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On l2 stabilization of linear systems with

quantized control

Tania Kameneva and Dragan Nešić

Abstract–This paper extends results from [5], where input-to-state stabilization (ISS)

of linear systems with quantized feedback was considered. In this paper, we show that

using the same scheme and under the same conditions as in [5] it is also possible to

achieve (nonlinear gain)l2 stabilization for linear systems. We also prove a new lemma

on K∞ functions that is interesting in its own right.

I. I NTRODUCTION

The subject of this paper is control of systems with quantized feedback. By quantized

feedback we mean controllers that have values in a finite (or countable) set. Control of

systems with quantized feedback is an emerging research area that brings together elements

of control and information theory to provide novel insights into control over networks with

bandwidth limitations. The area of Networked Control Systems (NCS) is relatively new,

nevertheless, a number of important results have been published (e.g. stabilization for systems

with quantized control/measurements was considered in [1], [2], [4]; robust stabilization and

estimation was considered among others in [3], [5], [6], [7], [9]).

In this paper we explore nonlinear gainl2 stability properties of linear time-invariant

systems that are controlled by the controller proposed in [5]. In particular, we show that

using the time-sampled scheme introduced in [5], it is possible to achieve nonlinear gainl2

stability for the linear time-invariant systems with quantized feedback. Similar to [10], we

use a concept of nonlinear gains to describe the robustness properties of the system with

respect to external disturbances. This is consistent with the result in [6], where Martins shows

that nonlinear gains are necessary when formulating properties of the disturbance attenuation

for the linear discrete system with quantized feedback. Martins shows that linear (finite)lp,
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p ∈ [1,∞], gains are not achievable when quantized control with finitely many levels is used.

Our Theorem 1 in Section IV, on the other hand, shows what kind of nonlinearl2 gains are

achievable for linear systems with controllers from [5]. Moreover, we also state and prove

Lemma 1 in Section II on properties ofK∞ functions that is of interest in its own right.

The remainder of the paper is organized as follows. In Section II we give definitions and

lemmas that are used in the sequel. The closed loop system, switching rules and protocol

are given in Section III. The main results are presented in Section IV. Section V offers

conclusions. The proofs of technical lemmas are given in the appendix.

II. N OTATION AND PRELIMINARIES

In this section we introduce some notation and give the definitions that will make the dis-

cussed concepts precise. We denote the two-norm of the vector as follows:|z| :=
√∑n

i=1(z
i)2,

wherez = (z1, z2, . . . , zn), n is the dimension of the vectorz. The sequence of vectorszk for

k ∈ [k1, k2], is denoted asz[k1,k2]. The two-norm of a sequence of vectors on a time-interval

[k1, k2] is denoted as‖z[k1,k2]‖ :=
√∑k2

k=k1
|zk|2. ‖A‖ denotes the induced two-norm of the

matrix A. A quantizer is a piecewise constant functionq : Rn → Q, whereQ is a finite

subset ofRn. We use:

Assumption 1:[4] There exist strictly positive numbersM > ∆ > 0 and ∆0, such that

the following holds: 1. If|z| ≤ M then |z− q(z)| ≤ ∆; 2. If |z| > M then |q(z)| > M −∆;

3. For all |z| ≤ ∆0 we have thatq(z) = 0. �

M is called the range of the quantizer;∆ is called the quantization error;∆0 is the dead-zone.

The first condition gives a bound on the quantization error when the state is in the range

of the quantizer, the second gives the possibility to detect saturation. The third condition is

needed to preserve the origin as an equilibrium. We use the following one-parameter family

of dynamic quantizers introduced in [4]:

qµ(x) = µq

(
x

µ

)
, µ ≥ 0, (1)

whereµ is an adjustable parameter, called “zoom” variable, that is updated at discrete instants

of time. For each fixedµ the range of the quantizer isMµ and the quantization error is∆µ.

We use the following definition:

Definition 1: A function γ : R≥0 → R≥0 is of classK∞ if it is continuous, zero at zero,

strictly increasing and unbounded. A functionγ is subadditive ifγ(x+ y) ≤ γ(x)+γ(y) for
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all x, y ≥ 0. A function γ is superadditive ifγ(x) + γ(y) ≤ γ(x + y) for all x, y ≥ 0. We

denote asK+ the class of functions that are of classK∞ and are subadditive. Similarly, we

denote byK+ the class of functions that are of classK∞ and are superadditive.

A simple consequence of subadditivity ofγ ∈ K∞ is that for any positive integerN and

any nonnegative numbersa0, . . . , aN we haveγ
(∑N

i=0 ai

)
≤
∑N

i=0 γ(ai). Similarly, for

superadditive functionγ ∈ K∞ we can write for any positive integerN and any nonnegative

numbersa0, . . . , aN that
∑N

i=0 γ(ai) ≤ γ
(∑N

i=0 ai

)
. To prove the main result in Section IV

we state and prove the following technical lemma, that we believe is a new result and it is

of interest in its own right.

Lemma 1:For anyγ ∈ K∞, there existγ1 ∈ K+ andγ2 ∈ K+, such thatγ(s) ≤ γ1 ◦γ2(s)

for all s ≥ 0.

III. C LOSED-LOOP SYSTEM

In this section, we recall the plant model and quantized controller from [5] that are

considered in the sequel. Consider the plant model

ẋ(t) = Ax(t) + Bu(t) + Dw, x(0) = x0 ∈ Rn, (2)

wherex ∈ Rn, u ∈ Rm, w ∈ Rl are respectively state, control and disturbance. Matrix A

is nonzero and non-Hurwitz. Definetk = kT for k = 0, 1, 2, . . . , whereT > 0 is a given

sampling period. We shortly denotex(tk) = xk and similarly for all other variables. Let

u(t) = uk = const. for all t ∈ [tk, tk+1), k ≥ 0. The discrete time plant model of the

sampled-data plant (2) is more amenable to analysis:

xk+1 = Φxk + Γuk + ωk, x(0) = x0 ∈ Rn, (3)

whereΦ = eAT ; Γ =
∫ T

0
eAsB ds ; ωk :=

∫ k+1

kT
eA((k+1)T−s)Dd(s)ds. To control the

system (3) we use the quantized hybrid feedback, proposed in [5]. The controller dynamics

is described by the following:

uk = U(Ωk, µk, xk), t ∈ [tk, tk+1) (4)

U(Ωk, µk, xk) :=

{
0 if Ωk = Ωout

Kqk if Ωk = Ωin,
(5)

(6)

whereqk := qµk
(xk). The variableΩ determines the switching rule for the controller. It can

take only two strictly positive valuesΩout andΩin, that will be defined later. IfΩk = Ωout
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we say that zoom-out condition is triggered at timek. If Ωk = Ωin we say that zoom-in

condition is triggered at timek. During zoom-out stage the system is running in open loop

uk = 0, during zoom-in stage the certainty equivalence feedbackuk = Kqk is applied. The

protocol dynamics is described by the following:

µk+1 = G(Ωk, µk, xk), µ0 ∈ R>0 (7)

G(Ωk, µk, xk) :=

{
Ωout(µk + c) if Ωk = Ωout, c > 0

Ωinµk if Ωk = Ωin

(8)

(9)

In our discussions we letc = 1. The adjustment policy forµ, called ”zooming protocol”,

depends only on the quantized measurements of the stateqk, k = 0, 1, 2, . . . , N . Geometri-

cally, at each time instantRn is divided into a finite number of quantization regions. Each

region corresponds to a fixed value of the quantizerqk. During zoom-out stage the value of

adjustable parameterµ is increased at the rate faster than the growth of|xk| until the state

can be adequately measured. During zoom-in stage the value of adjustable parameterµ is

decreased in such way as to drive the state to the origin. The switching law dynamics is

described by the following:

Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout (10)

H(Ωk−1, µk, xk) :=


Ωout if |qk| > loutµk

Ωin if |qk| < linµk

Ωk−1 if |qk| ∈ [linµk, loutµk],

(11)

wherelout = M −∆, lin = ∆M −∆ and lout > lin. The choice of the parametersM , ∆ and

∆M is given later. The hysteresis switching is used to switch between zoom-in and zoom-out

stages.

Remark 1:We will analyze only the stability properties of the discrete-time system (3)-

(11). It was shown in [8] and [11] how to use the underlying discrete-time model to conclude

appropriate stability of the sampled-data system. �

Remark 2:Note that it is not necessary to useu = 0 in (5) during zoom-out. We use

this choice to simplify the analysis. For more detailed discussions on the flexibility in the

controller and the zooming protocol design, refer to Liberzon and Nešić [5]. �
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We introduce some notation. For eachk ≥ 0 there are two possible cases:Ωk = Ωout (in

this case we say that zoom-out is triggered at timek) or Ωk = Ωin (in this case we say

that zoom-in is triggered at timek). Given an initial condition and a disturbance there is a

sequence of zoom-out and zoom-in intervals. There may be infinitely many or finitely many

such intervals. We introduceki ∈ N such thatΩk = Ωout if k ∈ [k2i, k2i+1−1] andΩk = Ωin

if k ∈ [k2i+1, k2i+1 − 1]; i = 0, 1, . . . , N (N may be infinity). For simplicity, we let the first

interval always to be zoom-out:Ω−1 = Ωout, keeping in mind that it may actually be an

empty interval. To state our main result we need to consider the dynamics of the variable

ξk := xk

µk
, that governs the switching between zoom-ins and zoom-outs. For zoom-out stage

we have:

|ξk+1| ≤
‖Φ‖
Ωout

|ξk|+
1

Ωout

|ζk| k ∈ [k2i, k2i+1 − 1] (12)

and for zoom-in stage we have:

ξk+1 =
1

Ωin

(Φ + ΓK)ξk +
1

Ωin

ΓKνk +
1

Ωin

ζk k ∈ [k2i+1, k2i+1 − 1], (13)

whereνk := q(ξk) − ξk and ζk := wk

µk
. Under the assumption that1

Ωin
(Φ + ΓK) is Schur,

there exists strictly positive numbersL1, λ1, γ, γ̄ such that the solutions of the system (13)

satisfy (more details can be found in [5]):

|ξk| ≤ L1 exp(−λ1k)|ξ0|+ γ‖ν‖∞ + γ̄‖ζk‖ ∀k ≥ 0. (14)

IV. M AIN RESULTS

The main contributions of this paper are presented in this section. The main purpose of

our work is to use an appropriate notion of nonlinear gains to characterize a nonlinear gain

l2 stability property of the system and show that the scheme proposed by Liberzon and

Něsić in [5] yields this property. We show that the closed loop system (3)-(11) possesses the

following stability property:

Definition 2: The system (3)-(11) is said to be nonlinear gain (NG)l2 stable if for every

µ0 > 0 there existγ1, γ2, γ3 ∈ K∞ such that for every initial conditionsx0, µ0 and every

disturbancew the following holds:

‖x[0,k]‖2 ≤ γ1(|x0|) + γ2

(
k−1∑
i=0

γ3(|wi|)

)
∀k ≥ 0.

Note, thatγi, i = 1, 2, 3, are nonlinear functions that in general depend onµ0. Definition 2

shows explicitly what we mean by nonlinear gains and is in a more general form than the
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definition of NG l2 stability used by Martins in [6], whereγ2(s) := γ̃2(
√

s) andγ3(s) := s2.

Martins [6] showed that linear gains are not achievable with quantized feedback. The main

contribution of our work is the following theorem, which presents conditions under which

the system (3)-(11) is NGl2 stable.

Theorem 1:Consider the system (3)-(11). Suppose that Assumption 1 holds and for a

given sampling periodT > 0: (i) K is such thatΦ + ΓK is Schur; (ii) Ωout > ‖Φ‖; (iii)

Ωin ∈ (0, 1) is such that 1
Ωin

(Φ+ΓK) is Schur; (iv)M and∆ are such thatM > (2+L1+γ)∆,

whereL1 andγ come from (14). Then, the system (3)-(11) is NGl2 stable.

Theorem 1 shows that using the same controller design and the same conditions as in [5]

it is possible to achieve NGl2 stability of the system (3)-(11), which was not proven in

[5] (only ISS was investigated in [5]). As opposed to the work by Martins [6] where he

showed what kind of gains are not achievable for the discrete linear systems with quantized

feedback, Theorem 1 shows what kind of gains are achievable with controllers from [5].

Remark 3:The controller design is the same as in [5] and is completed as follows. First, for

the quantizer satisfying Assumption 1 we use a one-parameter family of dynamic quantizers

(1). We designK such thatΦ+ΓK is Schur, so that item (i) of Theorem 1 holds. We choose

Ωout > ‖Φ‖ andΩin ∈ (0, 1) such that 1
Ωin

(Φ + ΓK) is Schur, so that items (ii) and (iii) of

Theorem 1 hold. Then, by Lemma III.2 in [5], there always exist strictly positiveL1 andγ

such that the solutions of the system (13) satisfy (14). In the last step we chooseM and∆

such that item (iv) of Theorem 1 holds. �

The proof of Theorem 1 relies on Lemma 1 from Section I and Lemma 2 given below.

Lemma 2 combines the results of Lemmas 3-6 in the appendix and shows a bound fromw

to x. Note that the bound in Lemma 2 depends on the switching timeski, that in turn depend

on x0, µ0 andw. Nevertheless, this bound implies NGl2 stability via Lemma 1, as shown

in the proof of Theorem 1 that is given below.

Lemma 2:Consider the system (3)-(11). Suppose that all conditions of Theorem 1 hold.

Then for everyµ0 > 0 there existγ1, ϕ1, ϕ2 ∈ K∞ such that for every initial conditions

x0, µ0, any k > 0 and any disturbancew there exist switching timeski ∈ N, i = 1, . . . , N

with k0 = 0 andkN = k, such that the following holds:

‖x[k0,kN ]‖2 ≤ γ1(|xk0|) +
N−1∑
l=0

ϕ1

(
kl+1−1∑
j=kl

ϕ2(|wj|)

)
.
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Proof of Theorem 1. For anyµ0 > 0 there existγ1, ϕ1 and ϕ2 such that the bound from

Lemma 2 holds. Then for any fixed initial conditionsxk0 , µk0 and any bounded disturbance

w we can write:

‖x[k0,kN ]‖2 ≤ γ1(|xk0|) +
N−1∑
l=0

ϕ1

(
kl+1−1∑
j=kl

ϕ2(|wj|)

)

≤ γ1(|xk0|) +
N−1∑
l=0

ϕ11

(
ϕ12

(
kl+1−1∑
j=kl

ϕ3(|wj|)

))
(15)

≤ γ1(|xk0|) + ϕ11

(
N−1∑
l=0

ϕ12

(
kl+1−1∑
j=kl

ϕ3(|wj|)

))
(16)

≤ γ1(|xk0|) + ϕ11

(
N−1∑
l=0

kl+1−1∑
j=kl

ϕ12 ◦ ϕ3(|wj|)

)
(17)

= γ1(|xk0|) + γ2

(
k−1∑
j=k0

γ3(|wj|)

)
(18)

where the inequality (15) comes from Lemma 1 sinceϕ1(s) ≤ ϕ11◦ϕ12(s), ∀s ≥ 0, ϕ11 ∈ K+

andϕ12 ∈ K+. The inequality (16) is true sinceϕ11 ∈ K+. The inequality (17) is true since

ϕ12 ∈ K+. The last equality (18) comes from the fact that we denoteγ2(s) := ϕ11(s) and

γ3(s) := ϕ12 ◦ ϕ3(s). This completes the proof. �

Remark 4:Note that sinceϕ11 ∈ K+, the nonlinear gainγ2 = ϕ11 has a form of

a superadditive function (the example of a supperadditive function is a square function).

Moreover, from the proof of Lemma 1 in the appendix, we have thatϕ11(s) := sϕ1(s)

∀s ≥ 1, which is growing faster than a linear function. This is consistent with Martins

results in [6]. Also, the gainγ3 is a composition ofK∞ andK+ functions. �

Note, that it was shown in [5] that it is possible to achieve global asymptotic stability in

x when c = 0 in (8), but at the same time not have ISS. We show thatc > 0 in (8) is in

general also necessary for NGl2 stability. Proposition 1 below shows the lack of robustness

of the system (3) in NGl2 sense whenc = 0 in (8), which is similar to Proposition III.6

in [5]. Note, Proposition 1 employs a more general form of NGl2 stability, than given in

the Definition 2 (whereγ4 andγ5 are identity functions). The proof of Proposition 1 follows

almost the same steps as that of Proposition III.6 in [5] and is omitted.

Proposition 1: Consider the system (3)-(11). Letc = 0 andΦ be such that it has at least

one eigenvalueλm > 1 and its corresponding eigenvectorζm = 1. Then, for every fixed
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µ0 > 0 there do not existγ1, γ2, γ3, γ4, γ5 ∈ K∞, such that the following holds for every

initial conditionsx0, µ0 and every disturbancew:

γ4(
k∑

i=0

γ5(|xi|)) ≤ γ1(|x0|) + γ2(
k∑

i=0

γ3(|wi|)) ∀k ≥ 0.

V. CONCLUSIONS

This paper presents results on nonlinear gainl2 stability for linear time-invariant systems

with quantized state measurements. Our main result (Theorem 1) shows that a particular

type of NGl2 stabilization is possible with the control scheme proposed in [5]. We state and

prove Lemma 1 on properties ofK∞ functions that is of interest in its own right.
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VI. A PPENDIX

Proof of Lemma 1. First note that there is no loss of generality in assuming thatγ(1) = 1

since we can always scaleγ as follows:γ(s) = γ(1) 1
γ(1)

γ(s) =: γ(1)γ1(s) , and we can
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only concentrate on obtaining the bound onγ1, with γ1(1) = 1. Next we note that given any

function γ̃ ∈ K∞ with γ̃(1) = 1, we can always write it as follows:̃γ(s) = γ̃1 ◦ γ̃2(s) where

γ̃1(s) :=

{
s, s ∈ [0, 1]

γ̃(s), s ≥ 1
γ̃2(s) :=

{
γ̃(s), s ∈ [0, 1]

s, s ≥ 1
(19)

Note that sincẽγ ∈ K∞ and γ̃(1) = 1 we also have that the so constructedγ̃1, γ̃2 ∈ K∞.

Next we show that for anyγ ∈ K∞ there exists̃γ such thatγ(s) ≤ γ̃(s) ∀s ≥ 0 , and,

moreover,γ̃1 and γ̃2 constructed above are respectively superadditive and subadditive.

Construction of̃γ1: Let γ̃(s) := sγ(s), s ≥ 1. Obviously, we have thatγ(s) ≤ γ̃(s) =

sγ(s), ∀s ≥ 1 . Moreover,γ̃1(s) defined in (19) isK∞ since it is zero at zero, continuous

(sinceγ̃(1) = 1), strictly increasing sinceγ is strictly increasing and unbounded sinceγ is.

We just need to show superadditivity ofγ̃1. First, we show that ifγ̃1(s)
s

is a nondecreasing

function of s, then γ̃1 is supperadditive. Indeed, in this case we have for allx, y that:

γ̃1(x + y) = x
γ̃1(x + y)

x + y
+ y

γ̃1(x + y)

x + y
≥ x

γ̃1(x)

x
+ y

γ̃1(y)

y
= γ̃1(x) + γ̃1(y) .

Using our construction of̃γ1, we have that

γ̃1(s)

s
=

{
1, s ∈ [0, 1]

γ(s), s ≥ 1

and this is a nondecreasing function sinceγ is increasing andγ(1) = 1. Hence, we have that

γ̃1 ∈ K+.

Construction of̃γ2: We introduce the following function:q(s) := supt∈(s,1]
γ(t)

t
for s ∈

[0, 1) andq(1) = 1. And defineγ̃(s) := s · q(s) for all s ∈ [0, 1]. First, it is easy to see that:

γ̃(s) ≥ sγ(s)
s

= γ(s), ∀s ∈ [0, 1] . Next, we show that̃γ is a classK function on the interval

[0, 1]. γ̃ is continuous on(0, 1] since it is a product of two continuous functions (note thatq

is continuous on(0, 1]). Continuity ats = 0 can be shown using the below given analysis.

Moreover,γ̃(0) = 0 as the following analysis shows. Either we have thatlims→0+ q(s) = γ(s∗)
s∗

for some fixeds∗ ∈ (0, 1], in which case we havẽγ(0) = lims→0+ sγ(s∗)
s∗

= 0. Or we have that

lims→0+ q(s) = lims→0+
γ(s)

s
, in which case we havẽγ(0) = lims→0+ sγ(s)

s
= lims→0+ γ(s) =

γ(0) = 0. Now we need to show that̃γ is strictly increasing. Note that for anys, either

we have thatq(s) is strictly decreasing ats, in which case we have thatq(s) = γ(s)
s

and

henceγ̃(s) = sγ(s)
s

= γ(s) , and, hence,̃γ is strictly increasing or we have thatq(s) does

not change ass increases, in which case from continuity ofq(s) we have that there exists

s∗ ≤ s such that̃γ(s) = sγ(s∗)
s∗

, which is strictly increasing (linear) function ofs (this also
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shows continuity at0). Hence,̃γ is a classK function on[0, 1]. Moreover, sincẽγ(1) = 1, it

is easy to see that the functioñγ2 defined in (19) is of classK∞. Note also that the function

γ̃2(s)

s
=

{
γ̃(s)

s
= q(s), s ∈ [0, 1]

1, s ≥ 1

is nonincreasing sinceq is nonincreasing on[0, 1] and q(1) = 1. This implies thatγ̃2 is

subadditive. Indeed, we can write:

γ̃2(x + y) = x
γ̃2(x + y)

x + y
+ y

γ̃2(x + y)

x + y
≤ x

γ̃2(x)

x
+ y

γ̃2(y)

y
= γ̃2(x) + γ̃2(y) .

Hence,γ̃2 is of classK+, which completes the proof. �

The following Lemmas 3-6 follows directly from Lemma IV.5 - IV.9 in [5]. Lemma 3

claims that the zoom-out interval is bounded and there exist a bound onx during the zoom-

out interval. Lemma 4 claims that there exist a bound onµ at the end of each zoom-out.

Lemma 5 claims that there exist a bound onx during zoom-in. And Lemma 6 claims that

if zoom-in is followed by zoom-out, thenx and µ are bounded by the functions of the

disturbance only (initial conditions are forgotten).

Lemma 3:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. Then

there existϕ1, ϕ2, ρ1, ρ2 ∈ K∞ such that for alli = 0, 1, . . . , N, xk2i
∈ Rn, µk2i

> 0, wi ∈ Rl

the following holds:

k2i+1 − k2i ≤ 1 + ϕ1(|xk2i
|) + ϕ2

(
k2i+1−1∑
j=k2i

|wj|2
)

,

‖x[k2i,k]‖ ≤ ρ1(|xk2i
|) + ρ2

(
k−1∑

j=k2i

|wj|2
)

∀k ∈ [k2i, k2i+1].

Lemma 4:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. There

existK∞ functionsρ, ρ̄ and a continuous bounded functionρ̃ such that for alli = 0, 1, . . . , N

and allµk2i
> 0, xk2i

∈ Rn, wi ∈ Rl the following holds:

µ2
k ≤ ρ(|xk2i

|) + ρ̃(µk2i
) + ρ̄

(
k−1∑

j=k2i

|wj|2
)

∀k ∈ [k2i, k2i+1].

Lemma 5:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. Then

there exist continuous nondecreasing functionsρin
j (s, µ) : R≥0 ×R>0 → R≥0, j = 1, 2, with

ρin
j (0, µ) = 0 for all µ, such that for alli = 0, 1, . . . , N, xk2i+1

∈ Rn, µk2i+1
> 0, wi ∈ Rl the

following holds:

‖x[k2i+1,k]‖ ≤ ρin
1 (|xk2i+1

|2, µ2
k2i+1

) + ρin
2 (

k−1∑
j=k2i+1

|wj|2, µ2
k2i+1

) ∀k ∈ [k2i+1, k2i+2].
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Lemma 6:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. There

existsγ̃1 > 0 such that for an arbitraryi = 0, 1, . . . , N , if k2i+2 < +∞, theni < N − 1 and

the following holds:

max
{
|xk2i+2

|, µk2i+2

}
≤ γ̃1

k2i+2−1∑
j=k2i+1

|wj|2
 . (20)

Now we combine Lemmas 3-6 to prove the next lemma.

Proof of Lemma 2: From Lemma 3 we have:

|xk|2 ≤ ‖x[k0,k]‖ ≤ ρ1(|xk0|) + ρ2(
k−1∑
j=k0

|wj|2) ∀k ∈ [k0, k1]. (21)

By Lemma 3 the duration of the zoom-out interval is finite and there exist the time instant

k1 < ∞ such that the zoom-in is triggered. Then[k1, k2] is a zoom-in interval,k2 can be

infinity, and from Lemma 5 we have:

|xk|2 ≤ ‖x[k1,k]‖ ≤ ρin
1 (|xk1|2, µ2

k1
) + ρin

2 (
k−1∑
j=k1

|wj|2, µ2
k1

) ∀k ∈ [k1, k2]. (22)

Substitute (21) withk = k1 for |xk1|2 in (22) and use triangular inequality1:

‖x[k1,k]‖2 ≤ ρin
1

(
ρ1(|xk0 |) + ρ2(

k1−1∑
j=k0

|wj|2), µ2
k1

)
+ ρin

2

(
k−1∑
j=k1

|wj|2, µ2
k1

)

≤ ρin
1

(
2ρ1(|xk0 |), µ2

k1

)
+ ρin

1

(
2ρ2(

k1−1∑
j=k0

|wj|2), µ2
k1

)
+ ρin

2

(
k−1∑
j=k1

|wj|2, µ2
k1

)
,∀k ∈ [k1, k2].

From Lemma 4 we have:µ2
k1
≤ ρ(|xk0 |) + ρ̃(µk0) + ρ̄(

∑k1−1
j=k0

|wj|2). Substitute this forµ2
k1

in the inequality above. Then for allk ∈ [k1, k2] we have::

‖x[k1,k]‖2 ≤ ρin
1

(
2ρ1(|xk0 |), ρ(|xk0 |) + ρ̃(µk0) + ρ̄(

k1−1∑
j=k0

|wj|2)

)

+ρin
1

(
2ρ2(

k1−1∑
j=k0

|wj|2), ρ(|xk0|) + ρ̃(µk0) + ρ̄(

k1−1∑
j=k0

|wj|2)

)

+ρin
2

(
k−1∑
j=k1

|wj|2, ρ(|xk0|) + ρ̃(µk0) + ρ̄(

k1−1∑
j=k0

|wj|2)

)

1For K∞ function ρin
1 the following holds:ρin

1 (s1 + s2, µ) ≤ ρin
1 (2s1, µ) + ρin

1 (2s2, µ)
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≤ ρin
1 (2ρ1(|xk0|), 4ρ(|xk0|)) + ρin

1 (2ρ(|xk0 |), 4ρ̃(µk0)) + ρin
1 (2ρ1(|xk0|), 2ρ̄(

k1−1∑
j=k0

|wj|2))

+ρin
1 (2ρ2(

k1−1∑
j=k0

|wj|2), 4ρ(|xk0|))+ρin
1 (2ρ2(

k1−1∑
j=k0

|wj|2), 4ρ̃(µk0))+ρin
1 (2ρ2(

k1−1∑
j=k0

|wj|2), 2ρ̄(

k1−1∑
j=k0

|wj|2))

+ρin
2 (

k−1∑
j=k1

|wj|2, 4ρ(|xk0|)) + ρin
2 (

k−1∑
j=k1

|wj|2, 4ρ̃(µk0)) + ρin
2 (

k−1∑
j=k1

|wj|2, 2ρ̄(

k1−1∑
j=k0

|wj|2)). (23)

In the next step we use the property ofK∞ functions2 applied to the functionsρin
1 , ρin

2 and

apply a triangle inequality repeatedly in the inequality above:

‖x[k1,k]‖2 ≤ ρin
1 (2ρ1(|xk0|), 4ρ(|xk0|)) + ρin

1 (2ρ(|xk0|), 4ρ̃(µk0))

+ρin
1 (φ ◦ 2ρ̄(

k1−1∑
j=k0

|wj|2), 2ρ̄(

k1−1∑
j=k0

|wj|2)) + ρin
1 (2ρ1(|xk0|), φ−1 ◦ 2ρ1(|xk0|))

+ρin
1 (φ ◦ 4ρ(|xk0 |), 4ρ(|xk0 |) + ρin

1 (2ρ2(

k1−1∑
j=k0

|wj|2), φ−1 ◦ 2ρ2(

k1−1∑
j=k0

|wj|2))

+ρin
1 (φ ◦ 4ρ̃(µk0), 4ρ̃(µk0)) + ρin

1 (2ρ2(

k1−1∑
j=k0

|wj|2), φ−1 ◦ 2ρ2(

k1−1∑
j=k0

|wj|2))

+ρin
1 (φ ◦ 2ρ̄(

k1−1∑
j=k0

|wj|2), 2ρ̄(

k1−1∑
j=k0

|wj|2)) + ρin
1 (2ρ2(

k1−1∑
j=k0

|wj|2), φ−1 ◦ 2ρ2(

k1−1∑
j=k0

|wj|2))

+ρin
2 (φ ◦ 4ρ(|xk0|), 4ρ(|xk0|)) + ρin

2 (
k−1∑
j=k1

|wj|2), φ−1(
k−1∑
j=k1

|wj|2)) + ρin
2 (

k−1∑
j=k1

|wj|2, 4ρ̃(µk0))

+ρin
2 (φ ◦ 2ρ̄(

k1−1∑
j=k0

|wj|2), 2ρ̄(

k1−1∑
j=k0

|wj|2)) + ρin
2 (

k−1∑
j=k1

|wj|2, φ−1(
k−1∑
j=k1

|wj|2)) (24)

≤ γ̄1(|xk0|, µk0) + γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2)) + γ̄3(µk0 ,

k−1∑
j=k1

|wj|2) ∀k ∈ [k1, k2], (25)

whereγ̄1 is the sum of all function in (24) with(µk0 , |xk0|) arguments,̄γ2 is the sum of all

function in (24) with(µk0 ,
∑k1−1

j=k0
|wj|2) arguments, and̄γ3 is the sum of all function in (24)

2If ρ : R≥0 × R≥0 → R≥0 is of classK∞ for any fixedy and for any fixedx is nondecreasing iny, thenρ(x, y) ≤
ρ(φ(y), y) + ρ(x, φ−1(x)) ∀x, y ≥ 0, whereφ is an arbitraryK∞ function.
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with (µk0 ,
∑k−1

j=k1
|wj|2) arguments. To have a bound for two intervals[k0, k1], [k1, k2], we

add (21) withk = k1 and (25) withk = k2:

‖x[k0,k2]‖2 ≤ ρ1(|xk0 |)+ρ2(

k1−1∑
j=k0

|wj|2)+γ̄1(|xk0|, µk0)+γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2)+γ̄3(µk0 ,

k2−1∑
j=k1

|wj|2).

Defineγ1(µ, s) := ρ1(s)+ γ̄1(µ, s) andϕ̄2(µ, s) := max{ρ2(s)+ γ̄2(µ, s), γ̄3(µ, s)}. Then we

have:‖x[k0,k2]‖2 ≤ γ1(µk0 , |xk0|) +
∑1

l=0 ϕ̄2(µk0 ,
∑kl+1−1

j=kl
|wj|2). If k2 = +∞ then the proof

is complete. Ifk2 ≤ +∞ then for zoom-out interval[k2, k3] from Lemma 3 we have:

|xk|2 ≤ ‖x[k2,k]‖ ≤ ρ1(|xk2|) + ρ2

(
k−1∑
j=k2

|wj|2
)

∀k ∈ [k2, k3]. (26)

Again, by Lemma 3 the duration of zoom-out interval is finite and there exist the time

instantk3 < ∞ such that the zoom-in is triggered. For the next zoom-in interval[k3, k4]

from Lemma 5 we have:

|xk|2 ≤ ‖x[k3,k]‖ ≤ ρin
1 (|xk3|2, µ2

k3
) + ρin

2 (
k−1∑
j=k3

|wj|2, µ2
k3

) ∀k ∈ [k3, k4]. (27)

From Lemma 4 fork = k3 (end of second zoom-out interval) we have:µ2
k3
≤ ρ(|xk2|) +

ρ̃(µk2) + ρ̄
(∑k3−1

j=k2
|wj|2

)
. Substitute this forµ2

k3
and (26) withk = k3 for |xk3|2 into (27).

Similarly to (25) we have for allk ∈ [k3, k4]:

‖x[k3,k]‖2 ≤ γ̄1(|xk2 |, µk2) + γ̄2(µk2 ,

k3−1∑
j=k2

|wj|2) + γ̄3(µk2 ,
k−1∑
j=k3

|wj|2). (28)

To obtain a bound for all four intervals, add the bound for the first two intervals[k0, k1],

[k1, k2] (25) with k = k2, the bound for[k2, k3] (26) with k = k3 and the bound for[k3, k4]

(28) with k = k4:

‖x[k0,k4]‖2 ≤ γ̄1(|xk0|, µk0)+γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2)+γ̄3(µk0 ,

k2−1∑
j=k1

|wj|2)+ρ1(|xk2|)+ρ2(

k3−1∑
j=k2

|wj|2)

+γ̄1(|xk2|, µk2) + γ̄2(µk2 ,

k3−1∑
j=k2

|wj|2) + γ̄3(µk2 ,

k4−1∑
j=k3

|wj|2). (29)

From Lemma 6 we have:max {|xk2|, µk2} ≤ γ̃1

(∑k2−1
j=k1

|wj|2
)

. We can see, that after the

second zoom-in (which is followed by zoom-out), we forget about initial conditionsxk0. The

state depends only on the disturbance during this zoom-in interval. Substitute this inequality

for |xk2| andµk2 in (27). Then,

‖x[k0,k4]‖2 ≤ γ̄1(|xk0 |, µk0) + γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2) + γ̄3(µk0 ,

k2−1∑
j=k1

|wj|2) + ρ1 ◦ γ̃1(

k2−1∑
j=k1

|wj|2)
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+ρ2(

k3−1∑
j=k2

|wj|2) + γ̄1(γ̃1(

k2−1∑
j=k1

|wj|2), γ̃1(

k2−1∑
j=k1

|wj|2) + γ̄2(γ̃1(

k2−1∑
j=k1

|wj|2),
k3−1∑
j=k2

|wj|2)

+γ̄3(γ̃1(

k2−1∑
j=k1

|wj|2),
k4−1∑
j=k3

|wj|2) (30)

≤ γ̄1(|xk0|, µk0)+γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2)+γ̄3(µk0 ,

k2−1∑
j=k1

|wj|2)+γ̄4(µk0 ,

k3−1∑
j=k2

|wj|2)+γ̄5(µk0 ,

k4−1∑
j=k3

|wj|2),

(31)

where γ̄3 is a sum of all function in (30) with(µk0 ,
∑k2−1

j=k1
|wj|2) arguments,̄γ4 is a sum

of all function in (30) with(µk0 ,
∑k3−1

j=k2
|wj|2) arguments and̄γ5 is a sum of all function in

(30) with (µk0 ,
∑k4−1

j=k3
|wj|2) arguments. Defineϕ2 as the following:

ϕ2(µ, s) := max{γ̄2(µ, s), γ̄3(µ, s), γ̄4(µ, s), γ̄5(µ, s)}. (32)

Then we have:‖x[k0,k4]‖2 ≤ γ1(µk0 , |xk0|)+
∑3

l=0 ϕ2(µk0 ,
∑kl+1−1

j=kl
|wj|2). Note, thatϕ̄2(µ, s) ≤

ϕ2(µ, s). If k4 = +∞ then the proof is complete. Ifk4 ≤ +∞ then forN intervals (N may

be∞) (31) will be modified into the following:

‖x[k0,kN ]‖2 ≤ γ̄1(|xk0|, µk0) + γ̄2(µk0 ,

k1−1∑
j=k0

|wj|2) + γ̄3(µk0 ,

k2−1∑
j=k1

|wj|2) + γ̄4(µk0 ,

k3−1∑
j=k2

|wj|2)

+γ̄5(µk0 ,

k4−1∑
j=k3

|wj|2) + · · ·+ γ̄4(µk0 ,

kN−1−1∑
j=kN−2

|wj|2) + γ̄5(µk0 ,

kN−1∑
j=kN−1

|wj|2)

For N intervals defineϕ2 according to (32). Then we have:‖x[k0,kN ]‖2 ≤ γ1(|xk0 |, µk0) +∑N−1
l=0 ϕ2(µk0 ,

∑kl+1−1
j=kl

|wj|2). This completes the proof. �
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