv <7+1)] .

Substituting in equation (37) the trajectories of system (17) and taking the sum from zero to
infinity of both sides, we get

0< V(O +Z —celé(k)IP + culv(k)IP),

which implies

lEONZ. < leq) = Zw
(38)
MP

< —|| (I, + ZIS(O)I”-

Case 2: p = oo. Consider inequality (36). By the first equation in (35) and since v(-) € f, this
can be written as follows:

VI(G(E,0) + (1,0) = V(£ 0) < —=V(&, 0) + Ly v ()llew (39)

S

By equation (39), it follows that if V (£, ) > &
Conversely, if V(£, 0) < 2£¥ ||y (-)]l¢,, , then

(e » then V(G(E, 0) + (v,0)) < V(§, 0).

V(G(E o) +(1,0) < (1-2)V(E0) + Lv|v()|e
< (1= 2) ML) e + Ly v () e (40)
= MLy ()e,.

Hence, combining the two bounds derived above,

M Ly

V(G(E o)+ (n0) < max{wg,@), HV()Heoo}, Vo > 0,v. (41)

Finally, writing equation (41) along the trajectories of the system (17) and applying iteratively
the bound on V({(k + 1), 0(k + 1)) = V(G(&(k), o(k)) + (v(k),0)), the following is proven:

MLy

V(E®H), ok) < max{vu v <>uew}, VE >0,

which, from the first equation in (35), yields
M LV

1€ e < ME(0)] + [ ()llews
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A.3 Proof of Proposition 2

In this appendix we give guidelines to show Proposition 2, based on the steps of the proof in
Appendix A.2. The following two results are straightforward generalizations of Lemmas 1 and 2
for the local case.

Lemma 3 If the function f(-,-,-,0) is locally Lipschitz in its first two arguments uniformly in its
third argument, then there exists r > 0 such that the map & — G(&, ) defined in (8) is well defined
and Lipschitz for all £ such that || < r, uniformly in o.

Lemma 4 (Converse Lyapunov theorem) If the system (8) is ULES and the map (&, 0) — G(&, 0)
is defined and Lipschitz for all & such that || < r, uniformly in o, then there exists a (Lyapunov)
function (§,0) — V(§,0) and 6 > 0, M > 0, @ > 0, with 6 < r, such that for all |§| < § and
0 € Rxg, V is locally Lipschitz in &, uniformly in ¢ > 0, and

Sl < V(g0 < M
V(G 0)-V(E0) < —all

Based on Lemmas 3 and 4, Proposition 2 can be proven following the steps of the proof of
Proposition 1 as follows:

2M v
Based on the combination of Lemmas 3 and 4, if ||v(-)|¢,. < d and |£{(0)| < d, then the proof of
Proposition 1 for the case p = oo can be followed verbatim ! to show that [|£(-)||s., < 6/2
Hence, since [£(k)| < 6/2, and |v(k)| < §/2 for all k& > 0, equation (36) holds and, by a local
version of [11, Lemma 1] (whose proof is the straightforward generalization of the proof in [11]),
also equation (37) can be proven to hold.
Finally, following the same steps as in the proof of Proposition 1, (38) holds too, thus completing
the proof. °

Proof of Proposition 2 Consider the constant § introduced in Lemma 4 and take d = 5% min {E

!Note that, by equation (39), necessarily |£(k)| < 6, Vk > 0, as a matter of fact, whenever V(£(k), o(k)) > /2,

the inequalities

V(ER), o(k)) = O > MLv g MLy

> 2> 22> 2 ()

imply that [£(k+1)| < |£(k)| (this actually also holds whenever V (§(k), o(k)) > %ﬁ |lv(-)]]¢es » Which is an even larger
set). Moreover, if V(£(k), 0(k)) < EY{|u(:)||¢., then by the inequalities (40), [£(k + 1)] < V(£(k + 1), o(k + 1)) <
T Ollewe <

[e o 2°

15

1}.



