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Abstract

A framework for controller design of sampled-data nonlinear systems via their ap-
proximate discrete-time models has been established recently. Within this framework
naturally arises the need to investigate stability properties of parameterized discrete-
time systems. Further results that guarantee appropriate stability of the parameterized
family of discrete-time systems that is used within this framework have been also estab-
lished for systems with cascaded structure. A fundamental condition that is required
in this framework is uniform boundedness of solutions of the cascade. However, this is
difficult to check in general. In this paper we provide a range of sufficient conditions for
uniform boundedness that are easier to check. These results further contribute to the
toolbox for controller design of sampled-data nonlinear systems via their approximate
discrete-time models.

1 Introduction

The class of sampled-data nonlinear models is strongly motivated by the prevalence of com-
puter controlled systems and the fact that nonlinearities can often not be neglected in con-
troller design. Recently, a framework for controller design for this class of systems via
their approximate discrete-time models has been proposed in [13, 15]. Within this frame-
work naturally arises the need to investigate stability properties of parameterized families
of discrete-time systems. Consequently, stability of parameterized families of discrete-time
systems in cascaded form has been investigated in [10]. The conditions presented in this ref-
erence are necessary and sufficient for stability of parameterized cascades but they are often
difficult to check. In this paper, we provide a range of simpler-to-check sufficient conditions
for stability of parameterized cascades to be used within this framework.

∗This work is supported by the Australian Research Council under the Large Grants Scheme.
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In particular, we study here discrete-time parameterized systems with inputs of the gen-
eral form

x(k + 1) = fT (k, x(k), z(k)) (1)

where x ∈ Rnx , z ∈ Rnz and T is the sampling period. In the system (1), z is seen as a
generic input which may be an exogenous signal, the state of another system or possibly a
control input. In the case when it corresponds to the state of another dynamical system,
say,

z(k + 1) = gT (k, z(k)) , (2)

we call the system (1), (2) a cascaded system. Such systems have attracted the attention of
the control research community for many years now and for many reasons. From a theoretical
viewpoint, it probably originated in geometric nonlinear control where it was shown that
many systems can be transformed into a cascade via a local change of coordinates (see, for
example, [6, Lemma 1.6.1]).

A natural but fundamental question that arises is the following: assuming that (2) and
the zero-input system

x(k + 1) = fT (k, x(k), 0) , (3)

are uniformly asymptotically stable (UGAS) –see next section for precise definitions– under
which conditions is the cascade UGAS? This apparently simple question largely triggered
by the puzzling “peaking phenomenon” (cf. [23]) led to a range of significant results mainly
in the context of continuous-time systems (see e.g. [20] and references therein). Among the
most significant achievements stands the statement that a necessary and sufficient condition
for UGAS of the cascade is that the solutions of the system with inputs be uniformly globally
bounded. This property requires and implies the so-called “converging-input bounded state”
property for the system (1) when z is regarded as input. In the continuous time context
it dates back to [21, 19] for autonomous systems and more recently it was proved that the
same holds for non autonomous systems in [17].

In the discrete-time context there is a considerable lag in this research direction. Some
notable exceptions are however, the recent paper [7] where significant results within the
framework of the so-called input-to-state stability have been established. See also [11] for
other results for non ISS cascades. Nevertheless, these results apply only to autonomous,
non-parameterized discrete time systems i.e., for a fixed sampling period T, and can be used
only when the exact discrete-time of the system is known.

Very recently, as far as we know the first results on UGAS of parameterized non-
autonomous cascades were established in [9, 10]. More precisely, it was shown that if (2)
and (3) are UGAS then, the cascade (1), (2) is also UGAS if and only if (1) is uniformly
globally bounded (UGB). In essence, this is the same result which has been known for years
in the continuous-time context. Interestingly, as we will see later and it is thoroughly dis-
cussed in [9, 11] there exist important technical differences between the continuous and the
discrete-time contexts.

The necessary condition of UGB imposed in [9, 10] is in general hard to check. This
paper establishes a range of easier-to-check sufficient conditions for UGB to hold.

Our results can be classified into two types: (i) integral conditions; (ii) conditions in-
volving forward completeness. For the first case, we present conditions to verify UGB via
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the property of integral input-to-state stability (iISS) and integral input-to-state neutral
practical stability. In essence, integral conditions impose a minimal convergence rate of the
solutions of the subsystem (2) seen as “inputs” to the top subsystem (1). These results follow
closely results in [5] and [17]. Moreover, we make strong connections between iISS results of
[5] and the integrability condition results of [17]. Conditions involving forward completeness
establish a relation between the convergence rate of the top system and the growth rate of
the interconnection terms in (1), i.e., the terms of fT which depend on z. The first of this is
a result involving dead-beat stability property for (3) and the second can be seen as a result
which parallels [17, Theorem 4] in which systems ẋ = f(t, x) + g(t, x, z) are studied under
the assumption that f(t, ·) and g(t, ·, z) have similar growth rates. As discussed in the latter
reference, this case excludes input-to-state stable (ISS) systems. Again, we provide a unified
proof for these two seemingly unrelated results.

Thus, the results we present here contribute together with those in [10] to what we may
call cascaded-based control design (see the latter reference for an illustrative application) for
sampled-data systems via their approximate discrete-time models within the framework that
was established in [13, 14]. In particular, the definitions that we use are strongly motivated
by results in the latter references.

Our results generalize the time-invariant discrete-time results in [7] as well as [11] and
parallel similar continuous-time results from [5, 17]. However, as it will become clear below,
the results presented here are not a simple translation of their counterparts in continuous-
time. Indeed, the properties we consider, the conditions we impose and the proofs we
establish here are notably different and the sufficient conditions we impose are tailored
specifically for discrete-time parameterized systems.

The rest of the paper is organized as follows. In next section we present some mathe-
matical preliminaries and formulate the precise problem that we address. In Section 3 we
present our main results. We conclude with some remarks in Section 4.

2 Mathematical preliminaries and problem setting

For the system (1), (2) we use the notation ξ := [xT zT ]T to denote the state of the overall
system. In our main results we regard z in the system (1) as an exogenous input that
is not necessarily generated by the subsystem (2) in order to obtain more general results
that can be used in establishing stability of cascades. Hence, we refer to the subsystem (1)
as the system with input z. The solution of the system (1) with input z at time k that
starts at initial time instant k◦ from the initial state x(k◦) = x◦ and under the action of
the input sequence ωz[k◦,k) := {z(k◦), . . . z(k − 1)} is denoted as φxT (k, k◦, x◦, ω

z
[k◦,k)). We also

use ωz := ωz[k◦,∞). Note that the solution of the system (3) is the same as the solution

for system (1) with input z when z(j) ≡ 0,∀j ∈ [k◦, k] and hence for solutions of (3) we
use the notation φxT (k, k◦, x◦, 0). Similarly we use notation φξT (k, k◦, ξ◦), φ

x
T (k, k◦, ξ◦) and

φzT (k, k◦, z◦) to denote solutions of the overall system (1), (2) and its x and z components
respectively.

A function α : R≥0 → R≥0 is said to be of class K (α ∈ K), if it is continuous, strictly
increasing and zero at zero; α ∈ K∞ if, in addition, it is unbounded. A function β :
R≥0 × R≥0 → R≥0 is of class KL if for all t > 0, β(·, t) ∈ K, for all s > 0, β(s, ·) is
decreasing to zero. A function γ : R≥0 → R≥0 is said to be of class N if γ(·) is continuous
and nondecreasing.
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For an arbitrary r ∈ R we use the notation brc := max
z∈Z,z≤r

z. Given strictly positive real

numbers L, T we use the following notation:

`L,T :=

⌊
L

T

⌋
. (4)

Our main results are targeted at establishing the following form of asymptotic stability,
which is motivated by the framework of [13, 14] for sampled-data systems.

Definition 1 The family of the parameterized time-varying systems

y(k + 1) = FT (k, y(k)) (5)

is uniformly globally asymptotically stable (UGAS) if there exists β ∈ KL and T ∗ > 0 such
that for all k◦ ≥ 0, y(k◦) = y◦, y◦ ∈ Rn and T ∈ (0, T ∗) the following holds:

|φyT (k, k◦, y◦)| ≤ β( |y◦| , (k − k◦)T )

(6)

for all k ≥ k◦. �

For this, we know from [9, 10] that a necessary and sufficient condition is that the system
with inputs (1) have the UGB property (cf. Theorem 1). We define the latter as follows.

Definition 2 The system (5) is uniformly globally bounded (UGB), if there exist κ ∈ K∞,
c and T ∗ > 0 such that for all k◦ ≥ 0, y(k◦) = y◦, y◦ ∈ Rn and T ∈ (0, T ∗) it holds that

|φyT (k, k◦, y◦)| ≤ κ(|y◦|) + c (7)

for all k ≥ k◦. �

More precisely, in [9, 10] the following was established.

Theorem 1 Suppose that the solutions of the system (1) with input z satisfy the following:

Assumption 1 There exists T ∗ > 0 such that for any strictly positive reals η, ε and L there
exists µ > 0 such that for all T ∈ (0, T ∗), all z(·) with ‖ωz‖ ≤ µ, k◦ ≥ 0 and all x(k◦) = x◦
with |x◦| ≤ η, we have that∣∣φxT (k, k◦, x◦, ω

z
[k◦,k))− φxT (k, k◦, x◦, 0)

∣∣ ≤ ε , ∀k ∈ [k◦, k◦ + `L,T ] . (8)

Then, the system (1), (2) is UGAS if and only if the following conditions hold:

1. The system (3) is UGAS;

2. The system (2) is UGAS;

3. The system (1), (2) satisfies the property UGB.

�
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A “semiglobal-practical” version of Theorem 1 can also be stated (see [10] for details).

The first assumption, which we called in [10], uniform semi(global) continuity, is not
restrictive. It is a technical condition motivated from numerical analysis methods and is
satisfied for instance when fT (k, x, z) satisfies a particular type of Lipschitz property in x
and z that is uniform in k but not in the parameter T . (see [10] for further details).

In contrast to this, the UGB assumption is in general hard to check. Our main results,
which are presented next, are focussed on establishing sufficient conditions for UGB to
hold. Semiglobal versions of this property (useful to establish semiglobal practical uniform
asymptotic stability) can also be established by carefully restricting the domain of attraction
and making appropriate changes to the definitions. These are omitted here for simplicity
and space reasons.

3 Main results

As mentioned above, the sufficient conditions that we establish for UGB can roughly be
classified into conditions involving integral input-to-state stability and conditions involving
the property of uniform forward completeness.

All our results can be easily modified to be applicable to non-parameterized discrete-time
systems and they are briefly commented on. The interested reader should refer to [11] where
precise statements with proofs of these results can be found.

3.1 Conditions involving integral ISS

In this section we prove a result that is a discrete-time version of [5, Theorem 1]. Moreover, we
show that the result involving integrability conditions in [17, Theorem 5] is closely related and
can be recovered using the iISS framework. For the purposes of this paper we have modified
the definitions of integral input-to-state stability properties given in [1] to be applicable to
parameterized discrete-time systems.

Definition 3 (iISS) The system (1) with input z is Integral Input-to-State Stable (iISS)
with gain µ if there exist α, µ ∈ K∞, β ∈ KL and T ∗ > 0 such that for all k◦ ≥ 0,
x(k◦) = x◦ with x◦ ∈ Rnx, all inputs z(·) and T ∈ (0, T ∗)

α(
∣∣φxT (k, k◦, x◦, ω

z
[k◦,k))

∣∣) ≤ β(|x◦| , (k − k◦)T ) +
k−1∑
i=k◦

Tµ(
∣∣ωz[k◦,k)

∣∣) ,
for all k ≥ k◦. �

Definition 4 (iISNpS) The system (1) is Integral Input-to-State Neutrally practically Sta-
ble (iISNpS) with gain µ and input z if there exist α, γ1, µ ∈ K∞, γ2 ∈ N and T ∗ > 0 such
that for all k◦ ≥ 0, x(k◦) = x◦ with x◦ ∈ Rnx, all inputs z(·) and T ∈ (0, T ∗)

α(
∣∣φxT (k, k◦, x◦, ω

z
[k◦,k))

∣∣) ≤ γ1(|x◦|) + γ2

(
k−1∑
i=k◦

Tµ(
∣∣ωz[k◦,k)

∣∣)) , (9)

for all k ≥ k◦. �
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Necessary and sufficient conditions for iISS of non-parameterized discrete-time time-invariant
systems can be found in [1]. Integral input to state stability properties of parameterized
systems were investigated in [2]. The following Proposition captures a similar result to that
contained in [5, Theorem 1]. This result shows that in order to have UGAS of the system
(1), (2), there is a trade-off between the rate of convergence of trajectories of the system (2)
and the shape of the iISNpS gain of the system (1).

Proposition 1 Suppose that there exist α, γ1, µ, σ ∈ K∞, κ ∈ K, γ2 ∈ N and λ, c, T ∗ > 0
such that:

1. The system (1) is iISNpS with gain µ and input z;

2. The system (2) is UGAS with β(r, t) := σ(κ(r)e−λt);

3. The following condition holds:∫ 1

0

µ ◦ σ(s)

s
ds ≤ c <∞ . (10)

Then, the cascade (1), (2) is UGB. �

Proof. The proof follows closely that of [5, Theorem 1]. By assumption, there exist α, γ1,
µ ∈ K∞, γ2 ∈ N , κ ∈ K and λ, T ∗ > 0 such that for all k◦ ≥ 0, ξ(k◦) = ξ◦ with ξ◦ ∈ Rn and
k ≥ k◦

α(|φxT (k, k◦, ξ◦)|) ≤ γ1(|x◦|) + γ2

(
T
∞∑

k=k◦

µ ◦ σ
(
κ(|z◦|)e−λ(k−k◦)T

))
. (11)

The sum on the right hand side of the inequality above satisfies

T
∞∑

k=k◦

µ ◦ σ
(
κ(|z◦|)e−λ(k−k◦)T

)
= Tµ ◦ σ ◦ κ(|z◦|) + T

∞∑
k=k◦+1

µ ◦ σ
(
κ(|z◦|)e−λ(k−k◦)T

)
and since µ ◦ σ(κ(|z◦|)e−λ(k−k◦)T ) is monotonically decreasing in (k − k◦)T , the last term on
the right hand side of this equation satisfies

T

∞∑
k=k◦+1

µ ◦ σ
(
κ(|z◦|)e−λ(k−k◦)T

)
≤
∫ ∞
t◦:=k◦T

µ ◦ σ
(
κ(|z◦|)e−λ(t−t◦)

)
dt .

Define as in [5], s := κ(|z◦|)e−λ(t−t◦) then∫ ∞
t◦:=k◦T

µ ◦ σ
(
κ(|z◦|)e−λ(t−t◦)

)
dt =

∫ κ(|z◦|)

0

µ ◦ σ(s)

λ s
ds .

From item 3 of the proposition we have that

κ1(s) :=
1

λ

∫ s

0

µ ◦ σ(t)

t
dt
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exists for all s ≥ 0 and it is of class K because κ1(0) = 0 and µ◦σ(t)
t

> 0 for all t > 0. Putting
all these bounds together and using item 2 of the Proposition we obtain that

α(|φxT (k, k◦, ξ◦)|) ≤ γ1(|x◦|) + γ2 (T ∗µ ◦ σ ◦ κ(|z◦|) + κ1 ◦ κ(|z◦|))

for all k ≥ k◦ ≥ 0 and since the system (2) is UGAS, the solutions of (1), (2) are UGB. �

We remark that the assumption in item 2 of Proposition 1 is not restrictive since such
bound exists for any UGAS system. Indeed, it was shown in [22] that given any β ∈ KL,
there exist σ ∈ K∞, κ ∈ K such that β(r, t) ≤ σ(κ(r)e−t) ∀ r, t ≥ 0.

The condition in item 3 was first used in [5, Theorem 1] and it is very related to the
summability condition in [17, Theorem 5]. Item 3 is restrictive and it shows a tradeoff
between the iISNpS gain µ of (1) and the convergence rate of (2). As a matter of fact,
and this should be clear from the above proof, this condition can be regarded as a sufficient
condition for summability of the solutions of the subsystem (2) that are weighted by the gain
µ. More precisely, it is a sufficient condition for

T
∞∑

k=k◦

µ (|φzT (k, k◦, z◦)|)

to be uniformly bounded by a function of the initial states. Then, it is evident from Defini-
tions 3 and 4 that the system (1) is UGAS (resp. UGB) if it is iISS (resp. iISNpS) and the
quantity above is uniformly bounded. The above given condition was used in [17, Theorem
5]. Another observation to keep in mind is that item 3 holds if the subsystem (2) is uniformly
locally exponentially stable and µ is locally linear. See [10, 9] for further discussions and a
physical example illustrating these observations.

Items 2 and 3 of the Proposition rely on the ability to compute a KL bound for the
solutions of (2). This may often be done from a Lyapunov function (when available) for the
system (2) and comparison arguments; for instance, see [13, 15]. Sufficient Lyapunov type
conditions for iISS of parameterized systems can be found in [2] and are given below:

Proposition 2 If there exist α1, α2, γ ∈ K∞, a positive definite function α3 : R≥0 → R≥0

and T ∗ > 0 such that for all T ∈ (0, T ∗) there exists a continuous function VT : R≥0×Rnx →
R≥0 such that for all x ∈ Rnx, z ∈ Rnz , k ≥ 0 and T ∈ (0, T ∗) we have:

α1(|x|) ≤ VT (k, x) ≤ α2(|x|) (12)

VT (k + 1, fT (k, x, z))− VT (k, x) ≤ −Tα3(|x|) + Tγ(|z|) , (13)

then there exist β ∈ KL and µ ∈ K such that the system (1) with input z is iISS with gain
µ. �

Obviously, iISS implies iISNpS and hence, the above given Proposition provides sufficient
conditions for iISNpS as well. However, since iISNpS is a weaker notion than iISS, we state
and prove below weaker sufficient Lyapunov conditions for iISNpS.

Proposition 3 Suppose that there exist α̃1, α̃2, γ̃1, γ̃2, ϕ ∈ K∞, c, T ∗ > 0 and for each T ∈
(0, T ∗) there exists VT : R≥0 × Rnx → R≥0 such that for all x ∈ Rnx , z ∈ Rnz , k ≥ 0 and
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T ∈ (0, T ∗) we have that :

α̃1(|x|) ≤ VT (k, x) ≤ α̃2(|x|) + c (14)

VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0)) ≤ T γ̃1(|z|)ϕ(VT (k, x)) + T γ̃2(|z|) (15)

V (k + 1, fT (k, x, 0))− VT (k, x) ≤ 0 (16)∫ ∞
1

ds

ϕ(s)
= ∞ . (17)

Then, the system (1) with input z is iISNpS with gain µ(s) = γ̃1(s) + γ̃2(s)
ϕ(1)

. �

Proof. First, note that using (15), (16) we can write

VT (k + 1, fT (k, x, z))− VT (k, x) = VT (k + 1, fT (k, x, 0))− VT (k, x)

+VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0))

≤ T γ̃1(|z|)ϕ(VT (k, x)) + T γ̃2(|z|).

The proof follows by direct application of the technical Lemmas 1 and 2 which are presented
in Appendix A.

The proposition above makes clear other interesting links with conditions used in the
literature in the context of continuous-time systems to prove UGB. Note that the condition
(17) restricts the growth of ϕ. In particular, it holds when ϕ(s) = s; this situation was
considered for instance in [17] with γ̃1(s) ≡ 0. Earlier results using similar conditions are
found in [12] and in the context of forward completeness already in [18].

If we consider differentiable VT ’s and assume that fT (k, x, z) := FT (k, x) + TGT (k, x, z),
with GT (k, x, 0) = 0 then we may interpret condition (15) as follows. By the mean value
theorem, there exists η = FT (k, x) + θGT (k, x, z), θ ∈ (0, 1) such that

|VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0))| = T

∣∣∣∣∂VT∂x (η)

∣∣∣∣ |GT (k, x, z)| .

If we assume moreover that: (A)
∣∣∂VT
∂x

(η)
∣∣ |x| ≤ cVT (k, x)κ1(|z|) for all x and |GT (k, x, z)| ≤

κ2(|z|) |x| then one can show that (15) holds. The linear growth restriction on the intercon-
nection term GT (k, ·, z) in the assumption (A) has been exhaustively used to establish UGB
in the context of continuous-time systems1 (see e.g. [20, 16] and references therein) and it
finds its original motivation in the so called peaking phenomenon introduced in [8]. It is inter-
esting that the linear growth condition is not required for time-invariant non parameterized
discrete-time systems as the following example illustrates:

Example 1 Consider the system:

xk+1 = axk + xpkyk

yk+1 = 0 , (18)

1For simplicity we strengthen here the condition (A) to hold on the whole state space but in the cited
references the authors require this to hold only for “large” states. Moreover, the first part of assumption
(A) in continuous-time is usually stated as

∣∣∂V
∂x (x)

∣∣ |x| ≤ cV (x). However, in discrete-time this assumption
is too restrictive since η depends on z.
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where p ≥ 0 is arbitrary and a ∈ (0, 1). We claim that the discrete-time system is GAS for
any p ≥ 0. We prove this by constructing a Lyapunov function for the system. Let ε > 0 be
such that a+ ε− 1 < 0 and define the Lyapunov function

V (x, y) := |ax+ xpy|+ ε |x|+ |y| . (19)

This function is obviously positive definite and radially unbounded for any value of p ≥ 0.
Finally, the first difference of the Lyapunov function is:

∆V = |a(ax+ xpy)|+ ε |ax+ xpy| − |ax+ xpy| − ε |x| − |y|
= (a+ ε− 1) |ax+ xpy| − ε |x| − |y| , (20)

which is negative definite for any p ≥ 0 since a+ ε− 1 < 0 and ε > 0.

We close this section with another interesting observation which was proved in [1] for time-
invariant discrete-time systems

x(k + 1) = f(x(k), u(k)) . (21)

The system (21) is iISS if and only if the zero input system x(k + 1) = f(x(k), 0) is GAS.

This result is not true for continuous-time systems. Actually, it was shown in [4] for
continuous-time systems with inputs

ẋ = f(x, u) , (22)

that if the system ẋ = f(x, 0) is GAS and moreover (22) is forward complete, this still
does not imply that (22) is iISS. These results and Proposition 1 indicate that one can
expect large differences between continuous-time and discrete-time cascade results. Indeed,
following results of [1] and Proposition 1 for time-invariant non parameterized cascades

x(k + 1) = f1(x(k), z(k)) (23)

z(k + 1) = f2(z(k)) (24)

we can state the following:

If x(k+ 1) := f1(x(k), 0) is GAS, then there exists a GAS subsystem (24) so that
the cascade (23), (24) is GAS.

We will show in the next section that even a stronger statement is true for discrete-time non
parameterized time-varying cascades if the bottom system is dead-beat stable. However, the
above statement is not true in continuous-time even for time-invariant systems, as shown by
[11, Example 2].

3.2 Conditions involving uniform forward completeness

Sometimes it is possible to relax the UGB assumption in our main results and replace it with
a particular type of forward completeness. This section contains several results that follow
this approach. In particular, we present a unified proof for two important situations: (i) the
bottom system is dead-beat stable; (ii) certain conditions involving growth rate restrictions
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on the function fT hold. The first of these results is very important in discrete-time since
dead-beat behaviour can often be achieved. The second result was considered in [17] and it
uses conditions that restrict the growth rate of fT . The definitions that we use to prove the
main result are stated in sufficient generality in order to prove the two results in a unified
manner (see Proposition 4).

Definition 5 The system (1), (2) is uniformly forward complete (UFC) if there exist σ1, σ2 ∈
K∞ and T ∗, c > 0 such that for all k◦ ≥ 0, ξ(k◦) = ξ◦, with ξ◦ ∈ Rn, and T ∈ (0, T ∗) we
have: ∣∣∣φξT (k, k◦, ξ◦)

∣∣∣ ≤ σ1(|ξ◦|) + σ2(T (k − k◦)) + c , (25)

for all k ≥ k◦. �

Clearly, UFC is a weaker condition than UGB, since the bound in (25) grows unbounded as
(k − k◦)T →∞.

UFC as defined above is very similar to the property of forward completeness for continuous-
time systems. Indeed, Definition 5 is inspired from [3]. It is important to note that a crucial
feature of the UFC property is the particular dependence of the bound on the parameter T .

The following stability property is crucial in unifying the results of this section.

Definition 6 The system (2) is practically dead-beat stable (PDBS) with offset C if there
exist σ, L ∈ K∞, C ≥ 0 and T ∗ > 0 such that for all k◦ ≥ 0, z(k◦) = z◦, with z◦ ∈ Rnz , and
T ∈ (0, T ∗) we have:

|φzT (k, k◦, z◦)| ≤ σ(|z◦|), ∀k ∈ [k◦, k◦ + `L,T ]

|φzT (k, k◦, z◦)| ≤ C , ∀k ≥ k◦ + `L,T (26)

where L := L(|z◦|) and `L,T is defined by (4). �

Obviously, if the system (2) is UGAS, then it is PDBS with offset C for any C > 0. However,
the system may be UGAS but not PBDS with offset C = 0. Our motivation to use Definition
6 is to unify proofs for the cases when the system (2) is PDBS with offset C = 0 and when
it is UGAS. To state our main result in this section we introduce one more definition.

Definition 7 The system (1) with input z has the property of bounded input bounded state
(BIBS) with input bound C if there exists C, d ≥ 0, T ∗ > 0 and σ ∈ K∞ such that for all
k◦ ≥ 0, x(k◦) = x◦, with x◦ ∈ Rnx, T ∈ (0, T ∗) and |z(k)| ≤ C,∀k ≥ k◦ ≥ 0 we have:∣∣φxT (k, k◦, x◦, ω

z
[k◦,k))

∣∣ = σ(|x◦|) + d, k ≥ k◦ . (27)

�

The following proposition establishes the conditions when the UFC property implies the
stronger UGB property needed in Theorem 1.

Proposition 4 Suppose that there exists C ≥ 0 such that the following conditions hold:

1. The system (1), (2) is UFC.

10



2. The system (2) is PDBS with offset C.

3. The system (1) with input z is BIBS with input bound C.

Then, the system (1), (2) is UGB. �

Proof. Let C ≥ 0 come from conditions of the Proposition. Let σ1, σ2, c, T
∗
1 come from

item 1, L, T ∗2 come from item 2 and σ3 ∈ K∞, T ∗3 , come from item 3. We show that (1), (2)
is UGB with T ∗ := min{T ∗1 , T ∗2 , T ∗3 },

κ(s) := max{σ3 (2σ1(s) + 2σ2 ◦ L(s)) , σ1(s) + σ2 ◦ L(s)}

and c1 := max{σ3(2c) + d+ C, c}. Let T ∈ (0, T ∗) and ξ◦ ∈ Rn be arbitrary. First, consider
the solutions of the system (1), (2) on the time interval k ∈ [k◦, k◦+ `L,T ]. Then, using item
1 and the fact that T`L,T ≤ L(|z◦|) ≤ L(|ξ◦|) we can write∣∣∣φξT (k, k◦, ξ◦)

∣∣∣ ≤ σ1(|ξ◦|) + σ2(T · `L,T ) + c (28)

≤ σ1(|ξ◦|) + σ2 ◦ L(|ξ◦|) + c , k ∈ [k◦, k◦ + `L,T ] .

Now consider the solutions on the interval k ≥ k◦+ `L,T . On this time interval we have from
item 2 that |z(k)| ≤ C. Denote x1 := φxT (k◦ + `L,T , k◦, ξ◦). Suppose that we use 1-norm for
vectors. In this case, with an abuse of notation, we have that |ξ| = |x| + |z|. From items 2
and 3, we have that∣∣∣φξT (k, k◦, ξ◦)

∣∣∣ = |φxT (k, k◦, ξ◦)|+ |φzT (k, k◦, ξ◦)|

≤ |φxT (k, k◦ + `L,T , x1)|+ C

≤ σ3(|x1|) + d+ C

≤ σ3 (σ1(|ξ◦|) + σ2 ◦ L(|ξ◦|) + c) + d+ C (29)

≤ κ(|ξ◦|) + c1 , k ≥ k◦ + `L,T .

Combining (28) and (29) and in view of the compatibility of norms, the result follows.

Two special cases of the above Proposition that are easier to check are given below.
Corollary 1 establishes that if the solutions of (1) (that is, driven by the inputs z(·) ) do not
explode in finite time then UGB follows observing that there always exists a sufficiently large
(but finite) instant k such that the solutions of (2) enter (and remain) in a ball of radius
C ≥ 0. In particular, if C = 0 then we impose that (2) be deadbeat stable. The second
corollary concerns the case when C > 0 and as it will become clear later, in this case it is
sufficient to impose a growth-rate restriction on the interconnection terms of (1).

Another interesting special case of our results is when the bottom subsystem (2) satisfies
a stronger dead-beat stability property.

Corollary 1 Suppose that the following conditions hold:

1. The system (1), (2) is UFC.

2. The system (2) is PDBS with offset C = 0.

3. The system (3) is UGAS.

11



Then, the system (1), (2) is UGB. �

Proof. It follows directly from the proof of Proposition 4 by noting that UGAS of system
(3) trivially implies BIBS with input bound C = 0 of the system (1). Indeed, we can take
σ(s) = βx(s, 0) and d = 0.

Remark 1 Note that since non-parameterized discrete-time cascades are forward complete
if the right hand side of (23), (24) is defined everywhere, using a similar argument like in
the proof of Proposition 4 we can show that the following is true (for more details see [11]):

If (24) is UGDS, then for any system (23) such that x(k + 1) = f1(x(k), 0) is
UGAS we have that the cascade (23), (24) is UGAS.

Example 1 illustrates the above statement. While the above statement is true even for for-
ward complete continuous-time systems, we are not aware of a reference where this result
is explicitly stated. This is probably because finite time dead-beat stability is a less common
property for continuous-time systems. �

The next result imposes a growth rate restrictions on fT and it is similar to [17, Theorem
4].

Corollary 2 Suppose that the following conditions hold:

1. The system (1), (2) is UFC.

2. The system (2) is UGAS.

3. There exist α1, α2 ∈ K∞, σ ∈ K, λ, c, T ∗ > 0 and for all T ∈ (0, T ∗) there exist
functions VT ,WT : R≥0 × Rnx → R≥0 such that for all x ∈ Rnx, z ∈ Rnz , T ∈ (0, T ∗)
and k ≥ 0 we have

α1(|x|) ≤ VT (k, x) ≤ α2(|x|) + c (30)

VT (k + 1, fT (k, x, 0))− VT (k, x) ≤ −TWT (k, x) (31)

VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0)) ≤ TλWT (k, x)σ(|z|) . (32)

Then, the system (1), (2) is UGB. �

Proof. Let α1, α2, σ, λ, c, T
∗ come from item 3. Since the system (2) is UGAS, it is also

PDBS with any offset C > 0. Let C = σ−1(1/λ). Inequalities (31) and (32) in item 3 imply:

VT (k + 1, fT (k, x, z))− VT (k, x) ≤ VT (k + 1, fT (k, x, 0))− VT (k, x)

+VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0))

≤ −TWT (k, x) + TλWT (k, x)σ(|z|)
= −TWT (k, x)(1− λσ(|z|)) .

If |z| ≤ C, then
VT (k + 1, fT (k, x, z))− VT (k, x) ≤ 0 .

12



Hence, if |z(k)| ≤ C,∀k ≥ k◦ ≥ 0, we have

VT (k, φxT (k, k◦, x◦, ω
z
[k◦,k))) ≤ VT (k◦, x◦), ∀k ≥ k◦ ≥ 0 ,

and using (30) it follows that∣∣φxT (k, k◦, x◦, ω
z
[k◦,k))

∣∣ ≤ α−1
1 (α2(|x◦|) + c) , ∀k ≥ k◦ ≥ 0.

Hence, the system (1) with input z is BIBS with the input bound C. The conclusion follows
from Proposition 4

We present next a sufficient condition for UFC stated in terms of a radially unbounded
Lyapunov function (similar conditions for continuous-time systems were used in [3, 18, 17]).
The proof follows directly from Lemmas 1 and 2 from the appendix by letting γ̃1(s) ≡ 1,
γ̃2(s) ≡ c̃2.

Proposition 5 Suppose that there exist α̃1, α̃2 ∈ K∞, c̃1, c̃2, T
∗ > 0 and for any T ∈ (0, T ∗)

there exists VT : R≥0 × Rn → R≥0 such that for all ξ ∈ Rn, k ≥ 0 and T ∈ (0, T ∗) we have

α̃1(|ξ|) ≤ VT (k, x, z) ≤ α̃2(|ξ|) + c̃1 (33)

VT (k + 1, fT (k, x, z), gT (k, z))− VT (k, x, z) ≤ T α̃3(VT (k, x, z)) + T c̃2 , (34)∫ ∞
1

ds

α̃3(s)
= ∞ . (35)

Then, the system (1), (2) is UFC. �

The condition (35), which is clearly similar to (17), deserves special attention. It shall not
be surprising that this condition for UFC is actually very tight (though not necessary) since
as mentioned before, UFC is very close to the property forward completeness for continuous-
time systems. As already noted the condition (35) restricts the growth of α̃3. In particular,
this condition holds if α̃3(s) = O(s) as s→∞. For example, if all conditions of Proposition
5 hold with (34) replaced by

VT (k + 1, fT (k, x, z), gT (k, z))− VT (k, x, z) ≤ Tc1VT (k, x, z) + Tc2 ,

for some c1, c2 ≥ 0, then the system (1), (2) is UFC.

4 Conclusions

It has been established in [10] that a necessary and sufficient condition for UGAS of cas-
caded discrete-time parameterized systems is that the systems solutions be uniformly globally
bounded. This condition is in general difficult to check. In this paper we have presented a
range of sufficient conditions guaranteeing UGB. Our results are formulated in terms of the
well-studied (in the continuous-time context) notions of integral input-to-state stability and
forward completeness. Our results contribute further to cascaded-based control design for
sampled-data systems via their approximate discrete-time models.
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[10] A. Loŕıa and D. Nešić . On uniform asymptotic stability of time-varying parameter-
ized discrete-time cascades. Technical report, LSS, 2002. Submitted to IEEE Trans.
Automat. Contr.
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A Some technical lemmas

Lemma 1 Consider the system:

y(k + 1) = FT (k, y(k), u(k)) . (36)

Suppose that there exist α̃1, α̃2, α̃3 ∈ K∞, γ̃1, γ̃2 ∈ N , c̃, T ∗ > 0 and for any T ∈ (0, T ∗) there
exists VT : R≥0 × Rn → R≥0 such that for all y ∈ Rn, k ≥ 0 and T ∈ (0, T ∗) we have that

α̃1(|y|) ≤ VT (k, y) ≤ α̃2(|y|) + c̃ (37)

VT (k + 1, FT (k, y, u))− VT (k, y) ≤ T γ̃1(|u|)α̃3(VT (k, x)) + T γ̃2(|u|) , (38)∫ ∞
1

ds

α̃3(s)
= ∞ . (39)

Then, there exist α1, α2 ∈ K∞, c > 0 and for each T ∈ (0, T ∗) there exists WT : R≥0×Rn →
R≥0 such that all y ∈ Rn, k ≥ 0 and T ∈ (0, T ∗) we have that

α1(|y|) ≤ WT (k, y) ≤ α2(|y|) + c (40)

WT (k + 1, FT (k, y, u))−WT (k, y) ≤ Tκ(|u|) , (41)

where κ(s) :=
(
γ̃1(s) + γ̃2(s) 1

α̃3(1)

)
. �

Proof. Let α̃1, α̃2, α̃3, γ̃1, γ̃2 come from the conditions of the lemma. Define:

q(s) :=

{
1

α̃3(1)
, s ≤ 1

1
α̃3(s)

, s > 1
.
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Let ρ ∈ K∞ be defined as

ρ(s) :=

∫ s

0

q(τ)dτ .

Note that ρ ∈ K∞ and ρ is differentiable with dρ
ds

(s) = q(s). Also, q(·) is non-increasing since
α̃3 ∈ K∞.

Introduce WT (k, y) := ρ(VT (k, y)). Then, it is obvious that (40) holds with α1(s) :=
ρ ◦ α̃1(s), α2(s) = ρ ◦ 2α̃2(s) and c = ρ(2c̃). We now show that (41) holds.

We consider two cases. If VT (k + 1, FT (k, y, u)) ≤ VT (k, y), then since ρ ∈ K∞, we have:

WT (k + 1, FT (k, y, u))−WT (k, y) ≤ 0 ≤ T

(
γ̃1(|u|) + γ̃2(|u|) 1

α̃3(1)

)
. (42)

On the other hand, if VT (k+ 1, FT (k, y, u)) > VT (k, y), then using the Mean Value Theorem
we can write

WT (k + 1, FT (k, y, u))−WT (k, y) = q(V ∗)[VT (k + 1, FT (k, y, u))− VT (k, y)]

≤ Tq(V ∗)[γ̃1(|u|)α̃3(VT (k, y)) + γ̃2(|u|)] (43)

where VT (k, y) < V ∗ < VT (k + 1, FT (k, y, u)). Since q is a non increasing function, we have

q(VT (k, y))) ≥ q(V ∗) ,

and hence

WT (k + 1, FT (k, y, u))−WT (k, y) ≤ Tq(VT (k, y))[γ̃1(|u|)α̃3(VT (k, y)) + γ̃2(|u|)] .

If VT (k, y) ≤ 1, then we have:

WT (k + 1, FT (k, y, u))−WT (k, y) ≤ T
γ̃1(|u|)α̃3(VT (k, y)) + γ̃2(|u|)

α̃3(1)

≤ T
γ̃1(|u|)α̃3(1) + γ̃2(|u|)

α̃3(1)

= T

(
γ̃1(|u|) + γ̃2(|u|) 1

α̃3(1)

)
. (44)

If VT (k, y) ≥ 1, then

WT (k + 1, FT (k, y, u))−WT (k, y) ≤ T
γ̃1(|u|)α̃3(VT (k, y)) + γ̃2(|u|)

α̃3(VT (k, y))

≤ T

(
γ̃1(|u|) +

γ̃2(|u|)
α̃3(VT (k, y))

)
= T

(
γ̃1(|u|) + γ̃2(|u|) 1

α̃3(1)

)
. (45)

The proof is completed by combining (42), (44) and (45).

Lemma 2 Consider the system (36). Suppose that there exist α1, α2 ∈ K∞, κ ∈ N , c > 0
and for each T ∈ (0, T ∗) there exists WT : R≥0 ×Rn → R≥0 such that all y ∈ Rn, k ≥ 0 and
T ∈ (0, T ∗) we have that (40) and (41) hold. Then, the solutions of the system (36) satisfy
(9) with γ1(s) = α2(s), α = α1, γ2(s) = s+ c and µ(s) = κ(s). In particular, if κ(s) ∈ K∞,
then the system (36) is iISNpS. If κ(0) = C for some C ≥ 0, and u(k) ≡ 0, then the system
(36) is UFC. �
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Proof. Consider arbitrary T ∈ (0, T ∗), k◦ ≥ 0, y(k◦) = y◦ and u(k). Denote w(k) :=
WT (k, φyT (k, k◦, y◦, ω

z
[k◦,k))). Then, using (41) we can write

w(k + 1) ≤ w(k) + Tκ(|u(k)|), ∀k ≥ k◦ ≥ 0 .

By induction, we it follows that:

w(k) ≤ w(k◦) + T
k−1∑
t=k◦

κ(|u(k)|), ∀k ≥ k◦ ≥ 0 .

Finally, using (40) we obtain

α1

(∣∣φyT (k, k◦, y◦, ω
z
[k◦,k))

∣∣) ≤ α2(|y◦|) + c+ T
k−1∑
t=k◦

κ(|u(k)|), ∀k ≥ k◦ ≥ 0 , (46)

which shows that the bound (9) holds. Hence, if κ ∈ K∞ the system (36) is iISNpS with the
above defined functions. If on the other hand κ(0) = C, and u(k) ≡ 0, then we have:

α1(|φyT (k, k◦, y◦, 0)|) ≤ α2(|y◦|) + c+ CT (k − k◦), ∀k ≥ k◦ ≥ 0 , (47)

which shows that the input-free system (36) is UFC.

17


