On [, stabilization of linear systems with
guantized control

Tania Kameneva and Dragan $ie

AbstractT his paper extends results from [5], where input-to-state stabilization (ISS)
of linear systems with quantized feedback was considered. In this paper, we show that
using the same scheme and under the same conditions as in [5] it is also possible to
achieve (nonlinear gain)l, stabilization for linear systems. We also prove a new lemma
on K, functions that is interesting in its own right.

. INTRODUCTION

The subject of this paper is control of systems with quantized feedback. By quantized
feedback we mean controllers that have values in a finite (or countable) set. Control of
systems with quantized feedback is an emerging research area that brings together elements
of control and information theory to provide novel insights into control over networks with
bandwidth limitations. The area of Networked Control Systems (NCS) is relatively new,
nevertheless, a number of important results have been published (e.g. stabilization for systems
with quantized control/measurements was considered in [1], [2], [4]; robust stabilization and
estimation was considered among others in [3], [5], [6], [7], [9]).

In this paper we explore nonlinear galpn stability properties of linear time-invariant
systems that are controlled by the controller proposed in [5]. In particular, we show that
using the time-sampled scheme introduced in [5], it is possible to achieve nonlineds gain
stability for the linear time-invariant systems with quantized feedback. Similar to [10], we
use a concept of nonlinear gains to describe the robustness properties of the system with
respect to external disturbances. This is consistent with the result in [6], where Martins shows
that nonlinear gains are necessary when formulating properties of the disturbance attenuation
for the linear discrete system with quantized feedback. Martins shows that linear (finite)
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p € [1, 0], gains are not achievable when quantized control with finitely many levels is used.
Our Theorem 1 in Section IV, on the other hand, shows what kind of nonlipegains are
achievable for linear systems with controllers from [5]. Moreover, we also state and prove
Lemma 1 in Section Il on properties &, functions that is of interest in its own right.

The remainder of the paper is organized as follows. In Section Il we give definitions and
lemmas that are used in the sequel. The closed loop system, switching rules and protocol
are given in Section lll. The main results are presented in Section IV. Section V offers
conclusions. The proofs of technical lemmas are given in the appendix.

[I. NOTATION AND PRELIMINARIES

In this section we introduce some notation and give the definitions that will make the dis-
cussed concepts precise. We denote the two-norm of the vector as fahpws: /> ()2,
wherez = (21, 22,...,2"), nis the dimension of the vectar The sequence of vectots for
k € [ki, ks, is denoted asy, 1,)- The two-norm of a sequence of vectors on a time-interval
k1, ko] is denoted ag{zj, k)| := 1/ Zikl |z|%. ||A|| denotes the induced two-norm of the
matrix A. A quantizer is a piecewise constant functipn R” — @, where@ is a finite

subset ofR™. We use:

Assumption 1:[4] There exist strictly positive number®/ > A > 0 and A,, such that
the following holds: 1. Ifjz| < M then|z —q(z)| < A; 2. If |z2| > M then|q(z)| > M — A;
3. For all|z| < Ay we have thay(z) = 0. [

M is called the range of the quantizéy;is called the quantization errafy, is the dead-zone.

The first condition gives a bound on the quantization error when the state is in the range
of the quantizer, the second gives the possibility to detect saturation. The third condition is
needed to preserve the origin as an equilibrium. We use the following one-parameter family
of dynamic quantizers introduced in [4]:

0u() = g (g) 0, 1)

wherey is an adjustable parameter, called “zoom” variable, that is updated at discrete instants
of time. For each fixed: the range of the quantizer i¥ ;. and the quantization error K.
We use the following definition:

Definition 1: A function v : R>y — R is of classK if it is continuous, zero at zero,
strictly increasing and unbounded. A functignis subadditive ify(z +vy) < v(z) +~(y) for
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all z,y > 0. A function v is superadditive ify(z) + v(y) < v(x + y) for all z,y > 0. We
denote adC, the class of functions that are of clas, and are subadditive. Similarly, we
denote by[Ct the class of functions that are of claSs, and are superadditive.

A simple consequence of subadditivity 9fc K., is that for any positive integeN and

any nonnegative numbeis), ..., ay We have~ (Zf;o ai> < 3N v(a;). Similarly, for
superadditive functiory € K., we can write for any positive integéy and any nonnegative
numbersag, . . ., ay that SN y(a;) < v (ZiN:O ai). To prove the main result in Section IV

we state and prove the following technical lemma, that we believe is a new result and it is
of interest in its own right.

Lemma 1:For anyy € K, there existy; € KT and, € K, such thaty(s) < y;079(s)
for all s > 0.

[11. CLOSED-LOOP SYSTEM

In this section, we recall the plant model and quantized controller from [5] that are
considered in the sequel. Consider the plant model

&(t) = Az(t) + Bu(t) + Dw, z(0) =x¢ € R", 2)

wherez € R",u € R™,w € R! are respectively state, control and disturbance. Matrix A
is nonzero and non-Hurwitz. Defing = kT for kK = 0,1,2,..., whereT > 0 is a given
sampling period. We shortly denot&t,) = z;, and similarly for all other variables. Let
u(t) = up = const. for allt € [ty,tx11), k£ > 0. The discrete time plant model of the

sampled-data plant (2) is more amenable to analysis:

Tpy1 = Pag + Tug +wi,  2(0) = 29 € R”, 3)
where® = ¢AT ; T = [T e*Bds ; wy = [ AT Dd(s)ds. To control the
system (3) we use the quantized hybrid feedback, proposed in [5]. The controller dynamics
is described by the following:

w, = U(Qg, p, x),  t € [te, thrr) (4)
O |f Qk - Qout

U, pig, © = )
(ot 1) {qu it =,

(6)

whereg;, := g, (x). The variablef2 determines the switching rule for the controller. It can
take only two strictly positive valueQ,,; and(,,, that will be defined later. I1f2, = Q..
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we say that zoom-out condition is triggered at tifmelf 2, = Q;, we say that zoom-in
condition is triggered at timé. During zoom-out stage the system is running in open loop
ux = 0, during zoom-in stage the certainty equivalence feedhack K, is applied. The
protocol dynamics is described by the following:

e = G, e, k), o € R (7)

Qou if Q= Qou, >0
G(Qk,uk,xk) — t(Mk-i-C) ! k ¢ c (8)
()]

In our discussions we let = 1. The adjustment policy foy, called "zooming protocol”,
depends only on the quantized measurements of the gtate= 0,1,2,..., N. Geometri-

cally, at each time instaR” is divided into a finite number of quantization regions. Each
region corresponds to a fixed value of the quantigzeDuring zoom-out stage the value of
adjustable parameter is increased at the rate faster than the growthugf until the state

can be adequately measured. During zoom-in stage the value of adjustable payaiseter
decreased in such way as to drive the state to the origin. The switching law dynamics is
described by the following:

U = H(Q—y, ps i), Qo1 = Qow (10)
Qowr 1 |qr] > lousptr
H (1, i, x1) = Qi I |q| < linp (11)
Q1 0 Jai] € [linttr, loue i)
wherel,,, = M — A, l;,, = Ay — A andl,,; > l;,. The choice of the parameteig, A and
A,y is given later. The hysteresis switching is used to switch between zoom-in and zoom-out
stages.

Remark 1:We will analyze only the stability properties of the discrete-time system (3)-
(11). It was shown in [8] and [11] how to use the underlying discrete-time model to conclude
appropriate stability of the sampled-data system. [ |

Remark 2:Note that it is not necessary to use= 0 in (5) during zoom-out. We use
this choice to simplify the analysis. For more detailed discussions on the flexibility in the
controller and the zooming protocol design, refer to Liberzon ansiG\&]. [ |
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We introduce some notation. For eakh> 0 there are two possible cas€3; = Q.. (in

this case we say that zoom-out is triggered at timeor 2, = Q;, (in this case we say

that zoom-in is triggered at time). Given an initial condition and a disturbance there is a
sequence of zoom-out and zoome-in intervals. There may be infinitely many or finitely many
such intervals. We introdude € N such that), = Q,,; if k € [ka;, koir1 — 1] and Qg = Qy,

if k€ [koiyr,koipr —1];9=0,1,...,N (N may be infinity). For simplicity, we let the first
interval always to be zoom-ouf2_; = Q,., keeping in mind that it may actually be an
empty interval. To state our main result we need to consider the dynamics of the variable
& = 2_’; that governs the switching between zoom-ins and zoom-outs. For zoom-out stage
we have:

0} 1
|§|2 |l &kl + Q_|Ck| k € [kai, koit1 — 1] (12)

out
and for zoom-in stage we have:

|€kt1]| <

1 1 1
a (P +TK)E + O 'Ky, + a G k€ [kaitr, kaiv1 — 1], (13)

where v, := q(&) — & and ¢, == %£. Under the assumption th@};(@ + I'K) is Schur,
there exists strictly positive numbers, \;, v, 7 such that the solutions of the system (13)

£k+1 =

satisfy (more details can be found in [5]):

1€k < Ly exp(=A1k)[&o| +[V]loo +FIICkll  VE > 0. (14)

V. MAIN RESULTS

The main contributions of this paper are presented in this section. The main purpose of
our work is to use an appropriate notion of nonlinear gains to characterize a nonlinear gain
Iy stability property of the system and show that the scheme proposed by Liberzon and
Nesic in [5] yields this property. We show that the closed loop system (3)-(11) possesses the
following stability property:

Definition 2: The system (3)-(11) is said to be nonlinear gain (NG3table if for every
1o > 0 there existy;, v2,73 € Ko such that for every initial conditions,, ;1o and every
disturbancew the following holds:

k—1
04117 < 7 (o]) + 72 (Z’Y3(\wi|)> VE > 0.

1=0
Note, thaty;, i = 1,2, 3, are nonlinear functions that in general dependugnDefinition 2

shows explicitly what we mean by nonlinear gains and is in a more general form than the
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definition of NG/, stability used by Martins in [6], where,(s) := 32(1/s) and~ys(s) := s
Martins [6] showed that linear gains are not achievable with quantized feedback. The main
contribution of our work is the following theorem, which presents conditions under which
the system (3)-(11) is NG, stable.

Theorem 1:Consider the system (3)-(11). Suppose that Assumption 1 holds and for a
given sampling period” > 0: (i) K is such thatd + I'K is Schur; (i) Q. > || P|]; (iii)
Qi € (0,1) is such thay - (+T'K) is Schur; (v)M andA are such that/ > (2+L+7)A,
where L,; and~ come from (14). Then, the system (3)-(11) is NGstable.
Theorem 1 shows that using the same controller design and the same conditions as in [5]
it is possible to achieve NG, stability of the system (3)-(11), which was not proven in
[5] (only ISS was investigated in [5]). As opposed to the work by Martins [6] where he
showed what kind of gains are not achievable for the discrete linear systems with quantized
feedback, Theorem 1 shows what kind of gains are achievable with controllers from [5].

Remark 3:The controller design is the same as in [5] and is completed as follows. First, for
the quantizer satisfying Assumption 1 we use a one-parameter family of dynamic quantizers
(1). We designk’ such thatb + 'K is Schur, so that item (i) of Theorem 1 holds. We choose
Qour > ||@|| and 2, € (0,1) such thatQLM(QJ +I'K) is Schur, so that items (ii) and (iii) of
Theorem 1 hold. Then, by Lemma 111.2 in [5], there always exist strictly posifiveand
such that the solutions of the system (13) satisfy (14). In the last step we chb@sal A
such that item (iv) of Theorem 1 holds. [ |

The proof of Theorem 1 relies on Lemma 1 from Section | and Lemma 2 given below.
Lemma 2 combines the results of Lemmas 3-6 in the appendix and shows a bound from
to x. Note that the bound in Lemma 2 depends on the switching tindbat in turn depend

on xg, ip andw. Nevertheless, this bound implies NG stability via Lemma 1, as shown

in the proof of Theorem 1 that is given below.

Lemma 2:Consider the system (3)-(11). Suppose that all conditions of Theorem 1 hold.
Then for everyu, > 0 there existy;, ¢1, 2 € Ko such that for every initial conditions
Zo, 4o, @any k > 0 and any disturbance there exist switching times; ¢ N, i =1,..., N
with ko = 0 and ky = k, such that the following holds:

N-1 kipi1—1
12k ke 12 < (|20 ]) + D 1 ( > wz(!wj!)> :

1=0 j=k;
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Proof of Theorem 1.For anyu, > 0 there existy;, p; andy, such that the bound from
Lemma 2 holds. Then for any fixed initial conditiomsg,, i.x, and any bounded disturbance
w we can write:

N—-1 kii1—1
12k ke 1 < (|20 )) + D 1 ( > wz(le!))

1=0 =k

< 7 (|zkol) + 28011 (@12 ( Z 903(|wj\))> (15)

1=0 j=k,

< n(lzkol) + 11 (Z_ P12 ( > 903(|wj\))> (16)

1=0 =k

N—-1k41—-1
< m(lwrl) + oni (Z > 90120903(|wj|)> (17)

1=0 j=k

— (o ]) + 72 (273<|wj|>> (18)

j=ko
where the inequality (15) comes from Lemma 1 sipgés) < ¢110¢012(s), Vs > 0, p13 € KT
andg;, € K. The inequality (16) is true sincg;; € L. The inequality (17) is true since
12 € K4. The last equality (18) comes from the fact that we dengte) := ¢1:(s) and
v3(8) := 12 0 p3(s). This completes the proof. [

Remark 4:Note that sincep;; € KT, the nonlinear gaim, = ¢;; has a form of
a superadditive function (the example of a supperadditive function is a square function).
Moreover, from the proof of Lemma 1 in the appendix, we have thats) := sy (s)
Vs > 1, which is growing faster than a linear function. This is consistent with Martins
results in [6]. Also, the gains is a composition ofC,, and K, functions. |

Note, that it was shown in [5] that it is possible to achieve global asymptotic stability in
x whenc = 0 in (8), but at the same time not have ISS. We show that0 in (8) is in
general also necessary for Ngstability. Proposition 1 below shows the lack of robustness
of the system (3) in NG, sense wher: = 0 in (8), which is similar to Proposition 111.6

in [5]. Note, Proposition 1 employs a more general form of NGtability, than given in

the Definition 2 (wherey, and~s are identity functions). The proof of Proposition 1 follows
almost the same steps as that of Proposition 111.6 in [5] and is omitted.

Proposition 1: Consider the system (3)-(11). Let= 0 and ® be such that it has at least
one eigenvalue\,, > 1 and its corresponding eigenvectqQy, = 1. Then, for every fixed
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io > 0 there do not existy;, 72,73, 74,75 € Koo, SUch that the following holds for every
initial conditionsxg, 119 and every disturbance:

k

(Y s(lil)) < kol + 123 s(lwil)) vk > 0.

=0
V. CONCLUSIONS

This paper presents results on nonlinear daistability for linear time-invariant systems
with quantized state measurements. Our main result (Theorem 1) shows that a particular
type of NG/, stabilization is possible with the control scheme proposed in [5]. We state and
prove Lemma 1 on properties &f., functions that is of interest in its own right.
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VI. APPENDIX

Proof of Lemma 1. First note that there is no loss of generality in assuming-hgt = 1

since we can always scate as follows:y(s) = v(1)==7v(s) =: v(1)71(s) , and we can

_1
(1)
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only concentrate on obtaining the bound-an with v,(1) = 1. Next we note that given any
functiony € K, with (1) = 1, we can always write it as followsj(s) = 4; 032(s) where
. s, sel0,1] ¥(s), se€]0,1]
Yils) =9 _ Ya(s) == (19)
(s), s>1 s, s>1

Note that sincey € K, and¥(1) = 1 we also have that the so constructedy, € K.
Next we show that for any € K., there existsy such thaty(s) < 5(s) Vs >0, and,
moreover,y; and~, constructed above are respectively superadditive and subadditive.

Construction ofy;: Let 4(s) := sy(s), s > 1. Obviously, we have that(s) < F(s) =

sv(s), Vs > 1 . Moreover,¥,(s) defined in (19) isK., since it is zero at zero, continuous
(since¥(1) = 1), strictly increasing since is strictly increasing and unbounded singés.
We just need to show superadditivity 6f. First, we show that if%T(S) is a nondecreasing
function of s, then?; is supperadditive. Indeed, in this case we have forcall that:

x%(IEﬂL?J) n (@ +y) > g;%@) +y%(y) =% (x) +n(y) -

5 (4 ) =
71( y) T+ r+y T Y

Using our construction of;, we have that

1(s) {1, s e[0,1]

V(s), s=>1

and this is a nondecreasing function sincis increasing and(1) = 1. Hence, we have that
ek,

Construction of},: We introduce the following function(s) := sup,¢(, 1 @ for s €

[0,1) andg(1) = 1. And definej(s) := s - ¢(s) for all s € [0,1]. First, it is easy to see that:
F(s) > s@ =(s), ¥s € [0,1] . Next, we show thaf is a classC function on the interval
[0, 1]. 4 is continuous or{0, 1] since it is a product of two continuous functions (note that
is continuous on0, 1]). Continuity ats = 0 can be shown using the below given analysis.

Moreover,5(0) = 0 as the following analysis shows. Either we have that_ o+ ¢(s) = 252

s*

for some fixeds* € (0, 1], in which case we have(0) = lim,_o+ s2%2 = 0. Or we have that

§*

lim, o+ q(s) = limy_ o+ ”f), in which case we havg(0) = lim, .+ s% = lim, o+ Y(s) =
~v(0) = 0. Now we need to show that is strictly increasing. Note that for any, either
we have that(s) is strictly decreasing at, in which case we have tha{s) = @ and
hencey(s) = s@ = ~(s) , and, hencey is strictly increasing or we have thats) does
not change as increases, in which case from continuity @ifs) we have that there exists

s* < s such thatj(s) = s | which is strictly increasing (linear) function of (this also
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shows continuity a0). Hence,y is a classC function on[0, 1]. Moreover, sincey(1) = 1, it
is easy to see that the functign defined in (19) is of clas&’... Note also that the function
Fols) [ T =q(s), se01]
s { 1, s>1
is nonincreasing since is nonincreasing orj0, 1] and ¢(1) = 1. This implies thaty, is
subadditive. Indeed, we can write:

. Yolz +y) | Flr+y) Yolz) | Foly) -
rt+y) =z + < + = Y2(z) + :
Yoz + y) iy YV arg ST tv, Y2(2) + Y2(y)
Hence,3, is of classK,, which completes the proof. [ |

The following Lemmas 3-6 follows directly from Lemma IV.5 - IV.9 in [5]. Lemma 3
claims that the zoom-out interval is bounded and there exist a bounddoming the zoom-
out interval. Lemma 4 claims that there exist a bounduoat the end of each zoom-out.
Lemma 5 claims that there exist a bound om@uring zoom-in. And Lemma 6 claims that
if zoom-in is followed by zoom-out, then and p are bounded by the functions of the
disturbance only (initial conditions are forgotten).

Lemma 3:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. Then
there existpy, v, p1, p2 € Ko such that for alli = 0,1,..., N, x4, € R, jig,, > 0,w; € R

koip1—1
)+ ¥2 ( Z |wj|2> ;

the following holds:

koiv1 — koi <1+ o1(|zk,,

J=kai
k-1
2 tkos il < p1(Jhz]) + P2 (Z |wj’2) Vk € [kai, kaita].
J=kai

Lemma 4:Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. There
exist K, functionsp, p and a continuous bounded functiprsuch that for alk = 0,1,..., N

and all i, > 0, x1,, € R", w; € R the following holds:
k—1
1 < p(|s]) + Plpkss) + (Z ’wj|2> Vk € [k, kaita]-

Jj=kai
Lemma 5: Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. Then

there exist continuous nondecreasing functip}%s, 1) : Rsg x Rog — Rs, j = 1,2, with
p(0, ) = 0 for all 1, such that for alk = 0,1,..., N, z,,, € R", fi,,,, > 0,w; € R’ the

following holds:
k—1

Hx[kzuhk]u < pin(’xk2i+1’2aﬂi2i+l) + pZQH( Z ’wj’2>:ui2i+1) Vk € [k2i+17 k2i+2}'

J=ko2it1
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Lemma 6: Consider the system (3)-(11). Suppose all conditions of Theorem 1 hold. There
existsy; > 0 such that for an arbitrary=0,1,..., N, if kg0 < 400, theni < N —1 and
the following holds:

max {|xk‘2i+2 |7 Mk2i+2} < ’3/1 Z |wj |2 . (20)

Now we combine Lemmas 3-6 to prove the next lemma.

Proof of Lemma 2: From Lemma 3 we have:

lzel* < lzpomll < pr(lzwg]) + 2 Z|w;| Vk € [ko, k). (21)

Jj=ko
By Lemma 3 the duration of the zoom-out interval is finite and there exist the time instant
k1 < oo such that the zoom-in is triggered. Thén, k»] is a zoom-in intervalk, can be
infinity, and from Lemma 5 we have:

k—1
wnl* < Nzl < o5 (w1 ) + 05 O lwl? 7)Yk € [k, k. (22)

Jj=k1

Substitute (21) withk = &, for |z, |? in (22) and use triangular inequality

ki1—1 k—1
2k i I” < pf" (Pl(|$ko|) +pa( > |wj|2);M21> + p3" (Z ijIQ,uil)

Jj=ko Jj=k1

ki-1 k—1
<" 2w ), 13,) + o1 (2/)2(2 ijIQ),uil) + p3' <Z ’%"27/@1) ,Vk € [k, ko).

J=ko J=k1

From Lemma 4 we havei; < p(|zx,|) + p(pw,) + ﬁ(Zf;é

in the inequality above. Then for all € [k, k2| we have::

lw;|?). Substitute this fong,

ki1—1
Hx[khk]HQ < pzln <2p1(|xko|)=p(|xko|> + ﬁ(lu“ko) + ﬁ(Z |wj|2>>

Jj=ko

+p" <2P2(z—: [wil?), (k) + Apw,) + ﬁ(i ij|2)>

j=ko Jj=ko

ki1—1
+py! <Z|wg! (k1) + A1) + A0 fwy? >

Jj=k1 Jj=ko

'For K+ function pi™ the following holds:pi" (s1 + sa, 1) < pi™(2s1, ) + pi" (252, 1)
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k1—1
< 7 2p1 (o)), 4p(l2x ) + 1 (2080 ) 48(10)) + 21" 21 (o), 200D ey )
J=ko
k1—1 k1—1 k1—1 k1—1
07 (2020 T P), Ap(lwg )40 (202D e 2), 45 (1ake))+01" (202D T ), 260D |wyl?))
j=ko j=ko j=ko J=ko
k—1 k—1 k—1 ki—1
+o5 (D TP dp(awg ) + 05" (D lwsl?, 45(wo)) + o5 (Y Twy2,20()  |wyl?)). (23)
j=k1 j=k1 Jj=k1 J=ko

In the next step we use the property/6f, functiong applied to the functiong:", pi* and
apply a triangle inequality repeatedly in the inequality above:

|k l* < o0 2p1 (o)), 40(| 28 1)) + 01 (20101, 45 (111))

ki1—1 ki—1
o160 200> wyl*), 250> [w;*)) + o (201 (ko ]), 67 © 201 (| ]))
Jj=ko Jj=ko
ki1—1 k1—1
+1" (¢ 0 Ap(|zko|). dp(|ko]) + £ (202D wjl?), 7" 0 205D fwyl*)
j=ko Jj=ko
k1—1 k1—1
o1 (60 4p(1kg ) 41tk ) + P (202D wjl?), 7" 0 205D Juwyl?)
Jj=ko Jj=ko
ki1—1 ki1—1 ki—1 ki1—1
o (¢ 0 200> |wyl*), 260> [wyl*)) + pi" (202D wyl?), 671 0 202> |wyl*))
Jj=ko Jj=ko Jj=ko Jj=ko

(6 0 dp(laso D) Ap(ia) + o8 (S s, 67 (S Jusl) + o8 (S s, 47 (n,)

Jj=k1 Jj=k1 J=k1
k1—1 k1—1 k—1 k—1
+05" (00200 lwjl*), 200 [wil”) + 5 (O fwgl*, 67 (O lwy ) (24)
Jj=ko Jj=ko Jj=k1 J=k1
k1—1 k—1
< Ao, ko) + T2 (ttrgr D |w51%)) + Falttngs Y lwjl®) Vk € [y, ks, (25)
Jj=ko Jj=k1

where?, is the sum of all function in (24) withuy,, |zx,|) argumentsy, is the sum of all

function in (24) with(uy,, ngfé lw;|?) arguments, ands is the sum of all function in (24)

2f p:Rso x Rsg — R>g is of classK, for any fixedy and for any fixedr is nondecreasing i, then p(z,y) <
p(d(y),y) + p(z, ¢~ (x)) Vz,y >0, wheree is an arbitraryK, function.
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with (Nkmzitil lw;|?) arguments. To have a bound for two intervals, k1], [k1, k2], we
add (21) withk = k; and (25) withk = ks:

k1—1 k1—1 ko—1
1o ol 1> < o1k ) 4020 T P) 471 (ko s pr0)+72 (ttrg D [P 435 (ptngs Y [0 ]?).

Jj=ko Jj=ko Jj=k1
Define:(u, s) := pi(s) + 31 (1, s) and@a(p, s) := max{pa(s) + 721, ), ¥3(1, s) }. Then we

k}l+1—1

have: ||z, &1 112 < 71 (kko» [Tho|) + 31— P (ko > itn lwil?). If ky = 400 then the proof

is complete. Ifky < +o0o then for zoom-out intervalk,, k3] from Lemma 3 we have:
k—1
2 |* < .l < pr(lzn]) + p2 (Z \W) Vk € [ka, ks]. (26)
Jj=k2
Again, by Lemma 3 the duration of zoom-out interval is finite and there exist the time

instantk; < oo such that the zoom-in is triggered. For the next zoom-in intefkalk,]

from Lemma 5 we have:
k—1
2il® < Nzpomll < A7 (ks 12y + 05O lwyl? i) Vk € [ks, k. (27)
Jj=ks
From Lemma 4 fork = ks (end of second zoom-out interval) we hayg;, < p(|zy,|) +

ppwy) + p (st’l |wj\2>. Substitute this fop:;, and (26) withk = k5 for |z,|* into (27).

j=k2
Similarly to (25) we have for alk € [ks, k4]:

ks—1 k-1
2k i 7 < A1 (ks s 1) + T2 (s > [wil?) + Fs(ptaas Y Jws?). (28)
Jj=ka Jj=ks

To obtain a bound for all four intervals, add the bound for the first two interNgls:, |,
[k1, k2] (25) with k& = ko, the bound forlks, k3] (26) with k = k3 and the bound fofks, k4]
(28) with k& = ky:

k1—1 ko—1 k3—1
o kall® < T2l pae) 32 Cttngs D TPV 4 (as Y Nws) o1 )02 Jwyl?)
J=ko Jj=k1 J=k2
k3—1 ka—1
31 (ks |y k) + T2ty D w5 ?) + (s, Y Jws?). (29)
j=ka j=ks
From Lemma 6 we havanax {|x,|, ur, } < % (ngﬁj |wj|2>. We can see, that after the

second zoom-in (which is followed by zoom-out), we forget about initial conditigpsThe
state depends only on the disturbance during this zoom-in interval. Substitute this inequality
for |xy,| and ug, in (27). Then,

k1—1 ko—1 ko—1
Hm[kmkd”z < ’_}/1(‘1’1430’, ,uko) + ’_}/Q(Mkoa Z ‘w]"z) + "_)/3<:uk07 Z |wj’2) +p10o :}/1(2 |’LU]"2)
J=ko Jj=k1 Jj=k1
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ks—1 ko—1 ko—1 ko—1 ks—1
402D wiP) + 3 (F O Jwi?), O wi?) +F2(31 (O wy?), D Jwy?)
Jj=k2 Jj=k1 j=k1 Jj=k1 Jj=k2
ko—1 kqa—1
33 (O Twi?), > Jwsl?) (30)
Jj=k1 Jj=ks
k1—1 ko—1 ks—1 kga—1
< A1 |k |y 100 F32 (k0 Y w5V 473 (g D )+ (wgs Y 1ws )+ (paags D Jwyl),
j=ko Jj=k1 J=k2 J=ks

(31)

2 Uw;|?) arguments;y, is a sum

where; is a sum of all function in (30) with{rx,, > ;%

of all function in (30) with (1, >2% ! |w;|?) arguments ands is a sum of all function in

j=ko
(30) with (g, Zf‘;}ci lw;|?) arguments. Define, as the following:
902(,“7 5) = maX{’?Z(M? 5)7 ’_}/3(/467 5)7 ’_}/4(/467 5)7 ’_}/5(/'67 S)} (32)

Then we havel|z, k.1 < 71 (ttko, [Tk )+ 3210 021k, S5t w;[?). Note, thatgy(u, s) <
wa(p, 8). If ky = +oo then the proof is complete. K, < +oo then for N intervals (V may
be o0) (31) will be modified into the following:

k1—1 ko—1 k3—1

ko sen 117 < 71 (ko p10) + Fo(ttror Y 15 *) + Fs(ttror Y [wil*) + Falptng, D lwl?)
Jj=ko Jj=ki1 Jj=ko
ka—1 kJN*l_1 kal
5 (tkor Y Nwi1?) 4 A Taltrg, Y Twil®) + Tsliwe, D |wsl?)
Jj=k3 J=kn—2 J=kn-1

For N intervals definep, according to (32). Then we havéz, iill> < 71 (J@k, |, fry) +

Z{V:gl 02 (kg Zfl;kll_l |w;|?). This completes the proof. [
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