
On Global Extremum Seeking In The Presence Of Local
Extrema∗
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Abstract

We analyze global extremum seeking in the presence of local extrema for a simple
scalar extremum seeking feedback scheme. Sufficient conditions are given under which it
is possible to tune the controller parameters to achieve convergence to an arbitrarily small
neighborhood of the global extremum from an arbitrarily large set of initial conditions.
These sufficient conditions are shown to hold always when the output equilibrium map
is a 4th order polynomial. However, when such a map becomes a 6th order polynomial,
we present an example that invalidates these conditions. On the other hand, extensive
computations show that most 6th order polynomials and many other functions satisfy all
our conditions. Several examples provide insights and highlight the potential difficulties
that one would face when trying to generalize our results.

1 Introduction

The main goal in extremum seeking (ES) control is to find an extremum value of an unknown
nonlinear mapping. This is an old method but the first rigorous local stability analysis for a
class of ES schemes was provided recently in (Ariyur and Krstić, 2003) and later extended to
semi-global stability analysis in (Tan et al., 2005). Stability of a different class of ES controllers
was recently presented in (Popović et al., 2003). There has been a renewed interest in this
research area (Teel and Popović, 2001; Guay and Zhang, 2003; Popović et al., 2003; Guay et
al., 2004; Peterson and Stefanopoulou, 2004) that lead to numerous practical implementations
of the scheme, as well as its better theoretical understanding.

While it has been often demonstrated that ES controllers work well in simulations, experi-
ment or real applications, a full understanding of their convergence properties and robustness
is still lacking. Global extremum seeking in absence of local extrema for a class of extremum
schemes was rigorously analyzed in (Tan et al., 2005; Tan et al., 2006a). On the other hand, it
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was often observed by the users of extremum seeking controllers that by tuning the amplitude
of the excitation (dither) signal properly, it is possible to pass through a local extremum and
converge to the global one. In other words, global extremum seeking is possible in the presence
of local extrema in certain situations. However, rigorous analysis of this problem appears to
be lacking in the literature.

It is the purpose of this paper to present the first analysis of global extremum seeking
in the presence of local extrema for the scalar ES feedback scheme proposed in (Tan et al.,
2006a). We show that the extremum to which the ES mechanism converges depends on the
averaged system of the “reduced system”. This averaged system is closely related to the output
equilibrium map. When there are extrema in such a map, the averaged system exhibits the
bifurcation phenomenon as the amplitude of the excitation varies. On the basis of such a
bifurcation diagram, we present a set of sufficient conditions under which the proposed ES
scheme yields global extremum seeking despite local extrema. Nevertheless, in general, the
problem is quite hard and we illustrate this by several examples. Our conditions are shown to
hold always when the output equilibrium map is a 4th order polynomial whereas we present
example of a 6th order polynomial that does not satisfy these conditions. On the other hand,
extensive computations show that most 6th order polynomials, many higher order polynomials
and more general functions satisfy all our conditions. Furthermore, when our conditions hold,
our main result outlines a tuning strategy for the ES controller that yields convergence to an
arbitrarily small neighborhood of the global extremum from an arbitrarily large set of initial
conditions. Hence, we believe that our results will be useful to the users of extremum seeking
control and, moreover, they may motivate further research into this challenging area.

The paper is organized as follows. In Section 2 we present preliminaries and problem
formulation. Main result is stated in Section 3. Discussions and examples are provided in
Section 4. Summary is given in Section 5. Proofs are presented in the Appendix.

2 Preliminaries and Problem Formulation

The set of real numbers is denoted as R, the set of complex number is denoted as C and the
set of integers is denoted as N . The continuous function β : R≥0×R≥0 → R≥0 is of class KL if
it is nondecreasing in its first argument and strictly decreasing to zero in its second argument.
For a nonlinear smooth function h : Rn → R we denote Dj

i h := ∂jh

∂xj
i

where i ∈ {1, 2, . . . , n}
and j ∈ N . When j = 1 or i = 1, we often omit this argument, e.g. we write Dih := D1

i h.
Consider the following single-input-single-output (SISO) nonlinear dynamic system

ẋ = f(x, u), y = h(x), (1)

where f : Rn ×R → Rn and h : Rn → R are continuously differentiable1. x is the measurable
state, u is the input and y is the output. Consider a family of control laws of the following
form:

u = α(x, θ), (2)

1In the sequel, all functions are assumed to be sufficiently smooth (all derivatives that we need are contin-
uous).
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where θ ∈ R is a scalar parameter. The closed-loop system (1) with (2) is then

ẋ = f(x, α(x, θ)). (3)

In this paper, we consider the scalar extremum seeking scheme shown in Figure 1 that was
first introduced in (Tan et al., 2006a). The excitation signal a sin(t) is added to the dynamic
system to get probing while the multiplication (modulation) of output and the excitation
signal (sin(t)) extracts the gradient of the unknown mapping h(·). The dynamics of the ES
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Figure 1: The scalar extremum seeking feedback scheme

system in Figure 1 can be written as

ẋ = f(x, α(x, θ̂ + a · sin(ω · t)))
˙̂
θ = ω · δ · h(x) · sin(ω · t) (4)

where a, δ and ω are positive design parameters.
The following assumptions are made for nonlinear dynamic system (3).

Assumption 1 There exists a smooth function l : R → Rn such that

f(x, α(x, θ)) = 0, if and only if x = l(θ). (5)

Assumption 2 For each θ ∈ R, the equilibrium x = l(θ) of the system (3) is globally asymp-
totically stable, uniformly in θ.

Remark 1 Assumption 1 and Assumption 2 are the same as (Tan et al., 2006a, Assumption
1 and 2). Assumption 2 is a stronger version of (Krstić and Wang, 2000, Assumption 2.2)
in order to prove a non-local stability result.
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Assumption 3 Denoting Q(·) = h ◦ l(·), there exists a unique global maximum ζ∗ ∈ R of
Q(·) such that2

DQ(ζ∗) = 0; D2Q(ζ∗) < 0 , (6)

Q(ζ∗) > Q(ζ) ∀ζ ∈ R, ζ 6= ζ∗ (7)

Note that (6) and (7) in Assumption 3 indicate that x∗ is the unique global maximum of the
nonlinear mapping h(·). Other than this global maximum, there may also exist local maxima
that satisfy (6). This assumption is weaker than that in (Tan et al., 2006a, Assumption 3),
in which x∗ ∈ R is the unique maximum which satisfies (6).

In this paper, we discuss sufficient conditions to ensure that the global maximum would be
found if the amplitude of the excitation signal is tuned adaptively. To this end, we introduce
the following law for adaptation of the amplitude of the excitation signal:

ȧ = −δ · ε · g(a), a(0) = a0 > 0, (8)

where g(·) is a locally Lipschitz function that is zero at zero and positive otherwise and the
strictly positive parameters ε, δ and a0 are to be chosen by the designer. The simplest choice
is g(a) = a.

3 Main results

The proposed extremum seeking feedback scheme is shown in Figure 2, whose closed-loop can
be written as

ẋ = f(x, α(x, θ̂ + a · sin(ω · t)))
˙̂
θ = ω · δ · h(x) · sin(ω · t)
ȧ = −ω · ε · δ · g(a), a(0) = a0. (9)

Denoting σ = ω · t, the system equations (9) expanded in time σ are:

ω · dx

dσ
= f(x, α(x, θ̂ + a sin(σ)))

dθ̂

dσ
= δ · h(x) · sin(σ)

da

dσ
= −ε · δ · g(a), a(0) = a0. (10)

The system (10) is in the standard singular perturbation form, where the singular perturbation
parameter is ω. The stability properties of (10) therefore depend on the stability properties
of its “boundary layer” system and “reduced system”.

In this section, we first discuss the stability properties of the “reduced system” by showing
the semi-global practical asymptotical convergence to the global extremum if the averaged

2In this paper we assume that Q(·) possesses a global maximum but we can deal with functions Q1(·) with
a global minimum by defining Q(·) := −Q1(·) and applying our results unchanged.
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Figure 2: The proposed extremum seeking feedback scheme

system of the “reduced system” satisfies some sufficient condition (Theorem 1). Next, by
showing the appropriate stability properties of the “boundary layer” system, we can show
that output of the overall system (9) semi-globally practically asymptotically converges to the
global extremum (Theorem 2) despite the presence of local extrema (cf. Assumption 3).

3.1 The stability of the “reduced system”

To obtain the fast and slow systems, we set ω = 0 and “freeze” x at its “equilibrium”,
x̃ = l(θ̂+a · sin(σ)) to obtain the reduced system in variables (θr, ar) in the time scale σ = ωt:

dθr

dσ
= δ ·Q(θr + a · sin(σ)) · sin(σ) = δ · µ(σ, θr, ar) (11)

dar

dσ
= −ε · δ · g(ar), ar(0) = a0. (12)

where Q(·) = h ◦ l(·) is the output equilibrium map. To simplify the notation, we use the
following second order system to represent the “reduced system” (11) and (12):

ζ̇ = δ ·Q(ζ + ρ · sin t) · sin t = δ · µ(t, ζ, ρ) (13)

ρ̇ = ε · δ · g(ρ), ρ(0) = ρ0 (14)

For the system (13), we can write its averaged system by using:

µav(ζ, ρ) :=
1

2π

∫ 2π

0
µ(t, ζ, ρ)dt (15)

where µ(·, ·, ·) comes from (13). Indeed, using the above definition, we can analyze the closed
loop system (13), (14) via the following auxiliary averaged system:

ζ̇ = δ · µav(ζ, ρ) (16)

ρ̇ = −δ · ε · g(ρ), ρ(0) = ρ0 > 0 . (17)
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Remark 2 By introducing the new time τ := εδt, we can rewrite the above equations as
follows:

ε · dζ

dτ
= µav(ζ, ρ)

dρ

dτ
= −g(ρ), ρ(0) = ρ0 > 0 , (18)

which exhibits time scale separation and appears to be in standard singular perturbation form
(KHalil, 2002, Section 9.1). However, there are three reasons why we do not use the standard
singular perturbation techniques here. First, in our case the equation:

0 = µav(ζ, ρ) (19)

may not have k isolated real roots ζ = `i(ρ), which is required of the standard form. Indeed,
some of the real roots may only be defined for ρ ∈ [0, ρ̄] and such that for some i and j we
have `i(ρ) 6= `j(ρ), ρ ∈ [0, ρ̄) and `i(ρ̄) = `j(ρ̄) (see Example 4). Moreover, it will be shown in
the Appendix that there exists a continuous function p(ζ, ρ) such that we can write:

µav(ζ, ρ) = ρ · p(ζ, ρ) (20)

and this means that we will be unable to prove stability of the boundary layer system uni-
form in ρ that is a standard assumption in the singular perturbation literature. Finally, we
are interested in convergence properties of this system that is initialized from a set of initial
conditions satisfying ρ(0) = ρ0 which is a weaker property from the standard stability proper-
ties considered in the singular perturbation literature. Hence, we will state and prove results
directly without appealing to the rich literature on singular perturbations.

Before we state our main results, we state another assumption that characterizes solutions
of the equation (19).

Assumption 4 There exists an isolated real root ζ = `(ρ) : R≥0 → R of the equation (19)
with the following properties:

1. ` is continuous and D1p(`(ρ), ρ) < 0, ∀ρ ≥ 0, where p(ζ, ρ) is defined in (20).

2. There exists ρ∗ > 0, such that for all ρ ≥ ρ∗, ζ = `(ρ) is the unique real root of (19).

3. `(0) = ζ∗, where ζ∗ is the global extremum, which comes from Assumption 3.

Remark 3 Note that if the output equilibrium map Q(·) was a known mapping, it would be
very easy to check conditions of Assumption 4. Indeed, one needs to plot the bifurcation dia-
gram using (19) that shows how equilibria of the ζ subsystem of the average system (16) change
as we vary the amplitude of the excitation signal ρ and verify the conditions by inspecting plot.
However, since the standing assumption in extremum seeking control is that Q(·) is unknown,
then having results that guarantee conditions of Assumption 4 for classes of functions Q(·)
is more useful to the users of extremum seeking control (as in this case we do not need to
plot the bifurcation diagram). Indeed, it may be known that Q(·) belongs to a certain class
of functions but its exact description may be unknown. Conditions in Assumption 4 are hard
to check in general for large classes of functions. Form extensive simulations, we found that
many general functions satisfy all conditions of Assumption 4. Note that our results will apply
to any system for which Assumptions 3 and 4 hold and, hence, they are general.
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Our first main result states the stability properties of closed loop system (13), (14).

Theorem 1 Suppose that Assumptions 3 and 4 hold. Then, for any strictly positive (∆, ν)
and ρ0 > ρ∗ there exist β = βρ0,∆,ν ∈ KL and ε∗ = ε∗(ρ0, ∆, ν) > 0 and for any ε ∈ (0, ε∗)
there exists δ∗ = δ∗(ε) > 0 such that for any such ρ0, ε and δ ∈ (0, δ∗) we have that for all
(ζ(t0), ρ(t0)) satisfying ρ(t0) = ρ0 and |ζ(t0) − `(ρ0)| ≤ ∆ and all t ≥ t0 ≥ 0 the solutions of
the system (13), (14) satisfy:

|ζ(t)− `(ρ(t))| ≤ β(|ζ(t0)− `(ρ(t0))|, δ · (t− t0)) + ν . (21)

Remark 4 A consequence of Theorem 1 is that we can tune the extremum seeking controller
to achieve:

lim sup
t→∞

|ζ(t)− `(ρ(t))| ≤ ν

from an arbitrarily large set of initial conditions and for arbitrarily small ν > 0. Moreover,
from (14) it is obvious that there exists βρ ∈ KL with βρ(s, 0) = s, such that for all ρ(t0) =
ρ0 ∈ R we have:

|ρ(t)| ≤ βρ(ρ(t0), ε · δ · (t− t0)), ∀t ≥ t0 ≥ 0 , (22)

and since `(·) is continuous and `(0) = ζ∗, this implies

lim
t→∞ `(ρ(t)) = ζ∗ .

Hence, we can conclude that
lim sup

t→∞
|ζ(t)− ζ∗| ≤ ν ,

which implies semi-global practical extremum seeking since ζ∗ is the global extremum of Q(·).
We believe that this is the first rigorous result of this kind in the literature.

Remark 5 The averaged model (18) suggest a two-time-scale dynamics when ε is very small.
This is indeed the case, as can be seen from (21) and (22). Indeed, the solutions first converge
with the rate proportional to δ to a small neighborhood of the set L := {(ζ, ρ) : ζ − `(ρ) = 0}
(fast transient given by (21) ) and then with the speed proportional to εδ to a neighborhood of
the point (ζ, ρ) = (ζ∗, 0) (slow transient given by (22) ). Moreover, during the slow transient,
the solutions stay in the ν-neighborhood of the set L.

Remark 6 The ES mechanism in Theorem 1 is more general than the ES mechanism used
in the main results of (Tan et al., 2006a) where local extrema were not allowed in the analysis
(compare Figure 1 and 2). The main difference between the two mechanisms is that the
amplitude of the excitation signal in Theorem 1 is time varying, whereas in main results of
(Tan et al., 2006a) the amplitude is fixed.

Remark 7 The stability results of Theorem 1 is different from the stability result in (Tan et
al., 2006a, Theorem 1), where the “reduced system” is proved to be SPA stable, uniformly in
tuning parameter: the amplitude of the sine wave dither and δ. First of all, the initial value
of the amplitude of the sine wave dither plays an important role in the proposed ES feedback
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scheme to guarantee that the output of the “reduced system” converges to the global extremum
semi-globally practically asymptotically. Such an initial value ρ0 is also a tuning parameter in
the proposed ES feedback scheme. Hence, the system (13) and (14) cannot be written in the
form of a parameterized system as follows

ẋ = f(t,x, ε),

which is independent of the initial condition. Therefore, we cannot get the similar uniform
SPA stability properties as in (Tan et al., 2006a). Secondly, ρ0 does affect the convergence
speed as β is dependent on the choice of ρ0, though analyzing how ρ0 affects the convergence
speed is much more difficult than other parameters. Example 1 shows how the choice of the
ρ0 affect the convergence speed of the system. Thirdly, Theorem 1 clearly indicates that, the
choice of ε∗ depends on the choice of ρ0 and the choice of δ∗ depends on the choice of ε. This
implies that the SPA stability properties are not uniform for tuning parameters (ρ0, ε, δ).

Remark 8 Theorem 1 presents a tuning mechanism for the controller parameters (choice of
ε, δ) and its initialization (choice of ρ0) that guarantees semi-global practical convergence to the
global extremum despite the presence of local extrema. Simulations in our examples illustrate
that such convergence is indeed achieved.

We note that since the static mapping Q(·) is not known, it is in general not possible to
check a priori whether Assumption 4 holds, let alone analytically compute the values of ρ∗, ε∗

and δ∗. However, our result suggests that if there is some evidence that Assumption 3 and 4
may hold, then increasing sufficiently ρ0 and reducing sufficiently ε and δ will indeed result
in global convergence. In practice, determining how large ρ0, ε, δ should be, may have to be
determined through experimenting.

Remark 9 Note that from the robustness point of view, it is not desirable to reduce the
amplitude of the excitation signal to zero since small perturbations may force the solutions to
diverge far from the global extremum. Our results can be restated for the case when we have
that lim

t→∞ ρ(t) = ρ > 0 but they are omitted for reasons of brevity.

Remark 10 We note that Assumption 4 imposes conditions on the bifurcation diagram that
is defined by the equation (19). The bifurcation diagram is a real algebraic variety in the case
when µav is a polynomial or a more general set for general functions µav. The idea behind this
condition is to ensure that for large amplitudes ρ the static map (19) has a unique equilibrium
globally stable, given by ζ = `(ρ). Moreover, in order for our proposed control strategy to be
successful we require this branch to be continuous and connected to the global maximum, i.e.
`(0) = ζ∗. We will discuss about the Assumption 4 in details in Section 4.

Remark 11 Suppose that there is no plant dynamics and the reference to output map is static
y = h(x), as in (Meerkov, 1967a; Meerkov, 1967b; Meerkov, 1967c; Morosanov, 1957; Ostro-
vskii, 1957). In this case, the extremum seeking scheme, as shown in Figure 3, becomes (13)
and (14). Note that in this case we do not need the parameter ω and Q = h. Theorem 1 im-
plies that the output of the static ES system semi-globally practically asymptotically converges
to the global extremum ζ∗ if the parameters ρ0, ε, δ are tuned properly.
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Figure 3: The extremum seeking controller

3.2 The stability properties of the overall system

With the SPA stability properties of the “reduced system” (11),(12), the stability of the overall
system (4) is stated in the following theorem.

Theorem 2 Suppose that Assumptions 1, 2 3 and 4 hold. Then, for any strictly positive
(∆, ν) and a0 > a∗ there exist Class-KL functions βx = β∆,ν, βθ = βa0,∆,ν, βa and ε∗ =
ε∗(a0, ∆, ν) > 0 and for any ε ∈ (0, ε∗) there exists δ∗ = δ∗(ε) > 0 such that for any δ ∈ (0, δ∗(ε)
there exists ω∗ = ω∗(δ) > 0 such that for any such a0, ε, δ ∈ (0, δ∗) and ω ∈ (0, ω∗), we have
that for all (x(t0), θ̂(t0), a(t0)) satisfying a(t0) = a0, |θ̂(t0)− `(a0)| ≤ ∆, |x(t0)− l(θ̂(t0))| ≤ ∆
and all t ≥ t0 ≥ 0 the solutions of the system (9) satisfy:

|x(t)− l(θ̂(t))| ≤ βx

(
|x(t0)− l(θ̂(t0))|, (t− t0)

)
+ ν, (23)

|θ̂(t)− `(a(t))| ≤ βθ

(
|θ̂(t0)− `(a(t0))|, ω · δ · (t− t0)

)
+ ν, (24)

|a(t)| ≤ βa (|a(t0)|, ω · ε · δ · (t− t0)) . (25)

Remark 12 From Remark 4, (24) indicates that, given any positive triple (a0, ∆, ν), where
a0 > a∗, there exists appropriate parameters ε, δ, ω and ν1 > 0 such that

lim sup
t→∞

|θ̂(t)− θ∗| ≤ ν1 (26)

|θ̂(t)− θ∗| ≤ ν1 =⇒ |Q(θ̂(t))−Q(θ∗)| = |y(t)− y∗| ≤ ν . (27)

since Q = h ◦ l is a sufficiently smooth function. Theorem 2 can be interpreted as follows.
For any (a0, ∆, ν), where a0 > a∗, we can adjust ε, δ and ω appropriately so that for all

|z(t0)| ≤ ∆, where z
4
=

[
x− l(θ̂)

θ̂ − `(a)

]
, we have that lim sup

t→∞
|y(t) − y∗| ≤ ν. In other words,

the output of the system can be regulated arbitrarily close to the global extremum value y∗

from an arbitrarily large set of initial conditions by adjusting the parameters (ω, δ, ε, a0) in the
controller.
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4 Discussions and Examples

In this part, discussions and examples are provided. It is worthwhile to note that Assumption
4 is crucial to prove the global convergence of the proposed ES feedback scheme. From the
result of Theorem 2, θ̂ converges to `(0). If `(0) is not the global extremum, the output of the
overall system (4) would converge to a local maximum. Therefore, we explore the situations
when Assumption 4 holds by providing discussions and examples. These examples illustrate
and highlight the important issues and provide intuition that the users of the extremum
seeking control will find useful.

We will show that Assumption 4 always holds under the Assumption (3) when the output
equilibrium map Q is a 2nd or a 4th order polynomial. (see Proposition 1). We also present
an example of a 6th order polynomial where this does not hold (Example 4). Moreover,
after extensive plotting of bifurcation diagrams we observed that for 6th order polynomials all
conditions in Assumption 4 hold most of the time (i.e. counterexamples are hard to construct).
Similarly, these conditions also hold for many higher order polynomials or general functions
h(·), which indicates that our results are quite general.

First, we present an example when the output equilibrium map Q(·) in (13) is a 2nd

polynomial that satisfies all conditions of Assumptions 3 and 4 and to which our main result
in Theorem 1 applies. We also show in this example that the initial condition a0 does affect
the convergence speed of the system (4).

Example 1 Consider the following dynamic system:

ẋ1 = −x1 + x2

ẋ2 = x2 + u

y = h(x) (28)

where h(x) = −(x1 + 3x2)
2 + 2(x1 + 3x2) + 1. The control input is chosen as

u = −x1 − 4x2 + θ, (29)

which ensures that Assumption 1 and 2 are satisfied. By choosing g(a) = a, the closed loop of
the extremum seeking feedback scheme is thus

ẋ =

[
−1 1
−1 −3

]
x +

[
0
1

] (
θ̂ + a sin(ω · t)

)

˙̂
θ = ω · δ · h(x) · sin(ω · t)
ȧ = −ω · δ · ε · a a(0) = a0 (30)

Obviously, Q(θ) = −θ2 + 2θ + 1, which has a unique maximum at θ∗ = 1. `(a) = 1 is a
constant and a∗ = 0. The simulation result is shown in Figure 4, when a0 = 5, ω = 0.1,
δ = 0.1, ε = 1 and (x1(0), x2(0), θ̂(0)) = (0, 0,−5). In Figure 4, θh = θ̂.

Let a0 = 2, while keeping other parameters (ω, δ, ε, x1(0), x2(0), θ̂(0)) the same as above,
the simulation result is shown in Figure 5. The different choice of the initial condition a0 does
affect the convergence speed of θ̂ (different β function).
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Figure 4: The output of the proposed extremum seeking feedback scheme, initial condition b
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Figure 5: The output of the proposed extremum seeking feedback scheme, initial condition b

It is apparent that when there exists a unique maximum, as in (Tan et al., 2006a, Assumption
3), the result of Theorem 2 always holds with an additional freedom in the choice of the
amplitude of the dither signal by tuning a0 and ε.

Secondly, we show in next example that the Assumption (4) holds for a 4th-order polyno-
mial. Moreover, this example also indicates that the choice of ε∗ does depend on the choice
of a0.

Example 2 Consider the dynamic system (28), where h(x) = −(x1 +3x2)
4 + 8

15
(x1 +3x2)

3 +
5
6
(x1 + 3x2)

2 + 10. When the control input takes the form as in (29), Assumption 1 and 2
hold. Moreover, we have Q(θ) = −θ4 + 8

15
θ3 + 5

6
θ2 + 10 that has a global maximum at θ = 1

and a local maximum at θ = −0.6 as seen in Figure 6. Hence, all conditions in Assumption
3 hold. Similarly to (20), the averaged system of the “reduced system” can be written as :

µav(ζ, ρ) =
ρ

2

[
−4ζ3 +

24

15
ζ2 +

5

3
ζ + ρ2

(
−24ζ +

48

15

)]
.

The bifurcation diagram is shown in Figure 6 with ρ∗ = 0.877. Note that there exists a
continuous root `(a) of (19) approaching 1 when ρ → 0. Moreover, by inspecting the plot
in Figure 6, it is not hard to check that this root satisfies all conditions of Assumption 4

11
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Figure 6: A 4th-order polynomial and the corresponding zero plot of µav(·, ·) = 0

and, hence, Theorem 2 applies. Suppose g(a) = a, consider the initial condition θ̂0 = −1
which is such that the local maximum θ̂ = −0.6 lays between the initial condition and the
global maximum. Nevertheless, by choosing a0 = 3 > 0.877, ε = 1, δ = 0.005, ω = 0.1,
x1(0) = x2(0) = 0, the output of the system converges to a small neighborhood of the global
maximum y∗ = 10.734 as seen in Figure 7.
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Figure 7: The performance of the proposed ES feedback scheme

However, by choosing a0 = 1.0 > 0.877, while keeping other parameters are same as
above, the simulation result is shown in Figure 8. The output of the system converges to a
neighborhood of the local maximum 10.187.

Intuitively, the smaller ρ0 is, where ρ0 > ρ∗, the smaller ε would be chosen in order to ensure
that Fact 2 holds as indicated in the proof of Theorem 1 in Appendix.

Thirdly, we show that when Q is an arbitrary 4th-order polynomial,

Q(x) = α0x
4 + α1x

3 + α2x
2 + α3x + α4, α0 = −1 (31)

satisfying Assumption 3 also satisfy conditions in Assumption 4:

12
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Figure 8: The performance of the proposed ES feedback scheme

Proposition 1 Consider Q(·) in (31). Suppose that Assumption 3 holds. Then, all conditions
in Assumption 4 hold.

Note that since α0 = −1 in (31), we have that (6) in Assumption 3 always holds. However,
this does not guarantee that (7) holds and we still need to assume this. Actually, if (7) in
Assumption 3 does not hold while (6) holds, then we can not prove in general that Assumption
4 holds, as the following example illustrates.

Example 3 Consider the polynomial Q(θ) = −θ4 + 2θ2 + 10 that is such that there exist two
points θ∗1 = θ∗2 such that Q(θ∗1) = Q(θ∗2) and Q(θ) < Q(θ∗1) for all θ 6= θ∗1 and θ 6= θ∗2. The plot
of this function and its (pitchfork) bifurcation diagram are given in Figure 9. It is easy to see
that there does not exist an isolated root of (19) that satisfies Assumption 4. Under such a
situation, the results in Theorem 2 do not hold. Simulation of the dynamic system (28) when

−1.5 −1 −0.5 0 0.5 1 1.5
9

9.5

10

10.5

11

−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

Figure 9: Bifurcation diagram of a function that does not satisfy condition (7).

h(x) = −(x1 + 3x2)
4 + 2(x1 + 3x2)

2 + 10, u is from (29), and a0 = 3, ε = .2, δ = 0.005,
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ω = 0.1,




x1(0)
x2(0)

θ̂(0)


 =




0
0

0.5


 is shown in Figure 10. The output of the system converges to

the neighborhood of the local minimum.

0 5 10

x 10
4

0

2

4

6

8

10

12

t
0 5 10

x 10
4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t
0 5 10

x 10
4

0

0.5

1

1.5

2

2.5

3

t

θ
h

ay

Figure 10: The output of the proposed ES feedback scheme

Fourthly, we consider 6th-order polynomials. Obviously, the bifurcation diagram when
Q(·) is a 6th-order polynomial is more complicated than that of the 4th-order polynomial. We
have observed in simulations that for most of the cases (more than 80%), Assumption 4 holds
true when Assumption 3 holds. However, this is not true in general as the following example
shows.

Example 4 For the following 6th-order polynomial (see Figure 11):

Q(θ) = −θ6 +
1

10
θ5 +

623

400
θ4 − 659

4000
θ3 − 11287

20000
θ2 +

259

4000
θ +

637

20000
. (32)

which has maxima at −0.8985, .5, 0.8951. The global maximum occurs at θ∗ = −0.8985.
Assumption 3 holds. The function µav(ζ, ρ) is:

ρ

[
1

2
DQ(ζ) +

ρ2

16
D3Q(ζ) +

ρ4

384
D5Q(ζ)

]
(33)

whose bifurcation diagram is shown in Figure 11. It is clear that item 3 of Assumption 4 does
not hold since `(0) = 0.8951 which is not a global maximum. This implies that our extremum
seeking controller if tuned like in Theorem 2 would yield semi-global practical convergence to
the local maximum.

Remark 13 It is not crucial that a sinusoidal signal is used as excitation (dither) in the
extremum seeking controller. Indeed, one may use different dither signals, such as a square-
wave or a sawtooth signals. Interestingly, changing the dither leads to a different average
system µav and the bifurcation diagram defined by (19) changes. An interesting consequence
of this fact is that Assumption 4 may not be satisfied for one dither signal whereas it may be

14
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Figure 11: The 6th order polynomial and its bifurcation diagram for which Assumption 4 does
not hold (sine wave dither).

satisfied for a different dither. In our next example we revisit the system in Example 4 that
did not satisfy Assumption 4 with a sinusoidal dither and show that the same system with a
square wave dither satisfies Assumption 4. More analysis of how the choice of dither affects
the convergence properties of extremum seeking controllers is given in (Tan et al., 2006b).

Example 5 Consider again the function Q(·) in Example 4 (see the top plot in Figure 11).
Suppose that instead of the sine wave, we use a square wave dither in our controller, which is
defined as follows

sq(t) :=

{
−1 t ∈ [kT, kT + T/2)
1 t ∈ [kT + T/2, kT + T )

,

where k = 0, 1, . . . and T > 0. Direct calculations yield the following µav(ζ, ρ):

ρ

[
DQ(ζ) +

ρ2

6
D3Q(ζ) +

ρ4

120
D5Q(ζ)

]
, (34)

which is different from (33). The bifurcation diagram is shown in Figure 12. Assumption
4 holds since `(ρ) satisfies `(0) = x∗ = −0.8985. Hence, if we use our controller and the
tuning strategy from Theorem 2 we will obtain semi-global practical convergence to the global
maximum.
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Figure 12: The bifurcation diagram for Q(·) from Example 4 for which Assumption 4 holds
(square wave dither).
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When Q(·) becomes a 8th-order polynomial, more counterexamples appear, though it is
still true that most of the cases (60%), Assumption 4 holds when Assumption 3 holds.

Finally, we come to a general nonlinear mapping Q. It is intuitively clear that the bi-
furcation diagram of a general nonlinear mapping may be far more complicated than of the
polynomials. For example, `(ρ) may be discontinuous, i.e, there may be a “jump” in `(ρ) at
some point ρ. Under such a situation, it is very difficult to design a suitable ES mechanism
to ensure the global convergence. However, there are still many nonlinear output equilibrium
maps, which ensure that Assumption 3 and 4 hold as shown in the following example.

Example 6 Consider the function Q(x) = e−(x+2
10

)2 + 0.15e−(x−5
0.5

)2. This function has a global
maximum at x = −2 and a local maximum at x = 5( see Figure 13). Assumption 3 holds.
The average system in this case is computed numerically and the bifurcation diagram plotted
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0.6

0.7

0.8
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1

1.1

l(ρ) 

Figure 13: Nonlinear function Q(x) and bifurcation diagram

directly. There exists a continuous root `(ρ) that is unique for large ρ whereas it approaches
the global maximum −2, when ρ → 0. Hence, Assumption 4 holds.

5 Summary

We have presented a scalar extremum seeking feedback controller that achieves semi-global
practical extremum seeking in presence of local extrema. Several examples were presented
illustrating and highlighting various issues. We believe that these results will be of use to
the control engineers that are using the extremum seeking control and may motivate further
research into this challenging area.
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Tan, Y., D. Nešić and I.M.Y. Mareels (2006b). On the choice of dither in extremum seeking
systems. submitted to IEEE Conference on Decision and Control.
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6 Appendix

6.1 Proof of Theorem 1

First, we show that (20) holds. Using the Taylor Series Expansion, noting
∫ 2π
0 sin2i−1(t)dt = 0,

∀i = 1, . . ., we obtain that µav(ζ, ρ) is equal to:

ρ ·
(

r∑

i=1

ρ2(i−1) · ci ·D2i−1Q(ζ) + ρ2r · cr+1 ·R
)

=: ρ · p(ζ, ρ), (35)

where

ci
4
=

{ 1
(2i−1)!

· 1
2π
· ∫ 2π

0 sin2i(t)dt i = 1, . . . , r
1

(2r−1)!
i = r + 1

R := 1
2π

∫ 2π
0

∫ 1
0 (sin2r+1 t) · (1− s)(2r−1) ·D2rQ(ζ + s · ρ · sin t)dsdt

Before we prove the main result, we state several facts that follow directly from Assumption
4.

Proposition 2 Suppose that Assumption 4 holds. Then, for any ρ1 > 0 there exists η > 0
and α1 ∈ K such that

ξ · p(ξ + `(ρ), ρ) ≤ −α1(|ξ|), (36)

for all |ξ| ≤ η and ρ ∈ [0, ρ1].

Proof of Proposition 2: Introduce ξ := ζ − `(ρ) in (19) and note that the root ζ = `(ρ) of
(19) corresponds to ξ = 0. Since ζ = `(ρ) is an isolated real root of (19), we have that for any
ρ1 > 0 there exists η > 0 such that for all |ξ| ≤ η and ρ ∈ [0, ρ1], ξ = 0 is the only root of

p(ξ + `(ρ), ρ) = 0

in this set. Moreover, since p(`(ρ), ρ) = 0, p is smooth and from the item 1 of the assumption
we have D1p(`(ρ), ρ) < 0 for all a ≥ 0, we conclude that

ξ · p(ξ + `(ρ), ρ) < 0 (37)

for all |ξ| ≤ η, ξ 6= 0 and ρ ∈ [0, ρ1]. Since the set |ξ| ≤ η ρ ∈ [0, ρ1] is compact, we can define:

κ(s) := min
|ξ|∈[s,η]

min
ρ∈[0,ρ1]

[−ξ · p(ξ + `(ρ), ρ)] ,

which is nondecreasing, continuous and κ(0) = 0 and, hence, we can find α1 ∈ K such that
κ(s) ≥ α1(s) for all s ∈ [0, η] that satisfies (36). ◦
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Proposition 3 Suppose that Assumption 4 holds. Then, for any ρ2 > ρ∗ and any ∆ > 0
there exists α2 ∈ K such that

ξ · p(ξ + `(ρ), ρ) ≤ −α2(|ξ|), (38)

for all |ξ| ≤ ∆ and ρ ∈ [ρ∗, ρ2].

Proof of Proposition 3: The proof of this proposition follows in a similar manner as the
proof of Proposition 2, by noting that we also have that for arbitrary ρ2 > ρ∗ and arbitrary
∆ we have from the item 2 of the assumption that ξ = 0 is a unique root of (37) on the set
ρ ∈ [ρ∗, ρ2] and |ξ| ≤ ∆. ◦

Proof of Theorem 1: First, we show that an appropriate bound can be obtained for
the averaged system (16) if the (ρ0, ε) are appropriately adjusted. Then, the conclusion of the
theorem follows from recent results on averaging (Teel and Nešić, 2000; Teel et al., 2003; Teel
et al., 1999) and this part is omitted.

Consider the average system (16). We show for this system that for any strictly positive
(D, d) and ρ0 > ρ∗ there exist β̃ = β̃ρ0,D,d ∈ KL and ε∗ = ε∗(ρ0, D, d) > 0 such that for any
ε ∈ (0, ε∗), all (ζ(0), ρ(0)) satisfying ρ(0) = ρ0 and |ζ(0) − `(ρ(0))| ≤ D and all t ≥ 0 the
solutions of the system (16) satisfy:

|ζ(t)− `(ρ(t))| ≤ β̃(|ζ(0)− `(ρ(0))|, δ · t) + d . (39)

Let (D, d) and ρ0 > ρ∗ be given and without loss of generality assume that D ≥ d. Let
ρ1 := ρ0 generate η and α1 ∈ K via Proposition 2. Let ∆ := D and ρ2 := ρ0 generate α2 ∈ K
via Proposition 3. Let α := min{α1, α2}. Let c := min{η, 1

2
d}. To complete the proof, we

introduce the following sets:

S1 := {(ξ, ρ) : |ξ| ≤ D + d/2, ρ ∈ [ρ∗, ρ0]}
S2 := {(ξ, ρ) : |ξ| ≤ c, ρ ∈ [0, ρ0]}

and we let S := S1 ∪ S2. These sets are shown in Figure 14.
Let β̃(s, t) ∈ KL be the solution of the following differential equation:

β̇ = −ρ∗

2
α

(√
2β

)
, β(0) = s ,

β̃(s, t) :=

√
2β

(
s2

2
, t

)
and let T > 0 be such that

β̃

(
D +

d

2
, T

)
= c . (40)

We introduce a differentiable function ˆ̀(ρ) such that ∀(ξ, ρ) ∈ S and t ∈ [0, T ] we have:

∣∣∣ξ · [p(ξ + `(ρ), ρ)− p(ξ + ˆ̀(ρ), ρ)]
∣∣∣ ≤ α(c)

4
, (41)

|ˆ̀(ρ)− `(ρ)| ≤ d

2
, (42)

∣∣∣β̃(|ξ − ˆ̀(ρ)|, t)− β̃(|ξ − `(ρ)|, t)
∣∣∣ ≤ d

2
(43)
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Figure 14: Sets S1 and S2.

and note that such a function always exist as we can approximate the continuous function `(·)
with a differentiable function ˆ̀(·) to arbitrary accuracy on compact sets. Let ε∗1 > 0 be such
that

ε∗1 · |ξ ·D ˆ̀(ρ)| ≤ 1

4
α(c) . (44)

Moreover, let ε∗2 > 0 be such that:

βρ(ρ0, ε
∗
2 · T ) > ρ∗ , (45)

where βρ comes from (22) and note that such a number always exists because βa ∈ KL.
Finally, we let ε∗ := min{ε∗1, ε∗2}.

Next, we show that the above constructed ε∗ and β̃ satisfy conditions in our claim. In the
rest of the proof we let ε ∈ (0, ε∗) be arbitrary. Moreover, we introduce the change of time
τ := δ · t and a transformation of coordinates ξ := ζ − ˆ̀(ρ) and rewrite (16) as follows:

dξ

dτ
= ρ · p(ξ + ˆ̀(ρ), ρ)− ε · ρ ·D ˆ̀(ρ) (46)

dρ

dτ
= −ε · g(ρ), ρ(0) = ρ0 , (47)

where we have also used (20). We introduce the following Lyapunov function V (ξ) := 1
2
ξ2 and

taking its derivative along (46) we have from Propositions 2 and 3 and inequalities (41), (44)
:

dV

dτ
= ξ ·

[
ρ · p(ξ + ˆ̀(ρ), ρ)− ε · ρ ·D ˆ̀(ρ)

]

= ρ ·
[
ξ · p(ξ + `(ρ), ρ)− ε · ξ ·D ˆ̀(ρ)

]

+ρ ·
[
ξ · (p(ξ + ˆ̀(ρ), ρ)− ξ · p(ξ + `(ρ), ρ))

]

≤ ρ ·
[
−α(|ξ|) +

1

2
α(c)

]
, ∀(ξ, ρ) ∈ S . (48)

20



The proof is completed by stating and proving several facts:
Fact 1: The set S2 is forward invariant.
Proof of Fact 1: This is straightforward from (48) and the fact that ρ(·) is monotonically

decreasing. ◦
Fact 2: For the number T defined by (40) we have that for any solution initialized at

|ξ(0)| ≤ D + d/2 and ρ(0) = ρ0 we have (ξ(T ), ρ(T )) ∈ S2.
Proof of Fact 2: If the initial state is in S1 we have nothing to prove since Fact 1 holds.

Note that (48) guarantees that as long as we are in the set S − S1, ξ(·) is monotonically
decreasing and we have:

|ξ(τ)| ≤ β̃(|ξ(0)|, τ), ∀τ ≥ 0 .

Note that ρ(·) is also monotonically decreasing. Moreover, we can use the contradiction and
our choice of ε∗2 in (45) to show that all solutions initialized at |ξ(0)| ≤ D + d/2 and ρ(0) = ρ0

stay in the set S2 for all τ ∈ [0, T ]. Finally, if we assume that for some ξ(0) ∈ S −S1 we have
|ξ(τ)| > c for all τ ∈ [0, T ], this implies:

β̃(D + d/2, τ) ≥ |ξ(τ)| > c, ∀τ ∈ [0, T ] ,

which contradicts the choice of T in (40) and, hence, we have (ξ(T ), ρ(T )) ∈ S2. ◦
Fact 3: If |ξ(0)| ≤ D + d/2 and ρ(0) = ρ0, then solutions of the system (46), (47) satisfy

(ξ(τ), ρ(τ)) ∈ S, ∀τ ≥ 0 .

Proof of Fact 3: It follows trivially from Facts 1 and 2. ◦
We now complete the proof of the theorem. From Fact 3, it follows that for all solutions

initialized at |ξ(0)| ≤ D + d/2 and ρ(0) = ρ0, the inequality (48) holds for all τ ≥ 0 along
solutions. Moreover, Fact 2 says that for any such solution there exists τ1 ∈ [0, T ] such that
|ξ(τ)| > c for all τ ∈ [0, τ1) and |ξ(τ1)| ≤ c. Since ρ(τ) > ρ∗ for all τ ∈ [0, T ], from (48) we
have that for all τ ∈ [0, τ1) the solutions of the system satisfy:

dV

dτ
≤ −ρ∗

2
α

(√
2V

)
,

which implies:

|ξ(τ)| ≤ β̃(|ξ(0)|, τ), τ ∈ [0, τ1) . (49)

On the other hand, for all τ ≥ τ1 we have from Fact 1 that (ξ(τ), ρ(τ)) ∈ S1, which implies

|ξ(τ)| ≤ c ≤ d/2, ∀τ ≥ τ1 . (50)

Note now that from our choice of ˆ̀, we have that |ζ(0) − `(ρ(0))| ≤ D implies |ξ(0)| =
|ζ(0) − ˆ̀(0)| ≤ |ζ(0) − `(ρ(0))| + |ˆ̀(ρ(0)) − `(ρ(0))| ≤ D + d

2
and this in turn implies (49)

and (50). By adding and subtracting some terms to (49) and (50), we conclude that for all
τ ∈ [0, τ1] ⊆ [0, T ]:

|ζ(τ)− `(ρ(τ))| ≤ β̃(|ζ(0)− `(ρ(0))|, τ) + |β̃(|ζ(0)− ˆ̀(ρ(0))|, τ)− β̃(|ζ(0)− ˆ̀(ρ(0))|, τ)|
+|ˆ̀(ρ(τ))− `(ρ(τ))|

≤ β̃(|ζ(0)− `(ρ(0))|, τ) + d

21



and for τ ≥ τ1 we have:

|ζ(τ)− `(ρ(τ))| ≤ d/2 + |ˆ̀(ρ(τ))− `(ρ(τ))| ≤ d (51)

Combining these last two bounds completes the proof by noting that τ = δt.

6.2 Proof of Proposition 1

From (13), where Q is given in (31), we have the following averaged system

ζ̇ =
δ · ρ
2

·
[
DQ(ζ) +

ρ2

8
·D3Q(ζ)

]
=

δ · ρ
2

· p(ζ, ρ), (52)

which is a 3rd-order polynomial. Let the three zeros of DQ(ζ) = 0 be r1, r2, r3 ∈ C. Without
losing generality, assume that r3 ∈ R satisfies Assumption 3.

We rewrite p(ζ, ρ) in (52) as

p(ζ, ρ) = −4(ζ − r1) · (ζ − r2) · (ζ − r3)− 3ρ2 · (ζ − r1 + r2 + r3

3
) (53)

By a linear transformation w = ζ + r1+r2+r3

3
, we have

p(w, ρ) = −4
(
w3 + λ(ρ)w + λ1

)
(54)

where λ(ρ)
4
= − 3

16
α2

1− 1
2
α2 + 3

4
ρ2 is a continuous function with respect to ρ and λ1

4
= − 1

32
α3

1−
1
4
α3 − 1

8
α2 · α1 is a constant. For all i = 1, 2, 3, the zeros of p(w, ρ) can be represented as

wi(a)
4
=

3

√
−λ1

2
+

√
Λ(ρ) · pi +

3

√
−λ1

2
−

√
Λ(ρ) · qi (55)

where Λ(ρ)
4
=

(
λ1

2

)2
+

(
λ(ρ)

3

)3
, p1 = q1 = 0, p2 = q3 = ω, p3 = q2 = ω2, and ω

4
= −1+

√
3i

2
.

The value of zero wi is dependent on the value of Λ(ω), i.e.,

1. Λ(ρ) < 0, three distinct zeros are real.

2. Λ(ρ) = 0, three zeros are real, two of them are equal.

3. Λ(ρ) > 0, there exists only one real zero.

The proof of Proposition 1 is complete by stating and proving several facts.
Fact 1: Λ(ρ) increases monotonically with respect to ρ.

Proof of Fact 1: This is straightforward from the definition of Λ(ρ) with DΛ(ρ) = λ(ρ)2

3
·

3
2
ρ ≥ 0,∀ρ ≥ 0. ◦

Fact 2: There exists ρ∗ > 0 such that there exists unique real zero of p(w, ρ) in (54).
Proof of Fact 2: This is straightforward from the monotonicity of Λ(ρ). ◦
Fact 3: There exists a continuous function `(ρ) : R+ → R such that p(`(ρ), ρ) = 0.
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Proof of Fact 3: Note that when ρ is the coefficient of p(w, ρ), the zero of the polynomial
p(w, ρ) are continuous function of the continuous function of ρ (Marden, 1966, Theorem 1,4),
thus wi is a continuous function in C.

When Λ(0) > 0, `(ρ) is a continuous real function and is the unique real zero of the p(w, ρ)
for any ρ. When Λ(0) ≤ 0, three zeros of p(w, ρ) are real. There exists a real continuous
function `(ρ) (may not unique), which is the zero of p(w, ρ). ◦

Fact 4: Assume that r1 ≤ r2 < r3 are the real zeros of p(ζ, ρ) in (53) and Q(r1) < Q(r3),
where Q(·) is defined in (31). Then r2 < r1+r2+r3

3
.

Fact 4: We denote a continuous function g(z)
4
=

∫ r3

r1

−(ζ − r1)(ζ − z)(ζ − r3)dζ, which

has the property Dg(z) < 0, ∀z ∈ (r1, r3). Therefore g(z) decreases monotonically for any
z ∈ (r1, r3). Note that g( r1+r3

2
) = 0, Q(r1) < Q(r3) ⇒ g(r2) < 0, the monotonicity of g(z)

implies that r2 < r1+r3

2
, i.e., r1+r2+r3

3
− r2 > 0, which completes the proof. ◦

Fact 5: There exists at least one real zero of p(ζ, ρ) in (53) in the interval ( r1+r2+r3

3
, r3]

for any ρ ≥ 0.
Proof of Fact 5: We consider two different cases:

(a):Λ(0) > 0. We have either r1 = r2 = r3 ∈ R or r1 = r2 ∈ C, r3 ∈ R. When r1 = r2 = r3,
`(ρ) ≡ r3, for any ρ ≥ 0. When r1 = r2 ∈ C, r3 ∈ R, for any ρ ≥ 0, we have

p(r3, ρ) · p(
r1 + r2 + r3

3
, ρ)

= −3ρ2(r3 − r1 + r2 + r3

3
) ·

[
−4(

r1 + r2 + r3

3
− r1) · (r1 + r2 + r3

3
− r2) · (r1 + r2 + r3

3
− r3)

]

= −3ρ2(r3 − r1 + r2 + r3

3
)2 ·

[
4(

r1 + r2 + r3

3
− r2) · (r1 + r2 + r3

3
− r2)

]
< 0

from the fact that r1+r2+r3

3
∈ R.

(b): Λ(0) ≤ 0. We have r1 ≤ r2 < r3 (as r3 is the unique maximum). According to Fact 4, we

have DQ( r1+r2+r3

3
) < 0, leading to the following fact

p(
r1 + r2 + r3

3
, ρ) · p(r3, ρ) < 0.

since D3Q(r3) > 0. The Implicit Function Theorem(N.Jacobson, 1974) indicates that Fact 5
holds ◦

Fact 6: `(ρ) ∈ ( r1+r2+r3

3
, r3]

Proof of Fact 6: We also consider two cases as in the proof of Fact 5.
(a):Λ(0) > 0. `(ρ) is the unique real root, therefore, `(ρ) ∈ ( r1+r2+r3

3
, r3].

(b): Λ(0) ≤ 0. We have r1 ≤ r2 < r3. Denote A = (r2,
r1+r2+r3

3
], B = (r3,∞), we have

p(ζ, ρ) > 0 ∀ζ ∈ A, p(ζ, ρ) < 0, ∀ζ ∈ B

for any ρ ≥ 0. Therefore, for any positive ρ, there is no real roots of p(ζ, ρ) in any interval A
or B. Combining Fact 3 and Fact 5 completes the proof. ◦

Fact 7: D1p(`(ρ), ρ) < 0
Proof of Fact 7: From Fact 6, `(ρ) ∈ ( r1+r2+r3

3
, r3]. When ρ = 0, r3 is the unique root

in the interval ( r1+r2+r3

3
, r3] and D1p(`(0), 0) < 0 ((6) in Assumption 3). Assume that ∃ζρ ∈
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( r1+r2+r3

3
, r3] such that D1p(ζρ, ρ) = 0 for any ρ > 0. Note D2

1p(ζρ, ρ) = ρ2

8
D3Q(ζρ) < 0,∀ρ > 0,

ζρ is a local maximum of p(ζρ, ρ), i.e. p(ζρ + λ, ρ) < p(ζρ, ρ) and p(ζρ − λ, ρ) < p(ζρ, ρ), for
a sufficiently small λ > 0. However, it contradicts the fact that ζρ is the real root of p(ζρ, ρ)
satisfying the following inequality:

[p(ζρ + λ, ρ)− p(ζρ, ρ)] · [p(ζρ − λ, ρ)− p(ζρ, ρ)] < 0,

We conclude that D1p(`(ρ), ρ) 6= 0 for all ρ ≥ 0. Fact 7 holds from Fact 3 and the continuity
of D1p. ◦

Proof Proposition 1) Combining Fact 1-7 completes the proof.

6.3 Proof of Theorem 2

Proof: Applying Theorem 1 to (11) and (12), the following results are obtained in the time
scale σ by tuning the parameter (a0, ε, δ) appropriately:

|θr(σ)− `(a(σ))| ≤ βθ(|θr(σ0)− `(a(σ0))|, δ · (σ − σ0))

|ar(σ)| ≤ βa(|a0|, ε · δ · (σ − σ0)) (56)

Next, We show the appropriate stability of the boundary layer system.

Introducing x̄
4
= x− l(θ̂(σ) + a · sin(σ)), t′ = σ−σ0

ω
, where σ0 is a fixed time instant in time

scale σ, setting ω = 0 and denoting θ1
4
= θ̂(σ0) + a · sin(σ0), the boundary layer corresponding

to the overall system (10) satisfies,

dx̄

dt′
= f(x̄ + l(θ1), α(x̄ + l(θ1), θ1)). (57)

Assumption 2 guarantees that the above system is globally asymptotically stable, uniformly in
θ1. By applying (Tan et al., 2005, Lemma 2), (10) is SPA stable, uniformly in ω (with the
time scale σ). Noting that σ = ωt, this implies directly that (23), (24) and (25) hold.
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