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Input-to-state stabilization of linear systems with
quantized state measurements

Daniel Liberzon and Dragan Nešić

Abstract— We consider the problem of achieving input-to-state
stability (ISS) with respect to external disturbances for control
systems with linear dynamics and quantized state measurements.
Quantizers considered in this paper take finitely many values
and have an adjustable “zoom” parameter. Building on an
approach applied previously to systems with no disturbances,
we develop a control methodology that counteracts an unknown
disturbance by switching repeatedly between “zooming out” and
“zooming in.” Two specific control strategies that yield ISS are
presented. The first one is implemented in continuous time and
analyzed with the help of a Lyapunov function, similarly to earlier
work. The second strategy incorporates time sampling, and its
analysis is novel in that it is completely trajectory-based and
utilizes a cascade structure of the closed-loop hybrid system.
We discover that in the presence of disturbances, time-sampling
implementation requires an additional modification which has
not been considered in previous work.

Index Terms— Disturbances, hybrid control, input-to-state sta-
bility, quantized feedback.

I. INTRODUCTION

The subject of this paper is feedback control of linear
continuous-time systems with quantized state measurements.
Control problems of this kind are motivated by numerous
applications where communication between the plant and the
controller is limited due to capacity or security constraints.
This is a very active and expanding research area; see, e.g.,
[2], [19], [1], [3], [16], [6], [5], [8], [9], [13], [18].

The starting point for this paper is the approach developed
in [1], [8] (see also [10, Chap. 5]), which we now briefly
recall. The quantizer is assumed to take a finite set of values
and incorporates an adjustable “zoom” parameter. The control
strategy is composed of two stages. The first, “zooming-out”
stage consists in increasing the range of the quantizer until the
state of the system can be adequately measured; at this stage,
the system is open-loop. The second, “zooming-in” stage
involves applying feedback and at the same time decreasing
the quantization error in such a way as to drive the state to the
origin. This results in a hybrid control law, in which the zoom
parameter is a discrete variable whose transitions are triggered
by the values of a suitable Lyapunov function.

The method of [1], [8] was shown to achieve global
asymptotic stability (GAS). The focus of the present work
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is on achieving robustness with respect to disturbances. We
characterize the desired robustness by an ISS-like property
(see [17]) which involves bounded nonlinear gains from the
initial state and the supremum norm of the disturbance to the
supremum norm of the state and also from the supremum
limit of the disturbance to the supremum limit of the state.
The contributions cited earlier only deal with stability in the
absence of external signals, with the notable exceptions of [5],
[18], [13]. In [5], [18], state boundedness in the presence of
bounded disturbances is achieved by using the knowledge of
a disturbance bound. In [13], mean square stability in the
stochastic setting is obtained by utilizing statistical information
about the disturbance (a bound on its appropriate moment). In
contrast to these works, here we assume the disturbance to be
completely unknown to the controller.

Our first main result (Theorem 1 in Section II) is that the
ISS property in the presence of disturbances can be achieved
by extending the method of [1], [8]. An extension is necessary
because an unknown disturbance may force the state outside
the range of the quantizer after it has already been inside.
Thus we develop a control strategy that switches multiple
times between the zooming-out and zooming-in stages. This
strategy is still Lyapunov-based, and its analysis is similar in
spirit to that from [8] but is significantly more difficult. When
no disturbances are present, the earlier stabilization result is
recovered from our new result as a special case.

Next, we turn to the problem of achieving the same robust-
ness property using sampled-data quantized feedback. Time-
sampling implementation is important because it guarantees a
finite data rate (cf. [6]) and also because it exposes the issue
of robustness with respect to time delays. We demonstrate that
unless proper care is taken, the straightforward sampled-data
adaptation of the continuous-time control strategy in general
fails to provide ISS, although it does stabilize the system in
the absence of disturbances (see Sections III-A and III-B). We
then proceed to describe a modified version of the zooming-
out procedure which yields ISS in the time-sampling context,
obtaining our second main result (Theorem 2 in Section III-C).

We give a proof of Theorem 2 which sharply differs from
that of Theorem 1 in that it does not use a Lyapunov function
and instead is based entirely on trajectory analysis. Thus an-
other principal contribution of this work is a novel alternative
method for analyzing stability and robustness of quantized
feedback control schemes (which can be applied in continuous
time as well). In particular, an important component of this
time-based analysis consists in recognizing and utilizing a
cascade structure of the hybrid closed-loop system. (This can
be viewed as a special instance of the general small-gain
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approach to stability analysis of hybrid systems proposed
in [11], [14].)

In an effort to make the paper accessible to a variety of
readers, we organize it in a top-down fashion.1 The main
results are first presented in Sections II and III without proofs;
discussions and examples are also provided there to compare
and illustrate the results. The basic steps of their proofs
are then described in Section IV, and the remaining more
technical proofs are collected in the Appendix. Section V
offers conclusions and remarks on extending the results to
nonlinear dynamics.

II. LYAPUNOV-BASED CONTINUOUS-TIME APPROACH

We consider the linear system

ẋ = Ax + Bu + Dd, (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, and
d ∈ R

s is an unknown disturbance (u and d are taken to be
Lebesgue measurable and locally bounded). We assume that
A is a nonzero, non-Hurwitz matrix, and that the system (1)
is stabilizable, so there exist matrices K and P = P T > 0
such that A + BK is Hurwitz and

(A + BK)T P + P (A + BK) ≤ −2I. (2)

Let λmin(·) and λmax(·) denote the smallest and the largest
eigenvalue of a symmetric matrix, respectively. In what fol-
lows, | · | denotes the Euclidean norm, ‖ · ‖ denotes the
corresponding matrix induced norm, and ‖·‖J denotes the
supremum norm of a signal on an interval J ; sometimes we
will omit the subscript J if it is the entire domain of the signal.
For x ∈ R

n, dxe is the smallest integer z ∈ N such that
z ≥ x. We use the notation (x, y) := (xT yT )T for arbitrary
vectors x, y. A continuous function ϕ : R≥0 → R≥0 is of
class K∞ (ϕ ∈ K∞) if it is zero at zero, strictly increasing,
and unbounded.

A quantizer is a piecewise constant function q : R
n → Q,

where Q is a finite subset of R
n. As in [8], we assume that

there exist real numbers M > ∆ > 0 such that the following
two conditions hold:

|z| ≤ M ⇒ |q(z) − z| ≤ ∆ (3)

and
|z| > M ⇒ |q(z)| > M − ∆. (4)

The first condition gives a bound on the quantization error
when the quantizer does not saturate, while the second one
provides a way to detect the possibility of saturation. We will
refer to M and ∆ as the range and the error bound of the
quantizer, respectively.

We also assume that q(z) = 0 on some neighborhood of
the origin. This assumption can be stated as follows.

Assumption II.1 There exists a number ∆0 > 0 such that for
all |z| ≤ ∆0 we have q(z) = 0.

1We thank the anonymous referees for suggesting this structure.

We will be using the one-parameter family of quantizers

qµ(x) := µq
(x

µ

)
, µ > 0. (5)

Here µ is an adjustable parameter, which can be viewed as a
“zoom” variable. At each time t, the quantized measurement
qµ(t)(x(t)) will represent the information about x(t) that is
communicated to the controller. For each fixed µ, the range
of the quantizer qµ is Mµ and the error bound is ∆µ.
Geometrically, at every given time R

n is divided into a finite
number of quantization regions (each corresponding to a fixed
value of qµ) and the controller knows which of these regions
contains the state x. The variable µ will be varied in a discrete
fashion in order to extract more information about the state.
This adjustment policy for µ, or “zooming protocol,” will
depend only on the quantized measurements of the state; it
can be thought of as being implemented synchronously on
both ends of the communication channel, starting from some
known initial value µ0. We refer the reader to [1], [8], [10]
for further motivation and discussion.

The problem of interest is to design a quantized feedback
control law and a scheme for updating µ to achieve the
following property: there exist functions γ1, γ2, γ3 ∈ K∞ such
that for every initial condition x0 = x(t0) and every bounded
disturbance d we have

|x(t)| ≤ γ1(|x0|) + γ2

(
‖d‖[t0,∞)

)
∀t ≥ t0 (6)

and
lim sup

t→∞
|x(t)| ≤ γ3

(
lim sup

t→∞
|d(t)|

)
. (7)

We note that the gain functions γ1, γ2, γ3 may depend on the
choice of the initial value µ0 = µ(t0) of the zoom variable µ,
but do not depend on x0 or d. Actually, γ3 will not depend
on µ0, as we will see from the formula (48) in Section IV-A.
Since the closed-loop dynamics will not explicitly depend on
time t, all bounds will also be uniform with respect to the
initial time t0.

We know that for continuous systems of the form ẋ =
f(x, d), the property expressed by the two inequalities (6)
and (7) is equivalent to input-to-state stability (ISS) with
respect to d [17]. In the present case, the closed-loop system
will be a hybrid system, because it will contain an additional
discrete state µ. With some abuse of terminology, we will refer
to the previous property as ISS of the continuous closed-loop
dynamics.

This ISS property also implies that in the disturbance-free
case (d ≡ 0), the origin is a GAS equilibrium of the continuous
closed-loop dynamics (for a fixed µ0). Thus we recover as a
special case the property achieved by the algorithms developed
in [1], [8] for the case of no disturbances. In fact, the algorithm
presented next is a natural extension of the ones from [1], [8].

As we said, the overall closed-loop system will be hybrid: it
will contain continuous states (states taking values in a contin-
uum) and discrete states (states taking values in a discrete set).
Both continuous and discrete states will be functions of the
continuous time t ∈ [t0,∞). The continuous variables will
be comprised of the system state x and two auxiliary reset
clock variables τout and τin, both initialized at 0. They will take
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values in the intervals [0, Tout] and [0, Tin], respectively, where
Tout ≥ Tin > 0. The discrete variables will be comprised of the
zoom variable µ and an auxiliary logical variable captured.
The variable µ will be initialized at some µ0 > 0 and will
take values in a discrete subset of (0,∞) which depends
on µ0. The variable captured will take values in the set
{“yes”, “no”} and will be initialized at “no;” it is needed to
distinguish between the “capturing” (open-loop) stage and the
control (closed-loop) stage. The control law is defined by

u(t) =

{
0 if captured = “no”
Kqµ(t)(x(t)) if captured = “yes”

(8)

The state dynamics describing the evolution of the system
variables with respect to time are composed of continuous
evolution and discrete events. During continuous evolution
(i.e., while no discrete events occur), µ is held constant, x
satisfies (1) with u defined by (8), and the clock variables
satisfy

τ̇in =

{
1 if τin < Tin

0 if τin = Tin
, τ̇out =

{
1 if τout < Tout

0 if τout = Tout
(9)

We now describe the discrete events. Given an arbitrary time
t, we will denote by µ−(t), or simply by µ− when the time
arguments are omitted, the quantity lims↗t µ(s), and similarly
for all other variables. All system variables will be continuous
from the right by construction (and of course x is continuous).
Let numbers Ωout > 1, Ωin ∈ (0, 1), Tc ∈ (0, Tout/2),
and `out > `in > 0 be given. The discrete events are of
three types. They are governed by the following rules, which
we write in the form “if {conditions} then {actions}.” The
conditions are mutually exclusive and are assumed to be
checked continuously in time. Variables for which no actions
are specified remain constant during the corresponding events.
Zoom-out: If

(τ−
out = Tout and captured− = “no”) or

(|qµ−(x)| ≥ `outµ
− and captured− = “yes”)

(10)

then let µ = Ωoutµ
− and τout = 0.

Capture: If

|qµ−(x)| ≤ `outµ
− and τ−

out ∈ [Tc, Tout − Tc]

and captured− = “no”
(11)

then let µ = Ωoutµ
− and captured=“yes.”

Zoom-in: If

|qµ−(x)| ≤ `inµ
− and min{τ−

out, τ
−
in } ≥ Tin

and captured− = “yes”
(12)

then let µ = Ωinµ
− and τin = 0.

Noting the saturation in (9) and recalling that Tout ≥ Tin, the
functioning of the clocks can be understood as follows. While
captured = “no,” we wait at least Tout units of time after
a zoom-out before executing another zoom-out. Moreover, we
wait at least Tin units of time after the last zoom-in or zoom-
out before executing another zoom-in. For convenience, the
clock τout is also used to ensure that the capture event is
separated in time from the zoom-outs.

For each fixed value of µ, chattering on the boundaries
between the quantization regions may occur, and solutions
are to be interpreted in the sense of Filippov [4] (this issue
does not affect the Lyapunov-based analysis that follows).
Solutions of the overall hybrid system are defined as usual,
from one discrete event to the next. The only potential issue
is the possibility of infinitely many zoom-in/out events in
finite time (Zeno behavior), which in principle can happen
since a minimal time between zoom-outs is not enforced while
captured = “yes.” However, such behavior is ruled out
by Theorem 1 given next, which guarantees that µ remains
bounded for all time when the disturbance is bounded. Indeed,
first note that the variable captured cannot change its value
more than once and hence can be ignored. Now suppose that
on a finite interval [t0, t1] we have Zeno behavior. Since d
is locally bounded, it is bounded on [t0, t1]. By causality,
µ(t1) would not change if we reset d(t) for t > t1, say,
to 0. Therefore, µ(t1) must be bounded. We have µ(t1) =
Ωk1

in Ωk2
outµ(t0), where k1 and k2 denote the (possibly infinite)

number of zoom-ins and zoom-outs on the interval [t0, t1],
respectively. Our algorithm enforces that k1 is finite, since
[t0, t1] is bounded and each zoom-in is preceded by a time
interval of length at least Tin. Hence, only k2 can be infinite.
But this would contradict the boundedness of µ(t1) since
Ωout > 1 and µ(t0) > 0.

We now state the main result of this section; see Section IV-
A for the proof.

Theorem 1 Consider the system (1). Pick matrices K and
P = P T > 0 satisfying (2). Let q be a quantizer fulfilling
Assumption II.1 and the conditions (3) and (4), where M and
∆ satisfy

M >

(
2 + 2

√
λmax(P )

λmin(P )
+

λmax(P )

λmin(P )
‖PBK‖

)
∆. (13)

Let Ωin, Ωout, Tin, Tout, Tc be positive numbers satisfying the
inequalities Ωin < 1, Tout ≥ Tin, Tc < Tout/2,

Ωin

√
λmin(P )

λmax(P )
(M − 2∆) − 2∆ >

√
λmax(P )

λmin(P )
‖PBK‖∆,

(14)

Ωout >

√
λmax(P ) M√

λmin(P ) (M − 2∆)
, (15)

Tout < log Ωout/‖A‖ (16)

(Tin > 0 is arbitrary). Define

`out := M −∆, `in := Ωin

√
λmin(P )

λmax(P )
(M − 2∆)−∆. (17)

Let the control be defined by (8) and let the evolution of µ be
as described earlier, with an arbitrary fixed initial condition
µ0 = µ(t0) > 0. Then there exist functions γ1, γ2, γ3 ∈ K∞

such that for every initial state x0 = x(t0) and every bounded
disturbance d the closed-loop system has the properties that
µ remains bounded and the continuous dynamics are ISS in
the sense of satisfying (6) and (7).
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It is straightforward to verify that the inequality (13) ensures
the existence of all subsequently defined quantities in the
theorem statement. The intuitive meaning of this inequality
is that the quantizer takes sufficiently many values so that its
range M is large enough compared to the error bound ∆.

As a corollary of Theorem 1, we have that if d ≡ 0 then
the continuous closed-loop dynamics are GAS. In fact, the
rate of convergence of x(t) to 0 is exponential. This can be
deduced from the proof of the theorem, but also follows from
the fact that the convergence provided by the present event-
based strategy is no slower than the one obtained in [8] via
dwell-time switching.

Example II.2 To illustrate Theorem 1, we simulated the pre-
vious control algorithm with system parameters

A =

(
0 3
4 1

)
, B =

(
3
2

)
, D =

(
−1.2

2

)
· 105,

uniform quantizer with M = 50 and ∆ =
√

2/10, and control
design parameters K =

(
−1.1 −2.6

)
, P = I , Ωin = 0.4,

Ωout = 3, Tin = Tout = 0.16, Tc = 0.01. The behavior (on a log
scale) of the state x(t) and the quantizer’s range Mµ(t) for the
initial conditions x(0) =

(
1000

0

)
and µ(0) = 10 in response to

random disturbance d(t) uniformly distributed on the interval
[0, 0.01] is shown in Figure 1. Large values for D and x(0)
were chosen simply to achieve separation between the different
plots in the figure. As expected, after an initial overshoot the
state settles below a bound which, actually, is several orders of
magnitude lower than that provided by the formulas (7) given
earlier and (48) given in the proof of Theorem 1.

0 2 4 6 8 10
10−3

10−2

10−1

100

101

102

103

104

105

t

Mµ
|x|
|d|

Fig. 1. Simulation results for Example II.2

It is important to note that in the control strategy just
described, a zoom-out is triggered immediately whenever the
last two conditions in (10) are true. This property is crucial for
Theorem 1 to hold (it enables the last claim of Lemma IV.1
in Section IV). In Figure 1, we indeed see rapid changes of
µ in response to rapidly varying d. This aspect of the present
scheme makes it sensitive to time delays and renders it not
implementable in the sampled-data framework. Thus the issue

of designing a suitable zooming-out procedure will be central
as we turn to the time-sampling scenario in the next section.

III. TRAJECTORY-BASED SAMPLED-DATA APPROACH

In this section, we introduce a new sampled-data stabiliza-
tion scheme, which can be regarded as an alternative to the
scheme from the previous section. We first discuss the simpler
disturbance-free case to illustrate the new technique. Then, we
study an example of a controller and zooming protocol that do
not have robustness in an ISS sense. Finally, we present a result
on ISS of the closed-loop system with respect to disturbances
with a modified zooming protocol.

A. Disturbance-free case

We consider again the continuous-time linear system (1)
with A a nonzero, non-Hurwitz matrix. In this subsection,
we assume that d(·) ≡ 0. We will control this system with
quantized hybrid feedback that is defined next. Let T > 0
be a given sampling period and let tk := kT for k ∈ N.
We define xk := x(tk), and similarly for other variables. Our
closed-loop dynamics will consist of the plant, controller, and
zooming protocol described by the following equations:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ R
n, (18)

u(t) = U(Ωk, µk, xk), t ∈ [tk, tk+1), (19)
µk+1 = G(Ωk, µk, xk), µ0 ∈ R>0, (20)
Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout. (21)

Let `out > `in be strictly positive numbers to be defined.
To simplify the notation, we introduce qk := qµk

(xk) for
arbitrary k ∈ N, where qµ(·) is the one-parameter family
of quantizers defined in (5) and satisfying (3) and (4). The
variable Ω determines the switching rules for the controller
and the zooming protocol. This variable can only take two
values Ωout and Ωin, with the initial value Ω−1 = Ωout. Then,
we define the following hysteresis control law and zooming
protocol:

U(Ωk, µk, xk) :=

{
0 if Ωk = Ωout

Kqk if Ωk = Ωin
(22)

G(Ωk, µk, xk) :=

{
Ωoutµk if Ωk = Ωout

Ωinµk if Ωk = Ωin
(23)

H(Ωk−1, µk, xk) :=





Ωout if |qk| > `outµk

Ωin if |qk| < `inµk

Ωk−1 if |qk| ∈ [`inµk, `outµk]
(24)

where Ωin and Ωout are strictly positive constants to be defined.

Remark III.1 The control law and protocol (22), (23), (24)
are novel in that hysteresis switching is used to switch between
the zooming-in and zooming-out stages, and there is a notable
difference compared to the control law and protocol of the
previous section. For instance, the controller (8) runs in
the open-loop mode (i.e., u(t) = 0) only during the first
zoom-out interval until the state is “captured” and then it
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behaves as the certainty equivalence controller of the form
u(t) = Kqµ(t)(x(t)) for all future time. On the other hand,
the controller (22) switches to the open-loop mode (i.e.,
uk = 0) whenever the quantized measurement is saturated and
remains zero until we have Ωk = Ωin. This yields a cascade
structure of the closed-loop system during the zooming-in
stage, which greatly simplifies the proofs (see the formula (49)
in Section IV-B). One may expect that the controller (22)
might yield larger overshoots than the controller (8) since
it runs more in the open-loop mode. Indeed, this will be
confirmed later by simulations.

We emphasize that it is not necessary to use (22), (23), (24)
in this section to prove our results, and this choice is used for
convenience. Indeed, instead of (22), one could use a sampled-
data version of the control law from the previous section and
our results could still be proved. We do not pursue this option
for space reasons; in fact, this difference serves to illustrate
the flexibility in the design that the two approaches offer.

We introduce some notation. Note that for each k ≥ 0 we
have Ωk = Ωout or Ωk = Ωin. In the former case, we say that
the zoom-out condition is triggered at time k and in the latter
case we say that the zoom-in condition is triggered at time
k. Given an initial condition (and a disturbance), there is a
sequence of intervals on which we zoom in or out, i.e., we
can introduce kj ∈ N such that

Ωk = Ωout if k ∈ [k2i, k2i+1 − 1],

Ωk = Ωin if k ∈ [k2i+1, k2(i+1) − 1],

where i = 0, 1, . . . , N , with either finite N ∈ N or N = ∞
(we may have either infinitely many zoom-in/out switchings
or finitely many). For notational purposes we will always let
k0 = 0 and if we actually have that the zoom-in condition is
triggered at k0 = k = 0, then we let k1 = k0 and we have that
the first zoom-out interval is [k0, k1−1] = [0,−1] = ∅. In this
way, all the proofs will start with a zoom-out interval knowing
that this interval may actually be empty. This convention
simplifies the presentation.

The dynamics described earlier induce the following
discrete-time system, which is more amenable to analysis:

xk+1 = Φxk + ΓU(Ωk, µk, xk), x0 ∈ R
n,

µk+1 = G(Ωk , µk, xk), µ0 ∈ R>0,

Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout,

where

Φ := eAT , Γ :=

∫ T

0

eAsBds. (25)

Note that the switching between the zooming-in and zooming-
out stages is determined by the variable

ξk :=
xk

µk

. (26)

Hence, the dynamical equations that describe how ξk changes
are important for understanding the operation of the system.
For instance, during the zooming-out stage we have for all
k ∈ [k2i, k2i+1 − 1] that

ξk+1 =
Φ

Ωout
ξk. (27)

During the zooming-in stage we have for all k ∈
[k2i+1, k2(i+1) − 1] that

ξk+1 =
1

Ωin
(Φ + ΓK)ξk +

1

Ωin
ΓKνk, (28)

where νk := q(ξk) − ξk . We can state the following two
standard results whose proofs are omitted. The first result
follows directly from [7, Example 3.4].

Lemma III.2 Suppose that Φ + ΓK is Schur. Then, there
exists an Ω∗

in ∈ (0, 1) such that for all Ωin ∈ [Ω∗
in, 1),

1

Ωin
(Φ + ΓK) (29)

is Schur. Moreover, for any such Ωin, there exist strictly positive
L1, λ1, γ1 such that the solutions of the system (28) satisfy the
following:

|ξk | ≤ L1 exp(−λ1k)|ξ0| + γ1 ‖ν‖ ∀k ≥ 0.

In particular, let κ > 0 and σ ∈ (0, 1) be such that2 ‖ 1
Ωk

in
(Φ+

ΓK)k‖ ≤ κσk for all k ≥ 0. Then, we can let

L1 = κ, λ1 = − ln(σ), γ1 =
κ‖ΓK‖

Ωin(1 − σ)
. (30)

Corollary III.3 Let Ωin, L1, γ1 come from Lemma III.2 and
let strictly positive M and ∆ be such that the following holds:

M > (2 + L1 + γ1)∆. (31)

Then, there exists a ∆M > 0, with ∆M − ∆ > 0, such that
whenever |ξ0| ≤ ∆M and ‖ν‖ ≤ ∆, we have

|qµk
(xk)| ≤ (M − ∆)µk and |ξk| ≤ M ∀k ≥ 0. (32)

We have the following result for the disturbance-free case; a
sketch of its proof is given in Section IV-B. It can be viewed as
a sampled-data counterpart of the stabilization results from [1],
[8]. This is a corollary of a more general result (Theorem 2)
for the disturbance case that will be presented in Section III-C.

Proposition III.4 Consider the system (18) and let q be a
quantizer fulfilling Assumption II.1 and the conditions (3)
and (4). Suppose that for the given T > 0 the pair (Φ, Γ)
is stabilizable. Let K be such that (Φ + ΓK) is Schur. Let
Ωin be such that (29) is Schur and let Ωout > ‖Φ‖. Let the
range M of q be sufficiently larger than the error bound ∆ so
that Corollary III.3 holds with M , ∆ and some ∆M . Define
`out := M −∆ and `in := ∆M −∆. Then, µk is bounded for
all k ≥ 0 and the system (18), (19), (20), (21), (22), (23), (24)
is globally asymptotically stable. More precisely, there exists
a ϕ : R≥0 × R≥0 → R≥0 which is of class K∞ in its first
argument for any fixed value of its second argument and such
that for all x0 ∈ R

n and any µ0 we have

|xk| ≤ ϕ(|x0|, µ0) ∀k ≥ 0 (33)

and |xk | → 0 as k → ∞, exponentially fast.

2These numbers always exist since 1

Ωin
(Φ + ΓK) is Schur.
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Remark III.5 It is not hard to show that the stability bound
valid only at the sampling instants tk, which is provided by
Proposition III.4, can be extended to all t ≥ 0. The same is
true for our ISS results in Section III-C. For similar results,
see [15].

Corollary III.3 has an appropriate interpretation via Lya-
punov functions, which links the results of this section with
those of the previous section (whose proofs are Lyapunov-
based). Indeed, since we assume that 1

Ωin
(Φ + ΓK) is Schur,

there exists a quadratic Lyapunov function V (ξ) := ξT Pξ
such that for some a > 0 the solutions of the system (28)
satisfy

|ξk| ≥ a |νk| ⇒ V (ξk+1) < V (ξk).

Suppose that ∆ is given. Then, one possible choice of
M, ∆M , ∆ is given by

∆M > max{1, a}∆ (34)

and
M − 2∆ >

√
λmax(P )/λmin(P ) ∆M . (35)

A geometrical interpretation of (35) is that the smallest level
set of V containing the ball of radius ∆M is inside the largest
level set of V contained in the ball of radius M − 2∆. If (34)
holds, then V decreases for ξ in the annulus between these
two level sets as long as ‖ν‖ is smaller than ∆. Hence for
νk = q(ξk) − ξk the conditions (32) are satisfied because ξk

stays within the range of q.
Lemma III.2 imposes a lower bound on Ωin, while the

inequalities (34) and (35) basically say that M should be
large enough compared to ∆. In this sense, these conditions
are similar to the conditions (13) and (14) from Section II.
However, it is important to note the following difference. In
Theorem 1, the inequality (13) involves only the system and
quantizer parameters, and the subsequent conditions impose
constraints on the controller parameters. In Proposition III.4,
on the other hand, the controller parameters Ωin and Ωout are
selected on the basis of the system parameters only, and the
choice of Ωin affects the quantizer parameters.

While it can be shown that for any fixed µ > 0 we can take
ϕ(·, µ) to be of class K∞, we have at the same time that for
any fixed s > 0 the following holds: limµ→0 ϕ(s, µ) = ∞.
Hence, the overshoot of the x-subsystem is non-uniform in
small µ0. While it is true that initializing the system at a
particular µ0 gives a constant overshoot for the x variable
and one can prove stability of the x-subsystem, the lack
of uniformity of the overshoot leads to an inherent lack of
robustness of this scheme, as the following example illustrates.

B. Lack of robustness

Our next result shows that when the plant dynamics in
the closed-loop system satisfying all conditions of Proposition
III.4 are perturbed with a disturbance, the system is not ISS in
general, although we showed in Proposition III.4 its stability
in the absence of disturbances.

Proposition III.6 Consider the closed-loop system consisting
of the plant3

xk+1 = Φxk + Γuk + wk

and the controller with protocol (19), (20), (21), (22), (23),
(24). Suppose that Φ has a real eigenvalue λm > 1 and that
all conditions of Proposition III.4 hold. Then, for any x0 ∈
R

n, any µ0 > 0 and any positive C1 and ε there exists a
disturbance wε with ||wε|| ≤ ε which gives

lim sup
k→∞

|xk | > C1.

Next, we explain the intuition behind the construction of a
disturbance that illustrates that the ISS gain is not finite, i.e.,
the system is not ISS. A detailed construction is presented
in the proof of Proposition III.6 in Section IV-C. First, the
disturbance is set to zero and, using the proof of Proposition
III.4, we can show that if we wait long enough with the zero
disturbance, both x and µ will become arbitrarily small and
we will be in the zoom-in mode of operation. Then, when
both x and µ are sufficiently small and since the plant is
one-step completely controllable from the disturbance, we can
find a disturbance w of arbitrarily small norm that makes the
ratio of x to µ arbitrarily large in one step. We apply such a
disturbance and then set it to zero again. Consequently, large
ξ = x/µ forces the switching logic into the zoom-out mode
of operation. More importantly, since prior to the action of the
disturbance we had that the system was in the zoom-in mode
(i.e., |ξ| ≤ M ) and since the norm of ξ can be made arbitrarily
large with the action of the (arbitrarily small) disturbance, it
may take arbitrarily long time before the system switches again
to the zoom-in mode. As a result, the state x exhibits arbitrarily
large overshoots during the zoom-out since the open-loop plant
is unstable. Finally, we repeat this construction ad infinitum
in order to force lim supk→∞ |xk| to be arbitrarily large.

Example III.7 To illustrate Proposition III.6, we applied the
control algorithm of Section III-A to the same system as in
Example II.2, taking the sampling period to be T = 0.16 and
retaining the initial conditions and all relevant quantizer and
controller parameters listed in Example II.2. We constructed
a disturbance d(t) in the spirit of the previous discussion,
keeping it zero most of the time and turning it on for a
short period of time when the state becomes small. Note
that the system does not satisfy the assumption of being
controllable in one step, and that we did not follow exactly the
disturbance construction given in the proof of Proposition III.6.
Nevertheless, the simulation results shown in Figure 2 confirm
that the system may exhibit arbitrarily large overshoots in
response to a small disturbance, because the quantizer’s range
(whose values at sampling times are indicated by larger dots)
takes a long time to catch up with the state. In fact, if we keep
increasing the intervals on which the disturbance is zero to let
the state drop to progressively smaller values, we will obtain
lim supk→∞ |xk| = ∞.

3Note that since x, w ∈ R
n, the plant is one-step completely controllable

from disturbance w. This is not necessary as our simulation example will
illustrate.
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Fig. 2. Simulation results for Example III.7

The possible non-robustness of the control law in Propo-
sition III.6 actually holds for a large class of plants, control
laws, and zooming protocols. Indeed, the crucial ingredients
of closed-loop systems that will exhibit this type of non-
robustness are as follows:

1) The closed-loop system has to have the property that
in the absence of disturbances, both x and µ converge
to zero. Moreover, given any initial conditions x0 and
µ0 > 0, the zooming-out stage is bounded;

2) The closed-loop system is such that the x-component is
completely controllable locally around the origin with
arbitrarily small disturbances ‖w‖ ≤ ε;

3) For all k ≥ 0, the zooming protocol takes the form
µk+1 = γk(µk), where γk are continuous, zero at zero,
locally invertible, and uniformly bounded from below
and from above;

4) When the measurement overflows, the controller is
switched off.

Hence, a suitable modification in the zooming-out procedure
needs to be adopted in order to achieve ISS. In what follows,
we provide a modification of the zooming-out procedure (see
(39) in the next subsection) and subsequently prove that
the closed-loop system with the modified scheme is ISS. In
particular, our modification violates item 3) and we will show
that this is sufficient to guarantee ISS.

We remark that the same observation applies to an even
larger class of stabilizing quantized feedback control strate-
gies, including those with a moving quantization center (cf.
[1], [16], [5], [9], [18]). Since asymptotic stabilization using
such strategies relies on the convergence of the quantization
center to zero, the previous argument can be slightly extended
to reveal a lack of robustness with respect to disturbances.

C. Input-to-state stability

Consider the plant with disturbance (1), together with the
controller and zooming protocol introduced in Section III-A.

The corresponding discrete-time system is

xk+1 = Φxk + ΓU(Ωk, µk, xk) + wk, x0 ∈ R
n, (36)

µk+1 = G(Ωk, µk, xk), µ0 > 0, (37)
Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout, (38)

where Φ and Γ are defined in (25), U and H are defined in
(22) and (24), and wk :=

∫ (k+1)T

kT
eA((k+1)T−s)Dd(s)ds. We

use here a new zooming protocol:

G(Ωk, µk, xk) :=

{
Ωout(µk + c) if Ωk = Ωout

Ωinµk if Ωk = Ωin
(39)

where c > 0. For simplicity, we assume in the sequel that
c = 1. The use of this constant c violates item 3) given in Sec-
tion III-B, and this will be shown to fix the problem identified
there. The best value of c in general cannot be determined
without having some information about the disturbance. We
do not pursue this interesting issue further here; we just note
that as c is reduced, the ISS gain will increase and in the limit
as c → 0, we lose ISS as shown in the previous section.

Next, we introduce a discrete-time version of the definition
of ISS. This will suffice for our analysis in this subsection
since the discrete-time ISS can be used to prove an appro-
priate version of continuous-time ISS that takes inter-sample
behavior into account (see Remark III.5). The system (36),
(37) is said to be ISS if there exist γ1, γ2, γ3 ∈ K∞ such
that the solutions of the system satisfy the following for all
x0 ∈ R

n and all w:

|xk| ≤ γ1(|x0|) + γ2(‖w‖) ∀k ≥ 0 (40)

and
lim sup

k→∞
|xk| ≤ γ3

(
lim sup

k→∞
|wk|

)
. (41)

As in Section II, the functions γ1, γ2 will depend on µ0 > 0
(but not on x0 or w) while γ3 will be independent of µ0, as we
will see at the end of the proof of Theorem 2 in Section IV-D.

Again, we consider the dynamics of the variable ξk defined
in (26). During the zooming-in stage we have

ξk+1 =
1

Ωin
(Φ + ΓK)ξk +

1

Ωin
ΓKνk +

1

Ωin
ζk, (42)

where νk := q(ξk) − ξk and ζk := wk/µk. We can state
the following results; the first one follows directly from [7,
Example 3.4].

Lemma III.8 Suppose that 1
Ωin

(Φ + ΓK) is Schur4. Then,
there exist strictly positive L1, λ1, γ1, γ2 such that the solutions
of the system (42) satisfy the following:

|ξk| ≤ L1 exp(−λ1k)|ξ0| + γ1 ‖ν‖ + γ2 ‖ζ‖ ∀k ≥ 0.

In particular, let κ > 0 and σ ∈ (0, 1) be such that
‖ 1

Ωk
in
(Φ + ΓK)k‖ ≤ κσk for all k ≥ 0 (see footnote 2 in

Lemma III.2). Then, L1, λ1, γ1 are given by (30) and we can
let γ2 = κ

Ωin(1−σ) .

4In view of Lemma III.2, we can find an appropriate Ωin ∈ (0, 1) so that
this holds whenever (Φ + ΓK) is Schur.
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Corollary III.9 Let Ωin, L1, γ1 come from Lemma III.8 and
let strictly positive M and ∆ be such that (31) holds. Then,
there exist strictly positive ∆M and ∆w, with ∆M − ∆ > 0,
such that whenever |ξ0| ≤ ∆M , ‖ν‖ ≤ ∆, and ‖ζ‖ ≤ ∆w, we
have

|qµk
(xk)| ≤ (M − ∆)µk and |ξk| ≤ M ∀k ≥ 0.

We can now state the main result of this section; its proof
is given in Section IV-D.

Theorem 2 Consider the system (36), (37), (38) and let q be
a quantizer fulfilling Assumption II.1 and the conditions (3)
and (4). Suppose that for the given T > 0 the pair (Φ, Γ) is
stabilizable. Let K be such that (Φ + ΓK) is Schur. Let Ωin
be such that (29) is Schur and let Ωout > ‖Φ‖. Let the range
M of q be sufficiently larger than the error bound ∆ so that
Corollary III.9 holds with M , ∆ and some ∆M , ∆w. Define
`out := M −∆ and `in := ∆M −∆. Then, µk is bounded for
all k ≥ 0 and the system (22), (24), (36), (37), (38), (39) is
ISS.

The numbers L1, γ1, γ2 in Lemma III.8 can be computed
using a Lyapunov function. Moreover, since (31) is a strict
inequality, there exist two strictly positive numbers ε1, ε2 such
that we have ∆(L1(1 + ε1) + γ1 + 2) + ε2 = M . Then, it
is not hard to show that we can use in Corollary III.9 the
following: ∆M = (1 + ε1)∆ and ∆w = ε2/γ2. Alternatively,
we can directly obtain M, ∆, ∆M , ∆w in Corollary III.9 from
a Lyapunov function (see the discussion for the disturbance-
free case following Remark III.5).

Example III.10 This is a continuation of Example III.7. The
system is the same as in that example, and the disturbance
behaves in the same way, but here we adopt the modified
control scheme with c = 1 in (39). Figure 3 confirms that the
problem observed in Figure 2 is overcome, and the system
performance is comparable with that shown earlier in Figure 1
for the continuous-time case. We note, however, slightly larger
overshoots here compared to Figure 1, which are due to the
hysteresis switching logic (see Remark III.1).

A careful inspection of the proof of Theorem 2 reveals
that the gain functions γ1, γ2, γ3 grow faster than any linear
function both for small and for large values of their arguments.
It turns out that this is not an artifact of our control design,
but rather a consequence of a recent result by Nuno Martins
who showed, using techniques from information theory, that
it is impossible to achieve ISS with linear gain for any
linear system with finite data rate feedback [12]. Thus, in
the presence of state quantization it is indeed necessary to
formulate the disturbance attenuation problem in terms of
nonlinear ISS gains (despite the fact that the given open-loop
system is linear), and our control strategy complements the
findings of [12] by providing a constructive solution to this
problem.

It is worth noting that the modified zooming protocol of the
form (39) can be used in the event-based scheme and it would
not change the ISS properties of the system. Actually, this
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Fig. 3. Simulation results for Example III.10

modification would have the added benefits of reducing the
number of zoom-outs and providing robustness of the event-
based scheme with respect to time delays.

IV. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

The proof of Theorem 1 will rely on a series of lemmas,
whose proofs can be found in the Appendix. We assume
throughout that µ0 > 0 is fixed, d is bounded, and all
hypotheses of Theorem 1 hold.

Lemma IV.1 There exist a time t1 ≥ t0 and functions ρx, ρµ :
R≥0 → R≥0 such that

‖x‖[t0,t1] ≤ ρx(|x0| + ‖D‖‖d‖[t0,∞)), (43)
µ(t1) ≤ ρµ(|x0| + ‖D‖‖d‖[t0,∞)) (44)

and for all t ≥ t1 we have captured(t) = “yes” and
|x(t)| ≤ Mµ(t).

Lemma IV.1 establishes the existence of a time t1 such that
from this time onward, the continuous state x always remains
within the range of the quantizer qµ. In other words, the
“capturing” stage has a finite duration and does not need to be
repeated. The lemma also provides bounds on the overshoots
of the system states x and µ during the capturing stage. By
time-invariance of the dynamics, |t1 − t0| is independent of
t0. On the other hand, |t1 − t0|, ρx, and ρµ are all affected by
the choice of µ0 (see the proof of Lemma IV.1).

Lemma IV.2 Define V (x) := 1
2xT Px. Then for t ≥ t1 we

have

|x| > ‖PBK‖∆µ + ‖PD‖|d| ⇒ V̇ < 0 (45)

along the continuous dynamics (i.e., on every subinterval of
[t1,∞) on which µ remains constant).

Lemma IV.2 says that after the capturing stage is completed,
and away from the discrete events (zoom-ins and zoom-outs),
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V serves as a Lyapunov function for the closed-loop system as
long as x remains outside a ball around the origin whose size
is determined by µ, |d|, and system parameters. This implies,
in particular, that every sublevel set of V which contains this
ball (and is contained in the range of qµ) is invariant with
respect to the continuous dynamics.

Lemma IV.3 Consider some t ≥ t1 such that x(t) ∈
R1(µ(t)), where

R1(µ) :=
{
x : V (x) < λmin(P )(M − 2∆)2µ2

}
.

Suppose that µ(t) satisfies
√

λmin(P )(M − 2∆)µ(t)

>
√

λmax(P )
(
‖PBK‖∆µ(t) + ‖PD‖‖d‖[t,∞)

)
.

(46)

Then the next discrete event can only be a zoom-in. Moreover,
if µ(t) satisfies

√
λmin(P )

(
Ωin

√
λmin(P )

λmax(P )
(M − 2∆) − 2∆

)
µ(t)

>
√

λmax(P )
(
‖PBK‖∆µ(t) + ‖PD‖‖d‖[t,∞)

)
(47)

then this zoom-in will happen in finite time.

The first claim of Lemma IV.3 provides a specific instance
of the general statement immediately preceding Lemma IV.3:
R1(µ) is a suitable sublevel set of V , and the condition (46)
guarantees that it contains the appropriate ball, hence a zoom-
out cannot occur. The meaning of the second claim is that a
zoom-in will eventually be triggered unless µ is already small
enough relative to the disturbance.

Lemma IV.4 For every ε > 0 there exists a δ > 0 with the
property that if |x0| ≤ δ and ‖d‖[t0,∞) ≤ δ then there exists
a time t2 ≥ t1 such that:

1) R1(µ(t2)) ⊂ {x : |x| ≤ ε}.
2) x(t) ∈ R1(µ(t2)) for all t ∈ [t0, t2].
3) The inequality (46) holds with t = t2.

In the absence of the disturbance, Lemma IV.4 gives sta-
bility of the origin in the sense of Lyapunov. Its proof is an
extension of the proof of Lyapunov stability given in [8, p.
1547], and relies on Assumption II.1.

Proof of Theorem 1: Define

µ̂ :=

√
λmax(P )‖PD‖‖d‖[t0,∞)√

λmin(P )(M − 2∆) −
√

λmax(P )‖PBK‖∆
.

It is straightforward to check that (46) holds whenever µ(t) >
µ̂.
Claim 1: For all t ≥ t1 we have µ(t) ≤ Ωout max{µ(t1), µ̂}.
If the claim is not true, then a zoom-out must have occurred
after t1 with µ− > max{µ(t1), µ̂}. This in turn implies that
the discrete event prior to that was either a zoom-out or a
zoom-in which also occurred after t1 and resulted in µ >
max{µ(t1), µ̂}. By Lemma IV.1 we have |x(t)| ≤ Mµ(t)
for t ≥ t1. It is easy to see from (15) and (17) that after
a zoom-out or a zoom-in with |x| ≤ Mµ− we necessarily

have |x| ∈ R1(µ). Therefore, Lemma IV.3 tells us that the
next discrete event could not be a zoom-out, and the resulting
contradiction proves the claim.

Combining Claim 1 and the definition of µ̂ with the
bounds (43) and (44) from Lemma IV.1, we see that the
estimate (6) holds with some functions γ1 and γ2 which can
be made continuous and increasing, but not necessarily 0 at
0. Moreover, for every ε > 0 we can apply Lemma IV.4 to
find a δ > 0 with the three properties stated in that lemma.
Lemma IV.3 then implies that the first discrete event after t2
(if one occurs) is a zoom-in. It follows that µ(t) ≤ µ(t2)
for all t ≥ t2, because if µ returns to the value µ(t2) then
Lemma IV.3 again applies. This means that for |x0| and
‖d‖[t0,∞) sufficiently small, Lemmas IV.1 and IV.4 yield an
arbitrarily small bound for |x(t)| for all time. Therefore, we
can modify the functions γ1 and γ2 to make them 0 at 0, hence
class K∞, and the first ISS estimate (6) is established.

Next, pick an arbitrary ε̃ > 0 and define

µ̃ :=
λmax(P )‖PD‖

a
(lim sup

t→∞
|d(t)| + ε̃),

where a := Ωinλmin(P )(M − 2∆) − λmax(P )‖PBK‖∆ −√
λmin(P )λmax(P )2∆. There exists a time tε̃ ≥ t1 such

that |d(t)| ≤ lim supt→∞ |d(t)| + ε̃ for all t ≥ tε̃. It is
straightforward to check that (47) holds whenever t ≥ tε̃ and
µ(t) > µ̃.
Claim 2: There exists a time t̃ε̃ ≥ tε̃ such that µ(t) ≤ Ωoutµ̃
for all t ≥ t̃ε̃.
If µ(t) ≤ µ̃ for all t ≥ tε̃, then the claim is trivially true.
Otherwise, pick some t ≥ tε̃ such that µ(t) > µ̃. If x /∈
R1(µ(t)), then Lemma IV.2 guarantees that either x will enter
R1(µ(t)) before the next discrete event occurs or a zoom-out
will occur and we will have x ∈ R1(µ) for the new value of
µ, i.e., Ωoutµ(t). After that, Lemma IV.3 ensures that as long
as µ > µ̃, zoom-ins will keep occurring. Therefore, we will
eventually have µ ≤ µ̃. This proves the claim, because if µ
returns to a value in (µ̃, Ωoutµ̃], then the same argument again
applies and a further zoom-out is not possible.

In view of Claim 2, the definition of µ̃, the bound |x(t)| ≤
Mµ(t) for t ≥ t1 provided by Lemma IV.1, and the fact
that ε̃ > 0 was arbitrary, the second ISS estimate (7) is also
established, with the linear gain function

γ3(r) :=
MΩoutλmax(P )‖PD‖

a
r. (48)

This completes the proof of the theorem.

B. Proof of Proposition III.4 (sketch)

If the initial conditions are such that a zoom-in is triggered
initially, then the zoom-in condition is triggered for all fu-
ture times and the system dynamics evolve according to the
following equations:

xk+1 = (Φ + ΓK)xk + ΓKµk

(
q

(
xk

µk

)
− xk

µk

)
,

µk+1 = Ωinµk.

(49)
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Since |q(ξk) − ξk| ≤ ∆, this system is a cascade of the GAS
µ-subsystem and the ISS x-subsystem and hence there exist
K, λ > 0 such that for all k ≥ 0 we have

|(xk , µk)| ≤ K exp(−λk) |(x0, µ0)| .
On the other hand, if a zoom-out is triggered initially, then

for any x0 and µ0 there exists a k∗ := k∗(|x0|, µ0) such that∣∣∣xk∗

µk∗

∣∣∣ ≤ `in and hence the zoom-in condition is triggered.
Moreover, for all k ≥ k∗ the zoom-in condition is triggered
and for all k ≥ 0 we have

|(xk , µk)| ≤ K exp(−λ(k − k∗)) |(xk∗ , µk∗)| . (50)

For all k ∈ [0, k∗] we have

|xk| ≤ ‖Φ‖k∗(|x0|,µ0)|x0| =: ρ1(|x0|, µ0), (51)

µk ≤ Ω
k∗(|x0|,µ0)
out |µ0| =: ρ2(|x0|, µ0).

Combining the bounds (50) and (51), we can write

|xk | ≤ exp(−λk) · K exp(λk∗(|x0|, µ0)) ·
√

ρ2
1 + ρ2

2

which shows that xk converges to zero exponentially (note that
we suppressed the arguments of ρi). The proof would be over
if we had K exp(λk∗(0, µ0)) ·

√
ρ2
1(0, µ0) + ρ2

2(0, µ0) = 0
but this is not true since ρ2(0, µ) 6= 0 for any µ > 0.

In order to prove stability, we use Assumption II.1 to prove
that there exists continuous and bounded ϕ : R≥0 × R≥0 →
R≥0 with ϕ(0, µ) = 0 so that (33) holds. With these properties,
there is no loss of generality in taking ϕ(·, µ) ∈ K∞ for any
fixed µ > 0 (just bound the original function with a class K∞

one). Let an arbitrary ρ > 0 be given and introduce

T ∗ := max

{⌈
ln

(
ρ|xk∗ |

M

)
(ln(Ωin))

−1

⌉
, 0

}
.

Then we have for all k ≥ k∗ + T ∗ that

|xk| ≤ Mµk = MΩ
(k−k∗)
in µk∗ ≤ MΩT∗

in µk∗

≤ ρµk∗ |xk∗ | =: χ1(|xk∗ |, µk∗).

Note that Assumption II.1 guarantees that there exists an Lq >
0 such that q(z) ≤ Lq|z| for all z. Hence, for k ∈ [k∗, k∗+T ∗]
we can write

|xk| ≤ (‖Φ‖ + ‖ΓK‖Lq)
T∗ |xk∗ | =: χ2(|xk∗ |).

Since ‖Φ‖ > 1 and Ωin < 1, χ2(0) = 0 and χ2(s) is bounded
for all s ≥ 0. Hence, we can bound it by a χ3 ∈ K∞. Finally,
we define

ϕ̃(|x|, µ) := max{χ3(|x|), χ1(|x|, µ)} ,

and it is clear that ϕ̃(0, µ) = 0 and this function is increasing
in both its arguments. Hence, we can write that for all k ≥ k∗,

|xk | ≤ ϕ̃(|xk∗ |, µk∗) ≤ ϕ̃(ρ1(|x0|, µ0), ρ2(|x0|, µ0))

=: ϕ̄(|x0|, µ0).

Note that ϕ̄(0, µ) = 0 for any µ > 0. Finally, the conclusion
in (33) follows by noting that there exists a ϕ with the
right properties such that ϕ(s, µ) ≥ max{ϕ̄(s, µ), ρ1(s, µ)}
∀µ, s.

C. Proof of Proposition III.6

Let C1 > 0 and ε > 0 be arbitrary. Since we assumed that
there exists a positive real eigenvalue λm > 1 of Φ, let ζm be
its corresponding eigenvector with |ζm| = 1. Let ε̂ > 0 and
ε1 > 0 be such that

ε1 (‖Φ + ΓK‖+ ‖ΓK‖∆) + ε̂ < ε. (52)

Let C1 and ε̂ generate

T :=

⌈
ln

(
C1

ε̂

)
(ln(λm))−1

⌉
. (53)

Let T generate C2 > 0 via

C2 > max
{
`in(Ωout)

T ‖Φ‖−T , `out

}
. (54)

Let C2 and ε̂ generate ε̄2 as follows:

ε̄2 := ε̂(ΩinC2)
−1. (55)

Finally, using ε̄1 and ε̄2, define

ε̄ := min{ε̄1, ε̄2}. (56)

Note that since the system without disturbance is stable, as
shown by Proposition III.4, for any x0 ∈ R

n, µ0 > 0 there
exists a k∗

0 > 0 such that with wk ≡ 0 we have

max{|xk∗
0
|, µk∗

0
} ≤ ε̄ and |ξk∗

0
| ≤ M. (57)

We now start the construction of the disturbance. Let the
disturbance satisfy wε

k = 0 ∀k ∈ [0, k∗
0 − 1]. Hence, (57)

holds. Let now

wε
k∗
0

= −(Φ + ΓK)xk∗
0
− ΓKµk∗

0
(qk∗

0
− ξk∗

0
) + ε̂ζm.

This disturbance will yield xk∗
0+1 = ε̂ζm. The conditions (52)

and (56) guarantee that |wε
k∗
0
| ≤ ε. The conditions (55) and

(56) guarantee that
∣∣ξk∗

0+1

∣∣ =
∣∣∣∣
xk∗

0+1

Ωinµk∗
0

∣∣∣∣ ≥
ε̂

Ωinε̄2
= C2 (58)

and hence at time k∗
0 + 1 the zoom-out condition is triggered.

Since the ξ-dynamics with wk ≡ 0 evolve according to (27),
there exists an integer k∗

1 such that if the disturbance satisfies
wε

k = 0 ∀k ∈ [k∗
0 + 1, k∗

1 − 1], then
∣∣ξk∗

1

∣∣ ≤ `in and the zoom-
in condition is triggered at k = k∗

1 . Moreover, from (53) and
(54) we have k∗

1 − k∗
0 − 1 ≥ T , which implies together with

(58) that

|xk∗
1
| =

∣∣∣λk∗
1−k∗

0−1
m ζmε̂

∣∣∣ ≥ λT
mε̂ ≥ C1.

Again via stability of the disturbance-free (x, µ)-system,
there exists a k∗

2 such that if wε
k = 0 ∀k ∈ [k∗

1 , k∗
2 − 1],

then we have

max{|xk∗
2
|, µk∗

2
} ≤ ε̄ and |ξk∗

2
| ≤ M.

In a similar manner, we construct the disturbance so that for
all k 6= k∗

2j , j ∈ N we have wε
k = 0 and for all k = k∗

2j , j ∈ N

we have

wε
k∗
2j

= −(Φ + ΓK)xk∗
2j
− ΓKµk∗

2j
(qk∗

2j
− ξk∗

2j
) + ε̂ζm.

This disturbance by construction satisfies ‖wε‖ ≤ ε and yields
|xk∗

2j+1
| > C1 ∀j ∈ N, which completes the argument.
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D. Proof of Theorem 2

The proof of Theorem 2 is carried out using several lemmas,
whose proofs are given in the Appendix.

Lemma IV.5 Suppose that all conditions of Theorem 2 hold.
Then, there exist ρ1, ρ2, ϕ1, ϕ2 ∈ K∞ such that for any i ∈ N,
xk2i

∈ R
n, µk2i

> 0, and w we have

k2i+1 − k2i ≤ 1 + ϕ1(|xk2i
|) + ϕ2

(
‖w‖[k2i,k2i+1−1]

)
(59)

and, moreover, for all k ∈ [k2i, k2i+1],

|xk| ≤ ρ1(|xk2i
|) + ρ2

(
‖w‖[k2i,k2i+1−1]

)
. (60)

Lemma IV.5 implies that the zoom-out condition can be only
triggered for finitely many time steps. Hence, if N is finite,
then k2N+2 = ∞. In other words, there exists a k2N+1 ∈ N

such that the zoom-in condition is triggered on the interval
[k2N+1,∞). Moreover, Lemma IV.5 establishes a bound on
the state x during the zoom-out intervals. We remark that the
functions ρi and ϕi are independent of µ.

Lemma IV.6 There exists a continuous bounded function ρout
µ

such that for any µ > 0 we have ρout
µ (µ, 0, 0) > 0 and the

following is true for all i ∈ {0, 1, . . . , N} and all µk2i
> 0,

xk2i
∈ R

n, w ∈ l∞:

µk2i+1 ≤ ρout
µ (µk2i

, |xk2i
|, ‖w‖[k2i,k2i+1−1]).

Lemma IV.6 establishes a bound on µ at the end of each
zoom-out interval in terms of the values of µ and x at
the beginning of that interval and the infinity norm of the
disturbance during that interval.

Lemma IV.7 There exist positive K, λ, γ such that for any
s, t ∈ [k2i+1, k2i+2] with s ≥ t, any xs, µs, and w ∈ l∞,

|xs| ≤ K exp(−λ(s − t))(|xt| + µt) + γ ‖w‖[t,s−1] . (61)

In particular, we have from (61) that for all k ∈ [k2i+1, k2i+2]
the following holds:

|xk| ≤ K exp(−λ(k − k2i+1))(|x2i+1| + µ2i+1)

+ γ ‖w‖[k2i+1,k−1] .

Lemma IV.7 establishes an appropriate bound on the state
x during the zoom-in intervals. This bound is a direct conse-
quence of the fact that during the zoom-ins the system behaves
as a cascade of x- and µ-subsystems. The x-subsystem is
ISS when µ is regarded as an input, and the µ-subsystem is
globally exponentially stable. Note that γ is a fixed constant,
independent of µ.

Lemma IV.8 There exists a continuous function ρin
x : R>0 ×

R≥0 × R≥0 → R≥0, with ρin
x (µ, 0, 0) = 0 for all µ > 0, and

such that for any s ≥ 0, ρin
x (·, ·, s) is nondecreasing in its first

two arguments and for any i ∈ {0, 1, . . . , N} the following
holds for all µk2i+1 , xk2i+1 , w and all k ∈ [k2i+1, k2i+2]:

|xk | ≤ ρin
x

(
µk2i+1 , |xk2i+1 |, ‖w‖[k2i+1,k2(i+1)−1]

)

Lemma IV.8 establishes a different bound during zoom-
in intervals for the state x than the bound given in Lemma
IV.7. Indeed, note that ρin

x (µ, 0, 0) = 0 can not be directly
concluded from Lemma IV.7. As with Lemma IV.4, we need
to use Assumption II.1 in the proof of Lemma IV.8.

Lemma IV.9 Consider an arbitrary i ∈ {0, 1, 2, . . . , N}. If
k2i+2 < ∞, then i < N − 1 and there exists a γ̃ > 0 such
that

max{|xk2i+2 |, µk2i+2} ≤ γ̃ ‖w‖[k2i+1,k2i+2−1] . (62)

Lemma IV.9 establishes that if a zoom-in interval is bounded
(i.e., is followed by a zoom-out interval) then at the end of
this zoom-in interval we have that x and µ are bounded by
a function of disturbance only, i.e., the initial conditions are
“forgotten”. Note that γ̃ is a fixed constant.

Proof of Theorem 2: First, we prove that there exist γ1, γ2 ∈
K∞ such that (40) holds. The proof is carried out using the
previous lemmas and induction.

Step i = 0: Let k0 = 0. Without loss of generality we
suppose that Ω0 = Ωout and we zoom out on the non-empty
interval [k0, k1 − 1]. We have from Lemma IV.5 that

|xk | ≤ ρ1(|x0|) + ρ2(‖w‖[k0,k1−1]) ∀k ∈ [0, k1].

Then, using the fact that ρin
x is nondecreasing in its first two

arguments, Lemmas IV.6 and IV.8, and (59), we can write that
for all k ∈ [k1, k2],

|xk| ≤ ρin
x (µk1 , |xk1 |, ‖w‖[k1,k−1])

≤ ρin
x (ρout

µ , ρ1 + ρ2, ‖w‖[k1,k−1])

≤ γ1(µ0, |x0|) + γ2(µ0, ‖w‖[0,k−1]),

where γi are nondecreasing in µ and for each fixed µ > 0 we
have that γ1(µ, ·), γ2(µ, ·) ∈ K∞.

We either have k2 = ∞ or k2 < ∞. If the former is true,
the proof is complete. If the latter is true, then we have from
Lemma IV.9 that (62) holds, i.e.,

max{|xk2 |, µk2} ≤ γ̃ ‖w‖[k1,k2−1] . (63)

Step i = 1: Using Lemma IV.5 and (63), it follows that for
all k ∈ [k2, k3],

|xk | ≤ ρ1

(
γ̃ ‖w‖[k1,k2−1]

)
+ ρ2

(
‖w‖[k2,k3−1]

)

≤ γ
(
‖w‖[k1,k−1]

)
,

where γ(s) := ρ1(γ̃s) + ρ2(s) is independent of µ since ρi

and γ̃ are independent of µ. Moreover, using Lemma IV.8,
(59) and (63), we can write for all k ∈ [k3, k4] that

|xk | ≤ ρin
x (µk3 , |xk3 |, ‖w‖[k3,k−1])

≤ ρin
x (ρout

µ , ρ1 + ρ2, ‖w‖[k3,k−1])

≤ γ1(µk2 , |xk2 |) + γ2(µk2 , ‖w‖[k2,k−1])

≤ γ1(γ̃ ‖w‖[k1,k2−1] , γ̃ ‖w‖[k1,k2−1])

+ γ2(γ̃ ‖w‖[k1,k2−1] , ‖w‖[k2,k−1]) ≤ γ̂(‖w‖[k1,k−1]),
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where γ̂(s) := γ1(γ̃s, γ̃s) + γ2(γ̃s, s) is independent of µ
since γ̃ is. Either k4 = ∞, in which case we have completed
the proof, or k4 < ∞, in which case

max{|xk4 |, µk4} ≤ γ̃ ‖w‖[k3,k4−1]

and hence we can repeat the argument.
Step i ≥ 1: Repeating the previous argument, it follows that

for any i ∈ {1, 2, . . . , N} the following holds:

|xk| ≤ γ(‖w‖[k2i−1,k−1]), k ∈ [k2i, k2i+1],

|xk| ≤ γ̂(‖w‖[k2i−1,k−1]), k ∈ [k2i+1, k2i+2].

The proof follows by induction. Indeed, we have that (40)
holds with γ1(µ, s) := max{ρ1(s), γ1(µ, s)} and γ2(µ, s) :=
max{ρ2(s), γ2(µ, s), γ(s), γ̂(s)}.

The proof of (41) is completed in a similar fashion. In
particular, if N is finite, then the last stage is zooming-
in and Lemma IV.7 guarantees that lim supk→∞ |xk | ≤
γ lim supk→∞ |wk|. If N = ∞, then we have already
proved that for k ≥ k2 we have |xk | ≤ γ(‖w‖[k2i−1,k−1])
for k ∈ [k2i, k2i+1] and |xk | ≤ γ̂(‖w‖[k2i−1,k−1])
for k ∈ [k2i+1, k2i+2]. Hence, we can take γ3(s) :=
max{γs, γ(s), γ̂(s)}. Note that γ3 is independent of µ0 by
construction since we showed that γ, γ(s) and γ̂(s) are
independent of µ0.

V. CONCLUSIONS

This paper is the first investigation of the problem of
achieving ISS with respect to completely unknown distur-
bances for control systems with quantized state measurements.
We proposed a new quantized control design methodology,
which relies on multiple switchings between the zooming-
out and zooming-in stages. We described two specific control
strategies that achieve ISS. The first strategy was implemented
in continuous time, and its Lyapunov-based analysis was an
extension of the one from [8]. We highlighted the difficulties
that arise in implementing a similar strategy in the time-
sampling context. We then presented the second strategy which
takes time sampling into account, and analyzed it using a
novel method which is trajectory-based and utilizes a cascade
structure of the closed-loop hybrid system.

Although the results in this paper are limited to linear
dynamics, it is possible to extend them to nonlinear dynamics.
The ingredients in this extension are similar to the ones used
in [8], and are as follows. First, we need to assume forward
completeness of the uncontrolled system, in order to have
upper bounds on the state expansion during the zooming-out
stage. Second, we need to assume that the state feedback law
renders the continuous dynamics ISS with respect to both the
quantization error and the disturbance (in the linear case this
is true for every stabilizing feedback). In the sampled-data
scenario, we would also need to have an exact discrete-time
model of the system. These assumptions are quite restrictive,
and the algorithm becomes less constructive, but conceptually
the generalization is relatively straightforward. Other topics
for future work include: obtaining similar results for “coarse”
quantizers not satisfying conditions such as (13); achieving
other robustness properties besides ISS, such as Lp stability;

and explicitly addressing robustness with respect to time
delays.

APPENDIX
PROOFS OF THE TECHNICAL LEMMAS

Proof of Lemma IV.1: We have captured(t0) = “no.”
As long as captured = “no,” the continuous dynamics are
given by ẋ = Ax + Dd. Thus we have

x(t) = eAtx0 +

∫ t

t0

eA(t−s)Dd(s)ds.

A (very crude) upper bound for this is

|x(t)| ≤ e‖A‖(t−t0)
(
|x0| + ‖D‖‖d‖[t0,t]

)
. (64)

In the meantime, zoom-outs occur every Tout units of time,
hence we have µ(t0 + kTout) = Ωk

outµ0, k = 0, 1, . . . . In
view of (16), (64), and the boundedness of d, the values
µ(t0 + kTout) grow faster than the largest values |x| can
attain on the intervals [t0 + kTout, t0 + (k + 1)Tout). But if
captured remains equal to “no,” then by (11) we have an
infinite sequence of times kTout + Tc, k = 0, 1, . . . at which
|qµ(x)| > `outµ = (M −∆)µ, hence |x| > (M −2∆)µ by (3).
We reach a contradiction, hence there exists a t1 at which the
value of captured is switched to “yes.” The existence of
functions ρx and ρµ with the indicated properties follows from
the previous calculations: every value of |x0|+ ‖D‖‖d‖[t0,∞)

gives an upper bound for t1, which in turn gives upper bounds
for ‖x‖[t0,t1] and µ(t1).

There is no discrete event at which the value of captured
would switch back to “no,” thus captured(t) = “yes” for
all t ≥ t1. At t = t1 we must have |qµ−(x)| ≤ `outµ

− = (M−
∆)µ−, hence (4) implies that |x(t)| ≤ Mµ−(t1) < Mµ(t1).
The inequality |x| ≤ Mµ cannot become violated as a result of
a zoom-out, because zoom-outs increase the value of µ (here
and later we are using continuity of x). It also cannot become
violated as a result of a zoom-in in view of (3), (4), (12),
and the definition of `in in (17). Finally, the inequality |x| ≤
Mµ cannot become violated along the continuous dynamics,
because if at some t ≥ t1 we have |x(t)| = Mµ−(t), then (3)
implies that |qµ−(t)(x(t))| ≥ (M − ∆)µ−(t) = `outµ

−(t),
hence by (10) and the definition of `out in (17) a zoom-out
occurs and we have |x(t)| < Mµ(t).

Proof of Lemma IV.2: For t ≥ t1, we have captured(t) =
“yes” by Lemma IV.1, hence by (8) the closed-loop system is

ẋ = Ax + BKqµ(x) + Dd

= (A + BK)x + BKµ

(
q
(x

µ

)
− x

µ

)
+ Dd.

In view of (2), the derivative of V along solutions satisfies

V̇ ≤ −|x|2 + xT PBKµ

(
q
(x

µ

)
− x

µ

)
+ xT PDd.

Using the last claim of Lemma IV.1 and (3), we obtain

V̇ ≤ −|x|2 + |x|‖PBK‖∆µ + |x|‖PD‖|d|
= −|x|

(
|x| − ‖PBK‖∆µ− ‖PD‖|d|

)
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from which the statement follows.

Proof of Lemma IV.3: The open ellipsoid R1(µ(t)) is a strict
sublevel set of V , and (46) ensures that it contains the ball

{
x : |x| ≤ ‖PBK‖∆µ(t) + ‖PD‖‖d‖[t,∞)

}
. (65)

Therefore, by Lemma IV.2 this ellipsoid is invariant with
respect to the continuous dynamics as long as µ remains
constant. Moreover, R1(µ(t)) is contained in the ball {x :
|x| < (M − 2∆)µ(t)}, in which a zoom-out cannot occur
because of (3) and the definition of `out in (17). Thus the first
claim of the lemma is established.

To prove the second claim, define

R2(µ) :=

{
x : V (x) < λmin(P )

(
Ωin

√
λmin(P )

λmax(P )
·

· (M −2∆) − 2∆

)2

µ2

}
.

The ellipsoid R2(µ(t)) is contained in R1(µ(t)) and contains
the ball (65) if (47) holds. Applying Lemma IV.2, we know
that there exists a time t̄ ≥ t at which x(t̄) ∈ R2(µ(t)), unless
a zoom-in occurs earlier. Since R2(µ(t)) is also invariant and
contained inside the ball
{

x : |x| ≤
(

Ωin

√
λmin(P )

λmax(P )
(M − 2∆) − 2∆

)
µ(t)

}
,

we conclude from (3), (12), and the definition of `in in (17)
that a zoom-in must happen prior to time t̄ + Tin.

Proof of Lemma IV.4: Let ε > 0 be given. Find a positive in-
teger k such that µ̄ := Ωk

inΩoutµ0 satisfies R1(µ̄) ⊂ {x : |x| ≤
ε}. Since

√
λmin(P )(M − 2∆) >

√
λmax(P )‖PBK‖∆ by

virtue of (13), there exists a δd > 0 such that
√

λmin(P )(M−
2∆)µ̄ >

√
λmax(P )(‖PBK‖∆µ̄ + ‖PD‖δd). Next, take a

δx > 0 such that x̄ := e‖A‖(Tc+kTin)(δx + ‖D‖δd) satisfies
|x̄| ≤ Ωk−1

in µ0∆0 and
√

λmax(P )|x̄| <
√

λmin(P )(M −
2∆)µ̄. Then the statement of the lemma holds with δ :=
min{δx, δd} and t2 := t0 + Tc + kTin. Indeed, the previous
inequalities guarantee the occurrence of the capture event at
time t0 + Tc (i.e., t1 = t0 + Tc) followed by k zoom-ins
at times t0 + Tc + Tin, . . . , t0 + Tc + kTin, while x satisfies
ẋ = Ax+Dd (because qµ(x) = 0 thanks to Assumption II.1)
and hence remains in R1(µ̄) = R1(µ(t2)) for t ∈ [t0, t2] due
to (64).

Proof of Lemma IV.5: We consider two cases. If k2i+1 −
k2i = 1, then

|xk| ≤ ‖Φ‖ |xk2i
| + |wk2i

|, k ∈ [k2i, k2i+1] , (66)

since ‖Φ‖ > 1. Suppose now that k2i+1 − k2i > 1. In this
case we can write that with ξk given by (26),

|ξk2i+1| =

∣∣∣∣
Φxk2i

+ wk2i

Ωout(µk2i
+ 1)

∣∣∣∣ ≤ ‖Φ‖ |xk2i
| + |wk2i

|. (67)

Moreover, we can also write for all k ∈ [k2i + 1, k2i+1 − 1]
that the following holds:

|ξk+1| ≤
∣∣∣∣

Φxk + wk

Ωout(µk + 1)

∣∣∣∣ ≤
‖Φ‖
Ωout

|ξk| +
|wk|
µk

.

This implies that for all k ∈ [k2i + 1, k2i+1] we have

|ξk| ≤
(‖Φ‖

Ωout

)k−k2i−1

|ξk2i+1| +
k−1∑

j=k2i+1

(‖Φ‖
Ωout

)k−1−j

|vj |,

where vj := wj/µj and, since µj ≥ ∑j−k2i

s=1 Ωs
out, we can

write
|vj | :=

|wj |
µj

≤ |wj |∑j−k2i

s=1 Ωs
out

.

Using (67), the fact that ‖Φ‖/Ωout < 1 and that as j → ∞
we have vj → 0, we conclude that eventually we must have
|ξk| ≤ `in and, hence, k2i+1−k2i−1 is bounded. Moreover, we
can write for some continuous, nondecreasing, and bounded
function ϕ̃ that

k2i+1−k2i − 1 ≤ ϕ̃
(
|ξk2i+1|, ‖w‖[k2i+1,k2i+1−1]

)

≤ ϕ̃
(
‖Φ‖|xk2i

| + |wk2i
|, ‖w‖[k2i+1,k2i+1−1]

)

≤ ϕ(|xk2i
|, ‖w‖[k2i,k2i+1−1]).

Note that we can let ϕ(0, 0) = 0 since if xk2i+1 = 0, then
k2i+1 − k2i = 1. Hence, we can find ϕ1, ϕ2 ∈ K∞ so that
(59) holds. Note also that there exist ρ̃1, ρ̃2 ∈ K∞ such that
for all k ∈ [k2i + 1, k2i+1] we have

|xk | ≤ ‖Φ‖k−k2i−1|xk2i+1| +
∑k−1−i

j=k2i+1 ‖Φ‖k−1−j |wj |
≤ ‖Φ‖k2i+1−k2i−1|xk2i+1|+

‖Φ‖k2i+1−k2i−2−1
‖Φ‖−1 ‖w‖[k2i+1,k2i+1−1]

≤ ‖Φ‖ϕ1(|xk2i+1|)+ϕ2

(
‖w‖[k2i+1,k2i+1−1]

)

|xk2i+1|+
‖Φ‖

ϕ1(|xk2i+1|)+ϕ2

(
‖w‖[k2i+1,k2i+1−1]

)
−2

−1
‖Φ‖−1 ‖w‖[k2i+1,k2i+1−1]

≤ ρ̃1(|xk2i+1|) + ρ̃2(‖w‖[k2i+1,k2i+1−1]).
(68)

Finally, using (66) and (68) we have that (60) holds.

Proof of Lemma IV.6: Recall that k0 = 0 and Ω−1 = Ωout

is used to initialize the system. Hence, we have

µk2i+1 = Ω
k2i+1−k2i

out µk2i
+

k2i+1−k2i∑

j=1

Ωj
out

≤ Ω1+ϕ1+ϕ2
out µk2i

+
Ωϕ1+ϕ2+1

out − 1

Ωout − 1

=: ρout
µ (µk2i

, |xk2i
|, ‖w‖[k2i,k2i+1−1])

where we used (59).

Proof of Lemma IV.7: Note that for all k ∈ [k2i+1, k2i+2]
we have by construction

|xk | ≤ Mµk,

∣∣∣∣q
(

xk

µk

)
− xk

µk

∣∣∣∣ ≤ ∆

and the system evolves according to

xk+1 = (Φ + ΓK)xk + ΓKµk

(
q

(
xk

µk

)
− xk

µk

)
+ wk,

µk+1 = Ωinµk.

This is a cascade of an ISS system and a GAS system and,
hence, the conclusion follows immediately.



14

Proof of Lemma IV.8: In order to obtain the desired bound,
we consider two cases:

• Case 1: |xk2i+1 | ≥ ‖w‖[k2i+1,k2i+2−1];
• Case 2: |xk2i+1 | ≤ ‖w‖[k2i+1,k2i+2−1].

Case 1: Let ρx > 0 be arbitrary and introduce

T ∗
x := max

{⌈
ln
(ρx

M
|xk2i+1 |

)
(ln(Ωin))

−1
⌉

, 0
}

.

Hence, for all k ≥ k2i+1 + T ∗
x we have

|xk| ≤ Mµk ≤ MΩ
k−k2i+1

in µk2i+1 ≤ MΩ
T∗

x

in µk2i+1

≤ ρxµk2i+1

∣∣xk2i+1

∣∣ =: χx
1(µk2i+1 ,

∣∣xk2i+1

∣∣).

On the other hand, using Assumption II.1 we have that there
exists an Lq such that |q(z)| ≤ Lq|z| for all z. Hence, for
k ∈ [k2i+1, k2i+1 + T ∗

x ] we have that |xk+1| ≤ H |xk| + |wk|
with H := (‖Φ‖ + ‖ΓK‖Lq), which implies that for all k ∈
[k2i+1, k2i+1 + T ∗

x ],

|xk| ≤
HT∗

x − 1

H − 1

∣∣xk2i+1

∣∣ =: χx
2(
∣∣xk2i+1

∣∣)

since |xk2i+1 | ≥ ‖w‖[k2i+1,k2i+2−1]. Using arguments similar
to those in the proof of Proposition III.4, we conclude that

|xk| ≤ χx(µk2i+1 , |xk2i+1 |), k ∈ [k2i+1, k2i+2]

where χx(µ, ·) ∈ K∞ for each fixed µ > 0.
Case 2: The proof of this case follows exactly the same

steps as the proof of Case 1 with the following modification.
We let ρw > 0 be arbitrary and introduce

T ∗
w := max

{⌈
ln
(ρw

M
‖w‖[k2i+1,k2i+2−1]

)
(ln Ωin)

−1
⌉

, 0
}

.

With this change, we can conclude that

|xk| ≤ χw(µk2i+1 , ‖w‖[k2i+1,k2i+2−1]), k ∈ [k2i+1, k2i+2]

where χw(µ, ·) ∈ K∞ for each fixed µ > 0. The conclusion
of the lemma follows by defining ρin

x (µ, s, p) := χx(µ, s) +
χw(µ, p) and noting that χx and χw are nondecreasing in µ.

Proof of Lemma IV.9: The inequality i < N − 1 follows by
definition of N . Note that by construction (see Corollary III.9),
a zoom-out can occur after a zoom-in only if there exists a
k∗ ∈ [k2i+1, k2i+2 − 1] such that ∆−1

w |wk∗ | ≥ µk∗ . Indeed,
if ∆−1

w |wk| ≤ µk for all k during a zoom-in, then we have
from Corollary III.9 that |ζk| = |wk/µk| ≤ ∆w and hence
|xk| ≤ Mµk for all k. Moreover, during a zoom-in we must
have |xk∗ | ≤ Mµk∗ , and also ∆−1

w M |wk∗ | ≥ |xk∗ |. Using
(61) with s = k2i+2, t = k∗, we can obtain (62) with γ̃ =
KM∆−1

w + γ + ∆−1
w .
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