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Abstract

A new class of Lyapunov uniformly globally asymptotically stable (UGAS) protocols in networked control systems (NCS) is
considered. It is shown that if the controller is designed without taking into account the network so that it yields input-to-
state stability (ISS) with respect to external disturbances (not necessarily with respect to the error that will come from the
network implementation), then the same controller will achieve semi-global practical ISS for the NCS when implemented via
the network with a Lyapunov UGAS protocol. Moreover, the ISS gain is preserved. The adjustable parameter with respect to
which semi-global practical ISS is achieved is the maximal allowable transfer interval (MATI) between transmission times.
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1 Introduction

In networked control systems (NCS), one or more
dynamical systems are controlled by feedback over a
communication network. The transmission capacity
of the communication network is limited. This lim-
its the number of bits or packets per second which
can be transported via the network and, conse-
quently, restricts the achievable performance. This
area has grown rapidly in the last few years with
the emergence of applications ranging from micro-
electromechanical chips and Internet congestion
protocols to “drive-by-wire” systems.

NCS are currently receiving considerable attention
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in the literature as illustrated by recent articles
[16,17,11,19] and references listed therein. The area
of NCS is still in its infancy and existing results can
be improved in at least two directions. First, most
existing literature considers only stabilization of lin-
ear NCS whereas nonlinear NCS have received little
attention (with few exceptions, such as [11,16]). Sec-
ond, most results treat NCS without disturbances
and we are aware only of limited results on stability
of NCS with disturbances, such as the L∞ to root-
mean-square stability of a class of NCS considered
in [5]; Lp stability of NCS considered in [11]; results
on input-output stability of linear jump parameter
systems in [3] that can be exploited for certain NCS
with static protocols. Also, in some cases it is pos-
sible to use tools for linear sampled-data systems
[4] for analysis and design of certain classes of lin-
ear NCS. In this paper we consider input-to-state
stability (ISS) of nonlinear NCS with disturbances.

We follow the method proposed in [16,17], in which
one first designs the controller without taking into
account the network and then in the second step one
determines a design parameter called the maximum
allowable transfer interval (MATI) so that the closed
loop remains stable when some control and sensor
signals are transmitted via the network. This ap-
proach was shown to produce stabilizing controllers
for linear NCS in [16] and nonlinear NCS in [17].
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Moreover, Lp stability of nonlinear systems with a
large class of uniformly globally exponentially sta-
ble (UGES) protocols was investigated in [11]. It was
shown in [11] that several common static and dy-
namic protocols investigated in [16,17] belong to the
class of UGES protocols.

We consider Lyapunov uniformly globally asymptot-
ically stable (UGAS) protocols that generalize uni-
formly globally exponentially stable (UGES) proto-
cols considered in [11]. We show that if the controller
is designed without taking into account the network
so that it yields input-to-state stability (ISS) of the
closed loop system (see [15]), then the same con-
troller will achieve semi-global practical ISS of NCS
when implemented via the network with a Lyapunov
UGAS protocol. The parameter that can be adjusted
in the protocol and that is used to achieve semi-
global practical ISS is MATI (see [16,17]).

2 Preliminaries

R andN denote, respectively, the sets of real and nat-
ural numbers. R≥0 denotes the set of non-negative
reals. Given t ∈ R and a piecewise continuous func-
tion f : R → Rn, we use the notation f(t+) :=
lims→t,s>t f(s). All vector norms, denoted as |·|, are
Euclidean norms unless otherwise stated. Given a
measurable, locally essentially bounded signal ϕ :
[t◦,∞) → Rn we denote its L∞ norm as follows:
‖ϕ‖∞ := ess sups≥t◦ |ϕ(s)|. A function γ : R≥0 →
R≥0 is said to be of class G if it is continuous, zero
at zero and nondecreasing. It is of class K if it is
of class G and strictly increasing. A function is K∞
if it is of class K and unbounded. γ is of class L if
it is continuous and decreasing to zero. A continu-
ous function β : R≥0 × R≥0 → R≥0 is said to be of
class KL if for each s > 0 the function β(s, ·) is of
class L and for each fixed t ≥ 0 the function β(·, t)
is of class K. In a similar way we define functions
of class KK and KLL. To shorten notation we often
use (x, y) := (xT yT )T .

3 Definition of Networked Control Systems

We consider general nonlinear NCS with distur-
bances of the following form (see also [17,11]):

ẋP = fP (t, xP , û, w), t ∈ [tsi−1 , tsi ]
y = gP (t, xP )

ẋC = fC(t, xC , ŷ, w), t ∈ [tsi−1 , tsi ]
u = gC(t, xC) (1)
˙̂y = f̂P (t, xP , xC , ŷ, û, w), t ∈ [tsi−1 , tsi ]
˙̂u = f̂C(t, xP , xC , ŷ, û, w), t ∈ [tsi−1 , tsi ]

ŷ(t+si
) = ŷ(tsi) + hu(i, e(tsi))

û(t+si
) = û(tsi) + hy(i, e(tsi))

where the sequence tsi , i ∈ N of monotonically in-
creasing transmission times satisfy ε ≤ tsi+1 − tsi

≤
τ for all i ∈ N and some fixed ε, τ > 0. We adopt
terminology from [17] and refer to τ as the maxi-
mum allowable transmission interval (MATI). The
number ε ensures that our model does not have any
Zeno solutions where infinitely fast switching may
occur. xP and xC are respectively states of the plant
and the controller; y is the plant output and u is the
controller output; w is an exogenous disturbance
input; ŷ and û are the vectors of most recently
transmitted plant and controller output values via
the network; e is the network induced error de-
fined as e(t) := (ŷ(t)− y(t), û(t)− u(t)) = (ey, eu).
Note that if NCS has ` links, then the error vector
can be partitioned as follows e = [eT

1 eT
2 . . . eT

` ]T .
At each transmission time tsj

, the protocol gives
access to the network to one of the “nodes” ei,
i ∈ {1, 2, . . . , `} and this causes the vector ei(·) to
undergo a “jump” at tsj . We combine the controller
and plant states into a vector x := (xP , xC) and
using the error vector defined earlier e = (ey, eu)
and the following definitions: f(t, x, e, w) :=
(fP (t, xP , gC(t, xC) + eu, w), fC(t, xC , gP (t, xP ) + ey, w));
h(i, e) := (hy(i, e), hu(i, e)); g(t, x, e, w) := (g1, g2),
where g1 := f̂P (t, xP , xC , gP (t, xP )+ey, gC(t, xC)+
eu, w)− ∂gP

∂t (t, xP )− ∂gP

∂xP
(t, xP )fP (t, xP , gC(t, xC)+

eu, w), g2 := f̂C(t, xP , xC , gP (t, xP )+ey, gC(t, xC)+
eu, w)− ∂gC

∂t (t, xC)− ∂gC

∂xC
(t, xC)fC(t, xC , gP (t, xP )+

ey, w). We can rewrite (1) as a system with jumps
that is more amenable for analysis:

ẋ = f(t, x, e, w) ∀t ∈ [tsi−1 , tsi ] (2)
ė = g(t, x, e, w) ∀t ∈ [tsi−1 , tsi ] (3)

e(t+si
) = h(i, e(tsi)) , (4)

where x ∈ Rnx , e ∈ Rne , w ∈ Rnw . In order to write
(3), we assumed that functions gP and gC in (1) are
continuously differentiable. The explanation of how
trajectories of the system (2), (3), (4) are defined can
be found in [11]. We use the following assumption
that holds if f is locally Lipschitz in x, w and e,
uniformly in t.

Assumption 1 There exist L ∈ K and M ∈ KK
such that, for each c > 0, max {|x|, |x̄|, |w|, |e|} ≤ c
implies |f(t, x, w, e) − f(t, x̄, w, 0)| ≤ L(c + 1)|x −
x̄|+ M(c + 1, |e|). ¥

We refer to (4) as a protocol. The protocol deter-
mines the algorithm that assigns access to the net-
work to different nodes in the system. It was shown

2



in [11] that static protocols and the so called try-
once-discard (TOD) dynamic protocol introduced in
[16,17] can be modelled in this manner. The func-
tions hu and hy are typically such that, if the jth
link gets access to the network at some transmission
time tsi

we have that the corresponding part of the
error vector has a jump. For some protocols, such as
the TOD protocol, we typically assume that ej is re-
set to zero at time t+si

, that is ej(t+si
) = 0. However,

we emphasize that this assumption is not needed in
general (see [11] for more details).

Remark 1 It is typically assumed in the literature
(see, for instance [16,17,19]) that f̂P = 0 and f̂C =
0 in (1) but we state our results for more general
forms of these functions. This more general model
was considered for the first time in [11].

4 Lyapunov UGAS protocols

In this section we introduce a class of Lyapunov
UGAS protocols that generalize Lyapunov UGES
protocols introduced in [11]. We show an important
property that Lyapunov UGAS protocols possess
under relatively weak conditions. In particular, we
show for these protocols that for uniformly bounded
plant state x(·) and the disturbance w(·), the state
of the error dynamics e(·) satisfies a semi-global-
practical stability bound in the MATI. This techni-
cal result is instrumental in establishing ISS prop-
erties of the NCS in the next section. Note that the
equation (4) that describes the operation of the pro-
tocol is not a discrete-time system since this equa-
tion does not provide a relationship between error
signals at consecutive transmission times tsi and
tsi+1 for any i ∈ N. However, we find it convenient to
introduce an auxiliary discrete-time system induced
by the protocol (4):

e(i + 1) = h(i, e(i)) . (5)

This idea was proposed for the first time in [11].
Moreover, in [11] we introduced the class of Lya-
punov uniformly globally exponentially stable
(UGES) protocols. It was shown in [11] how one
can model token ring and the Try-Once-Discard
Protocol from [17] using (5) and also that they are
Lyapunov UGES. In this paper we generalize this
class of protocols and we consider Lyapunov UGAS
protocols 1 :

1 The difference between Lyapunov UGAS protocols
defined here and Lyapunov UGES protocols defined in
[11] is that the functions α1 and α2 were required to be
linear for Lyapunov UGES protocols.

Definition 1 Let a function W : R≥0×Rn → R≥0,
α1, α2 ∈ K∞ and a real number λ ∈ [0, 1) be such
that for all e ∈ Rn and all i ∈ N the following holds:

α1(|e|) ≤ W (i, e) ≤ α2(|e|) (6)

W (i + 1, h(i, e)) ≤ λW (i, e) . (7)

Then, we say that the protocol (4) is Lyapunov UGAS
with (W , α1, α2, λ). ¥

Assumption 2 The protocol (4) is Lyapunov
UGAS with (W , α1, α2, λ), where W (i, e) is contin-
uous in e, uniformly in i. ¥

We note that results of [11] required that W is Lip-
schitz in e, uniformly in i. Hence, in this paper be-
sides considering a more general class of Lyapunov
UGAS protocols, we also relax the uniform Lipschitz
property of W to uniform continuity. It is sometimes
easier to prove (see Example 1) that instead of (7)
we have that the following inequality holds:

W (i + 1, h(i, e)) ≤ W (i, e)− α3(W (i, e)) , (8)

for some positive definite α3. The following propo-
sition shows that this is enough for our purposes.

Proposition 1 Suppose that (6) and (8) hold, where
α3 is a continuous, positive definite function and
W (i, e) is continuous in e, uniformly in i. Then,
there exists a smooth function ρ ∈ K∞ such that
U(i, e) := ρ(W (i, e)) satisfies all conditions of As-
sumption 2. ¥

Sketch of proof: Lyapunov UGAS with U can be
shown to hold in a similar way as in the continuous-
time literature (For example, see [14] and [8, Theo-
rem 3.6.10 ] for the case when α3 is a class K func-
tion. Also, the result that uses a similar transforma-
tion to go from a positive definite function α3 to a
class K function α̂3 is given in [15, pp. 440]). More-
over, given any ρ ∈ K∞ (which is by definition con-
tinuous) we have that U(i, e) is continuous in e, uni-
formly in i, since W has the same property. ¥

In some cases it is possible that (5) is Lyapunov
UGAS in an appropriate sense but it may be hard
to explicitly construct W satisfying Assumption 2
(see Example 2). The following propositions is use-
ful in such situations and it makes use of converse
Lyapunov theorems proved in [7] for difference inclu-
sions with upper semi-continuous right hand sides
(see also [2] for similar results for time-invariant sys-
tems with Lipschitz right hand sides).

3



Proposition 2 Suppose that 2 for each e ∈ Rne the
function h(·, e) is periodic in i. Then, there exists W
satisfying Assumption 2 if and only if the origin of the
difference inclusion e+ ∈ H(i, e), where H(i, e) :=
cl

⋂
|v|≤δ,δ>0{z : z ∈ h(i, e+v)}, is stable and globally

attractive.

It was shown in [11] that token ring and try once
discard (TOD) protocols are Lyapunov UGES (see
[11,17]). We present next two examples of Lyapunov
UGAS protocols that are not Lyapunov UGES. The
first example behaves for large e in the same way as
TOD protocol but for small e the error jumps are
smaller because we transmit less information. The
second example is a modified token ring protocol
that for large error e behaves exactly in the same
way as token ring but for small e it transmits less
frequently.

Example 1 (Modified TOD Protocol) Consider
the protocol (5), where h(e) = (I − Ψ(e))e and
Ψ(e) := diag{ψ1(e)In1 , . . . , ψ`(e)In`

}, where
ψj(e) = sat(|ej |) if j = min(argmaxj |ej |) and
ψj(e) = 0 otherwise. This protocol behaves like TOD
for large |e| and for small |e| it makes the error jumps
smaller (e.g. because it is transmitting less informa-
tion). Using W (e) = |e|, which is continuous, we
can show that the inequality (8) holds and via Propo-
sition 1 we conclude that there exists U(e) := ρ(W )
for some ρ ∈ K∞ such that the protocol satisfies As-
sumption 2 with U and some α1, α2, λ. The protocol
is not UGES since convergence is slower for smaller
e.

Example 2 (Modified Token Ring Protocol)
Define for x ∈ R≥0 the following function bxc =
min{z : x ≤ z, z ∈ N}. Also, let sat(s) :=
min{s, 1} for all s ≥ 0. Consider the protocol
(5) where h(i, e) = (I − ∆(i, e))e and ∆(i, e) =
diag{δ1(i, e)In1 , . . . , δ`(i, e)In`

}, ∑`
i=1 ni = ne and

δk(i, e) =





1 if |e| > 0, i =
⌊

1
sat(|e|)

⌋
(k + j`), j ∈ N

0 otherwise

This protocol behaves exactly like the token ring for
|e| > 1

2 and for small |e| it transmits less frequently
(e.g. for |e| ∈ (

1
11 , 1

10

]
the protocol transmits at a

frequency that is 10 times smaller than that of the
token ring protocol). ∆(·, ·) is positive semi-definite,
it has a norm less than 1 and for every δ > 0 there

2 In this proposition we use the usual definitions of sta-
bility and global attractivity for the origin of a time
varying system.

exist L :=
⌊

1
sat(δ)

⌋
·` such that for all k0 ∈ N we have

|e| ≥ δ =⇒
k0+L∑

i=k0

∆(i, e) ≥ I . (9)

Stability of the corresponding difference inclusion 3

follows immediately using the Lyapunov function |e|.
Global attractivity can be established using the uni-
form δ-PE concept in [9] and [10] (see [12] for related
tools in discrete-time).

Note that we often abuse the terminology and re-
fer either to (4) or (5) as the protocol. For instance,
in the above definition we say that (4) is Lyapunov
UGAS with (W,α1, α2, λ) when this data can be
used to show UGAS of (5). Our results are stated for
arbitrary Lyapunov UGAS protocol in the sense of
Definition 1. All proofs are given in the Appendix.

Proposition 3 Suppose that: (1) W (i, e) is con-
tinuous in e, uniformly in i; (2) g(t, x, e, w) is
bounded on compact sets, uniformly in t. Then,
there exists τ∗1 ∈ KL such that for each pair of
strictly positive real numbers (ε, c) the following
holds: if [ta, tb] ⊆ [tsk

, tsk+1 ] ⊆ [tsk
, tsk

+ τ∗1 (ε, c)]
and max {||x||∞, ||w||∞,W (k, e(ta))} ≤ c, then the
following holds:

W (k, e(tb)) ≤ W (k, e(ta)) + ε . (10)

The main result of this section is presented next.
It states that any protocol satisfying Assumption 2
yields semi-global practical uniform asymptotic sta-
bility (in the MATI) of the error dynamics (3). Note
that this stability property is uniform with respect
to initial times t◦, as well as disturbances w.

Theorem 1 Let W : R≥0 × Rn → R≥0, α1, α2 ∈
K∞ and λ ∈ [0, 1) be given. Suppose that the follow-
ing holds for system (2)-(4):
(1) Assumption 2 holds;
(2) g(t, x, e, w) is bounded on compact sets, uniformly
in t.
Then, there exist βe ∈ KL, γe ∈ K∞ and τ∗ ∈ KL
such that, for each pair of strictly positive real num-
bers (ε, c) the following holds: if τ ≤ τ∗(ε, c) and
max {||x||∞, ||w||∞, |e(t◦)|} ≤ c, then the following
holds

|e(t)| ≤ max
{

βe

(
|e(t◦)|, t− t◦

τ

)
, γe(ε)

}
, (11)

3 Note that in this example H(i, e) defined in Proposi-
tion 2 is set valued at points where 1/|e| is an integer.
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for all t ≥ t◦ ≥ 0. ¥

5 Main Result

Our main result (Theorem 2) is stated in this section.
The result states that under appropriate conditions
any controller that achieves ISS of the closed loop
system in the absence of a network will also achieve
semi-global-practical ISS of NCS in the MATI. The
result is true for any Lyapunov UGAS protocol in
the sense of Definition 1. In particular, we use the
properties of the following auxiliary system:

˙̄x = f(t, x̄, w, 0) , (12)

which is the model of the closed loop system when
there is no network (i.e. e(·) ≡ 0).

Theorem 2 Suppose that:
(1) Assumption 1 holds.
(2) All conditions of Theorem 1 hold.
(3) There exist β ∈ KL (continuous) and γ ∈ G such
that, for each t◦ ≥ 0, the solutions of (12) satisfy

|x̄(t)| ≤ max {β(|x̄(t◦)|, t− t◦), γ(||w||∞)} (13)

for all t ≥ t◦ ≥ 0.
Then, there exist βe, τ

∗ ∈ KL such that, for each
pair of strictly positive numbers (ε, c) and each
t◦ ≥ 0, the following holds: if τ ≤ τ∗(ε, c) and
max {|x(t◦)|, ||w||∞, |e(t◦)|} ≤ c

|x(t)| ≤max {β(|x(t◦)|, t− t◦), γ (||w||∞)}+ ε

|e(t)| ≤max
{

βe

(
|e(t◦)|, t− t◦

τ

)
, ε

}
∀t ≥ t◦ ≥ 0

¥

Note that the result of Theorem 2 is meant to be
qualitative and it shows that the ISS gain is pre-
served semi-globally practically for sufficiently small
MATI. It would be important in future work to re-
veal more quantitatively useful formulas that indi-
cate how the ISS gain degrades as MATI increases.

Remark 2 Theorem 2 suggests that the ISS con-
troller design can be carried in two steps. In the first
step the control designer ignores the network and de-
signs the controller to achieve ISS of the closed loop
system. In the second step the control designer needs
to choose sufficiently small MATI that will achieve
appropriate ISS stability bounds on an appropriate
bounded set of initial states and disturbances. ¥

The proof technique that we use to prove Theorem
2 is similar to the one exploited in [13]. The proof
makes use of ISS of the auxiliary system (12) to
show that we can achieve semi-global practical ISS
in MATI of the NCS (2)-(4). The main technical step
in establishing this result is presented below and its
proof is presented in the appendix. This result states
that the solutions of the auxiliary system (12) and
the actual NCS (2)-(4) can be made arbitrarily close
on arbitrarily long time intervals if the MATI is cho-
sen sufficiently small.

Lemma 1 Consider system (2)-(4) and suppose
that all conditions of Theorem 2 hold. Then, there
exists τ∗ ∈ KLL such that, for each strictly positive
triple (ρ, T, c), each t◦ ≥ 0 and each |x(t◦)| ≤ c, there
exists x̄(t◦) ∈ Rn such that the following holds: if
τ ≤ τ∗(ρ, T, c) and max {||x||∞, ||w||∞, ||e||∞} ≤ c,
then

|x(t)− x̄(t)| ≤ ρ ∀t ∈ [t◦, t◦ + T ] . (14)

Remark 3 The conclusion of Lemma 1 may hold
when Assumption 1 is weakened. For example, in the
time invariant case, continuity of f is sufficient. ¥

The next proposition follows directly using the proof
of [13, Theorem 1] and its proof is omitted. This
proposition establishes under conditions of Lemma
1 that an ISS stability bound holds for (2).

Proposition 4 Under the conclusion of Lemma
1 there exists τ∗ ∈ KL such that, for each
pair of strictly positive numbers (ε, c) and each
t◦ ≥ 0, the following holds: if τ ≤ τ∗(ε, c) and
max {|x(t◦)|, ||w||∞, ||e||∞} ≤ c, then

|x(t)| ≤ max {β(|x(t◦)|, t− t◦), γ (||w||∞)}+ ε,

for all t ≥ t◦ ≥ 0. ¥

Sketch of proof of Theorem 2: The proof of the
main result follows by combining Lemma 1, The-
orem 1 and Proposition 4 and using causality to
remove the assumptions on ||x||∞ and ||e||∞. This
proof technique very similar to the proof of the ISS
small gain theorem in [6] and for space reasons it is
omitted. ¥
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6 Appendix

Proof of Proposition 3: We will prove the result only
for ε ∈ (0, 1] since the statement on Proposition
3 follows directly from this result. From the item
1, it follows that there exists a function ε̃ ∈ K∞
such that W (i, e1) − W (i, e2) ≤ ε̃(|e1 − e2|), for
all e1, e2 ∈ Rne , i ∈ N. Moreover, the item 2
implies that there exists a continuous, increasing
positive function ϕ (not necessarily zero at zero)
such that |g(t, x, e, w)| ≤ ϕ(max{|x| , |e| , |w|}),
for all x ∈ Rnx , e ∈ Rne , w ∈ Rnw , t ≥ 0. De-
fine now τ∗1 (ε, c) := ε̃−1(ε)

1+ϕ(max{c+1,α−1
1 (c+1)}) , which

is obviously a class KL function. Suppose for
the purpose of showing contradiction that there
exist ε̂ ∈ (0, 1], ĉ > 0 k, ta, tb, x̂(·), ê(·) and
ŵ(·) such that: [ta, tb] ⊆ [tsk

, tsk+1 ] ⊆ [tsk
, tsk

+
τ∗1 (ε̂, ĉ)]; max {||x̂||∞, ||ŵ||∞,W (k, ê(ta))} ≤ ĉ; and
W (k, ê(tb)) > W (k, ê(ta))+ ε̂. Then, from the conti-
nuity of solutions of (3) and the uniform continuity
of W it follows that there exists t̂ ∈ [ta, tb] such that
max {||x̂||∞, ||ŵ||∞,W (k, ê(ta))} ≤ ĉ imply

W (k, ê(t)) < W (k, ê(ta)) + ε̂ ∀t ∈ [ta, t̂) (15)
W (k, ê(t̂)) = W (k, ê(ta)) + ε̂ . (16)

But then we can write for W (k, ê(ta)) ≤ ĉ that
W (k, ê(t)) < W (k, ê(ta)) + ε̂ ≤ ĉ + 1, ∀t ∈ [ta, t̂),
which implies that |ê(t)| < α−1

1 (ĉ + 1), ∀t ∈ [ta, t̂)
and since also max{||x̂||∞, ||ŵ||∞} < ĉ + 1, then
|g(t, x̂(t), ê(t), ŵ(t))| < ϕ(max{ĉ+1, α−1

1 (ĉ+1)}) for
all t ∈ [ta, t̂). Since t̂− ta ≤ τ∗1 (ε̂, ĉ), it follows that:

W (k, ê(t̂)) = W (k, ê(ta)) + W (k, ê(t̂))−W (k, ê(ta))
≤W (k, ê(ta)) + ε̃(

∣∣ê(t̂)− ê(ta)
∣∣)

= W (k, ê(ta))

+ε̃

(∣∣∣∣∣
∫ t̂

ta

g(s, x̂(s), ê(s), ŵ(s))ds

∣∣∣∣∣

)

< W (k, ê(ta))
+ε̃(ϕ(max{ĉ + ε̂, α−1

1 (ĉ + ε̂)})τ∗1 (ε̂, ĉ))
≤W (k, ê(ta)) + ε̃(ε̃−1(ε̂))
= W (k, ê(ta)) + ε̂ ,

that is W (k, ê(t̂)) < W (k, ê(ta)) + ε̂, which contra-
dicts (16). Since ε̂ ∈ (0, 1], ĉ, ta, tb, x̂, ê, ŵ and
t̂ ∈ [ta, tb] were arbitrary, it follows that (10) holds
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for any ε ∈ (0, 1]. But then it is straightforward to
show that (10) holds for all ε > 0. ¥

Proof of Theorem 1 Let all conditions of Theorem 1
be satisfied. Let τ∗1 come from Proposition 3. We will,
henceforth, use the notation W+(k) := W (k, e(t+sk

))
and W−(k) := W (k, e(t−sk

)). We prove Proposition
for (ε, c) such that:

ε ≤ min
{

1, c̃(c)
(

1
λ
− 1

)}
, (17)

c̃(s) := max {s, α2(s) + 1} . (18)

Once this is proved, then the result follows directly
for arbitrary ε > 0 and c > 0.

Note first that since (17) implies ε ≤ 1, we can write
using (6) that τ ≤ τ∗(ε, c) and max {||x||∞, ||w||∞, |e(t◦)|} ≤
c imply

τ ≤ τ∗1 (ε, c̃(c))
max {||x||∞, ||w||∞, α2(|e(t◦)|) + ε} ≤ c̃(c) . (19)

To shorten notation, we use c̃ := c̃(c) = max{c, α2(c)+
1}. From item 2 with (ε, c̃) we obtain from (10)
with ta = t+sk

and tb = t−sk+1
that τ ≤ τ∗1 (ε, c̃) and

max {||x||∞, ||w||∞, W+(k)} ≤ c̃ imply

W−(k + 1) ≤ W+(k) + ε . (20)

and write (7) as

W+(k + 1) ≤ λW−(k + 1) . (21)

The relations (20) and (21) can be combined to write
that τ ≤ τ∗1 (ε, c̃) and max {||x||∞, ||w||∞,W+(k)} ≤
c̃ imply

W+(k + 1) ≤ λ(W+(k) + ε) . (22)

From (17) we have that ε ≤ c̃
(

1
λ − 1

)
and this im-

plies using (22) and induction that if for some ` we
have W+(`) ≤ c̃, then for all k ≥ ` we have W+(k) ≤
λ(c̃ + ε) ≤ c̃. Using this we can write for each k ≥ `
that τ ≤ τ∗1 (ε, c̃) and max {||x||∞, ||w||∞,W+(`)} ≤
c̃ imply W+(k) ≤ λk−`W+(`) + ε λ

1−λ . Next, taking
into account the inter-sample behavior from (10) we
can write that t ∈ [tsk

, tsk+1), t◦ ∈ [ts`
, ts`+1), t ≥ t◦,

τ ≤ τ∗1 (ε, c̃) and
max {||x||∞, ||w||∞, W (`, e(t◦)) + ε} ≤ c̃ imply

W (k, e(t))≤ λk−` (W (`, e(t◦)) + ε) + ε
1

1− λ

≤ λk−`W (`, e(t◦)) + ε
2− λ

1− λ
.

Next we observe that t−t◦ ≤ (k−`+2)τ , i.e., k−` ≥
−2 + t−t◦

τ . Then, defining η := − ln(λ) > 0, we get
that t ∈ [tsk

, tsk+1) , t◦ ∈ [ts`
, ts`+1) , t ≥ t◦, τ ≤

τ∗1 (ε, c̃) and max {||x||∞, ||w||∞, W (`, e(t◦)) + ε} ≤
c̃ imply

W (k, e(t)) ≤ e2ηe−
η(t−t◦)

τ W (`, e(t◦)) + ε
2− λ

1− λ

≤ max
{

2e2ηe−
η(t−t◦)

τ W (`, e(t◦)) , ε
2(2− λ)
1− λ

}
.

Then we use (6) to write that τ ≤ τ∗1 (ε, c̃) and
max {||x||∞, ||w||∞, α2(|e(t◦)|) + ε} ≤ c̃ imply

|e(t)| ≤ max
{

α−1
1

(
2e2ηe−

η(t−t◦)
τ α2(|e(t◦)|)

)
,

α−1
1

(
ε 2(2−λ)

1−λ

)}

= max
{

βe

(
|e(t◦)|, t− t◦

τ

)
, γe(ε)

}
,

for all t ≥ t◦ ≥ 0. The last inequality, together with
(19), concludes the proof. ¥

Proof of Lemma 1 We pick x̄(t◦) = x(t◦). Since the
Lemma assumes ||x||∞ ≤ c, it follows that |x̄(t◦)| ≤
c and then, using item 3 of Theorem 2,

||x̄||∞ ≤ c̃(c) := max {β(c, 0), γ(c)} . (23)

Note that c ≤ c̃(c) since s ≤ β(s, 0). We define
z(t) := x(t)−x̄(t). We have z(t◦) = 0 and, for almost
all t ∈ [t◦, t◦ + T ], ż = f(t, x, w, e) − f(t, x̄, w, 0).
Using (14) max {||x||∞, ||w||∞, ||e||∞} ≤ c ≤ c̃(c),
together with (23) and Assumption 1, we have, for
almost all t ∈ [t◦, t◦+T ] , |ż(t)| ≤ L(c̃(c)+1)|z(t)|+
M(c̃(c) + 1, |e(t)|). According to [1, Corollary IV.5]
there exist two functions γ1, γ2 ∈ K∞ such that
M(c̃(c)+1, |e(t)|) ≤ γ1(c̃(c)+1)·γ2(|e(t)|). So we can
write, for almost all t ∈ [t◦, t◦ + T ], d

dt |z(t)| ≤ |ż| ≤
L(c̃(c)+1)|z(t)|+γ1(c̃(c)+1)γ2(|e(t)|). Then we ap-
ply a standard comparison lemma, keeping in mind
that z(t◦) = 0, to assert that, for all t ∈ [t◦, t◦ + T ],

|z(t)| ≤
∫ t

t◦
eL(̃c(c)+1)·(t−r)γ1(c̃(c) + 1)γ2(|e(r)|)dr

≤ eL(̃c(c)+1)·(t−t◦)γ1(c̃(c) + 1)
∫ t

t◦
γ2(|e(r)|)dr

≤ eL(̃c(c)+1)T γ1(c̃(c) + 1)
∫ t◦+T

t◦
γ2(|e(r)|)dr .

(24)
The result of the Lemma will be established with the
following claim:

Claim 1 Under the conclusion of Theorem 1, there
exists τ∗ ∈ KLL such that, for each triple of positive
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real numbers (ρ, T, c) and each t◦ ≥ 0 we have that
τ ≤ τ∗(ρ, T, c) implies

eL(̃c(c)+1)T γ1(c̃(c) + 1)
∫ t◦+T

t◦
γ2(|e(r)|)dr ≤ ρ .

(25)

Proof. Using the result of Theorem 1, we have that,
under the assumptions of Lemma 1, we have that
τ ≤ τ∗1 (ε, c̃(c)) and r ≥ t◦ imply

γ2(|e(r)|) ≤ max
{

γ2

(
βe

(
c,

r − t◦
τ

))
, γ2(γe(ε))

}
.

(26)
We define ρ̃(ρ, T, c) := ρ

exp[L(̃c(c)+1)·T ]γ1 (̃c(c)+1)
and

we note that ρ̃ ∈ KLL. Next we define

ε(ρ, T, c) := γ−1
e ◦ γ−1

2

(
ρ̃(ρ, T, c̃(c))

2T

)
(27)

and we note that ε ∈ KLL. We define

r∗(ρ, T, c) :=
ρ̃(ρ, T, c̃(c))

2γ2(c)
(28)

and note that r∗ ∈ KLL. We let τ∗2 ∈ KLL satisfy

βe

(
c,

r∗(ρ, T, c)
τ∗(ρ, T, c)

)
≤ γe(ε(ρ, T, c̃(c)))

= γ−1
2

(
ρ̃(ρ, T, c̃(c))

2T

)
. (29)

Then we define

τ∗(ρ, T, c) = min {τ∗2 (ρ, T, c), τ∗1 (ε(ρ, T, c), c̃(c))}
(30)

and we assume τ ≤ τ∗(ρ, T, c). Now we split the
interval of integration in (25) into two pieces r ∈
[t◦, t◦ + r∗] and r ∈ [t◦ + r∗, t◦ + T ]. For the first
interval, using ||e||∞ ≤ c, we get the bound

eL(̃c(c)+1)T γ1(c̃(c) + 1)
∫ t◦+r∗(ρ,T,c)

t◦
γ2(|e(r)|)dr

≤ eL(̃c(c)+1)T γ1(c̃(c) + 1)r∗(ρ, T, c)γ2(c)

≤ ρ
2 .

(31)
For the second interval, using that |e(r)| ≤
γe(ε(ρ, T, c)) on this interval, we get

eL(̃c(c)+1)T γ1(c̃(c) + 1)
∫ t◦+T

t◦+r∗(ρ,T,c)
γ2(|e(r)|)dr

≤ eL(̃c(c)+1)T γ1(c̃(c) + 1)Tγ2(γe(ε(ρ, T, c)))

≤ ρ
2 .

(32)

Adding (31) and (32) together establishes the result.
¥

Dragan Nešić received his Ph.D. degree in Systems Engi-

neering from the Australian National University, Canberra,

Australia, 1996. He is currently an associate professor and

reader in the Electrical and Electronics Engineering Depart-

ment at the University of Melbourne, Australia. He is an

Australian Professorial Fellow (2004-2009) and Alexander

von Humboldt Fellow (2003-2004).

Andrew R. Teel received his Ph.D. degree in Electri-

cal Engineering from the University of California, Berkeley,

1992. He is currently a professor in the Electrical and Com-

puter Engineering Department at the University of Califor-

nia, Santa Barbara where he is also director of the Center

for Control Engineering and Computation. He is a Fellow of

the IEEE.

8


