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Summary. This chapter provides some of the main ideas resulting from recent de-
velopments in sampled-data control of nonlinear systems. We have tried to bring
the basic parts of the new developments within the comfortable grasp of graduate
students. Instead of presenting the more general results that are available in the lit-
erature, we opted to present their less general versions that are easier to understand
and whose proofs are easier to follow. We note that some of the proofs we present
have not appeared in the literature in this simplified form. Hence, we believe that
this chapter will serve as an important reference for students and researchers that
are willing to learn about this area of research.

1.1 Introduction

Technological advances in digital electronics that occurred in the second half of
the 20th century have led to a rapid development in computer technology and
this has made a great impact on a range of engineering areas, including control
engineering. Nowadays, most control systems exploit a digital computer as
their crucial part and computer controlled systems are prevalent in engineering
practice. Hence, the theory for analysis and design of computer controlled
systems is a crucial part of the control engineer’s toolbox.

A general configuration of a computer controlled feedback system is illus-
trated in Figure 1.1. A continuous-time plant (process) is interfaced with the
computer via analog-to-digital (A/D) and digital-to-analog (D/A) converters
that are often referred to as sampler and hold devices respectively. The A/D
converter produces the samples y(tk) of the continuous plant output y(t) at
sampling times tk and sends them to a control algorithm within the computer.
The control algorithm processes the measured sequence y(tk) and produces
a sequence of control inputs u(tk). This control sequence is converted in the
D/A converter into a piecewise continuous control signal u(t) that is applied
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Fig. 1.1. General computer controlled system configuration.

to the plant. This is typically done by holding the value of the control signal
constant during the sampling intervals (zero-order-hold). An internal clock
synchronizes the operation of the system. The sampling instants tk are typ-
ically equidistant, i.e. tk = kT , k = 0, 1, 2, . . ., where T > 0 is the sampling
period.

The computer controlled system in Figure 1.1 is often referred to as a
sampled-data control system to emphasize the sampling process as its crucial
feature. Note that due to the hybrid nature of sampled-data systems, that
involve continuous-time (plant) dynamics and discrete-time (controller) dy-
namics, their analysis and design are harder than those of continuous-time
systems3. Indeed, this has led to several distinct approaches to controller de-
sign for sampled-data systems.

1. Emulation: Design a continuous-time controller for the continuous-time
plant model and then discretize the controller for digital implementation.
This approach involves an approximation (discretization) of the controller
that is valid only for small sampling periods T and, typically, the system
loses stability for large sampling periods. Advanced emulation techniques
also use controller redesign for digital implementation and they are better
behaved for larger sampling periods.

2. Discrete-time design: Design a controller in discrete-time using the discre-
te-time plant model. This method exploits an approximation (discretiza-
tion) of the plant model that ignores the inter-sample behaviour. While
this method does not require fast sampling to maintain stability, perfor-
mance of the sampled-data system is not automatically guaranteed since
the inter-sample behaviour may be unacceptable.

3. Sampled-data design: Using an exact sampled-data model of the plant4,
design a controller that achieves both stability and required performance
for the sampled-data system. This method uses no approximations of the

3 This is the case, for instance, when the plant is a continuous-time system and the
controller is realized via analog electronics using operational amplifiers.

4 See for instance, [13] where the lifting technique is used to obtain models for
sampled-data systems that model the inter-sample behaviour.
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plant model or controller and, hence, it maintains stability and perfor-
mance for arbitrarily large sampling periods T .

Emulation is regarded as the simplest method, while sampled-data design re-
quires the most advanced techniques. On the other hand, satisfactory system
performance can be achieved using the sampled-data design, whereas emula-
tion is typically inferior to the other two methods in terms of stability and/or
achievable performance.

Analysis and design of linear sampled-data control systems date back to
the 1950’s, that marked the beginning of the digital revolution. The early
works concentrated on input-output approaches involving z-transform and
they were parallel to the corresponding continuous-time developments. In the
1960’s and 1970’s, state space approaches involving state difference equations
have become popular and optimal regulation and Kalman filtering for discrete-
time systems were developed during that time. This material has become a
standard part of many undergraduate curricula. The 1980’s and 1990’s have
seen several new developments for linear systems that have led to H∞ the-
ory for discrete-time systems, advanced emulation techniques based on op-
timization, the use of δ-transform and H∞ sampled-data controller design
based on lifting techniques (for more details on all of these developments see
[6, 13, 25, 32]).

Linear sampled-data control theory is now a mature area with a range of
undergraduate textbooks that cover different analysis and design approaches.
On the other hand, nonlinear sampled-data control theory is quite underde-
veloped compared to its linear counterpart. While it is often possible to use
a linear sampled-data control theory for solving nonlinear control problems
via the linearization technique, there are many important situations where
nonlinearities cannot be neglected. For instance, wide ranges of operating
conditions typically prevent control designers from ignoring important non-
linearities, such as saturation, that are commonly present in the system. More-
over, hysteresis, dead-zone and dry friction are but a few examples of common
nonlinearities that often can not be ignored in practice (see [52] for details).
Indeed, there is a wide area of applications where nonlinear phenomena can-
not be avoided. These applications range from vertical take-off and landing
(VTOL) aircraft systems, ship or submarine vehicle control, position con-
trol for robotic systems in a precision manufacturing process, autonomous
vehicle systems, biochemical reactors, power plants and many others. Finally,
many control algorithms, such as adaptive and sliding mode controllers, are
inherently nonlinear. Therefore, nonlinear sampled-data control systems form
an important class of systems that arises in applications. Emulation for nonli-
near sampled-data systems has been studied in some detail and general results
that provide a justification for this approach are available (see [29] and refe-
rences cited therein). Due to a variety of tools for nonlinear continuous-time
controller design (see for instance [23, 24, 53, 52]) and its inherent simplicity,
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the emulation method is quite attractive to practitioners. Unfortunately, em-
ulated controllers are prone to instability in nonlinear systems. As a result,
one typically needs to use smaller sampling periods in emulation design for
nonlinear systems. In particular, the required sampling may sometimes exceed
the hardware limitations and in such cases one may need to use methods other
than emulation.

On the other hand, due to the complexity of the underlying nonlinear
sampled-data model, results on sampled-data design for nonlinear systems
that would parallel the linear results presented in [13] are scarce (we are not
aware of any) and it appears that they will be hard to develop in the future.
Hence, it appears that discrete-time design techniques for nonlinear sampled-
data systems provide a nice tradeoff between the possible conservatism of
emulation design and the difficulty of developing direct sampled-data design.

The literature on discrete-time design methods for nonlinear sampled-data
systems can be classified into two large groups:

1. Exact discrete-time design methods. The majority of results in this direc-
tion, for example [2, 16, 21, 33, 34, 56, 60], assume that the exact discrete-
time plant model is known and it is available to the designer. Hence, these
papers start directly from discrete-time models of the form:

x(k + 1) = F (x(k), u(k)) ,

where x ∈ R
n and u ∈ R

m are respectively the state and the control input
of the system and F (·, ·) is a known vector function. This assumption,
however, is rarely justified for nonlinear sampled-data systems (such as
the one illustrated by Figure 1.1) as will be discussed in Section 1.2 and,
hence, results that belong to this group have very limited applicability.

2. Approximate discrete-time design methods. Some earlier research, for in-
stance [15, 17, 19, 31], recognize the fact that the exact discrete-time
model for nonlinear systems is typically unavailable to the controller de-
signer and they instead base their controller design on an approximate
discrete-time plant model. While this approach is closer to reality and it
is most natural to use in practice, due to the limited theoretical results,
the majority of the published works in this area are ad hoc and they
do not carefully investigate the interplay between the controller design
and the plant model approximation. In particular, we show in Section 1.4
that there may exist controllers that stabilize a seemingly good approxi-
mate discrete-time plant model but destabilize the sampled-data system
for arbitrarily small sampling periods. Hence, great care is needed when
pursuing this approach.

The main purpose of this chapter is to provide a rigorous framework for
sampled-data nonlinear controller design via approximate discrete-time plant
models. Our framework is fully consistent with what most engineers would
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do in practice but our analysis provides a framework and guidelines for such
design to be successful. Moreover, this framework can be used to justify the
emulation method for general nonlinear systems (see Section 1.7.1). Several
controller design techniques are presented for classes of nonlinear systems that
are fully consistent with our framework. Our approach benefits from selected
topics in numerical analysis literature [51, 59]. In particular, we adapted the
notion of consistency, commonly used in numerical analysis, to develop our
controller design framework.

We emphasize that this chapter is not intended to serve as a literature
survey and the material presented summarizes just a subset of recent results
in nonlinear sampled-data control that reflect the authors research interests.
Moreover, we emphasize that our results are often presented in a simpler form
than that in the original references in order to achieve clarity and simplicity
of exposition. We have tried to achieve this without sacrificing the rigor of
our arguments. More complete and details results in this area and the closely
related works are listed in the references.

1.2 Mathematical Preliminaries

A function γ : R≥0 → R≥0 is of class K if it is continuous, zero at zero and
strictly increasing, and of class K∞ if it is of class K and unbounded. Note
that linear functions ϕ(s) = Ks for some K > 0 are of class K∞. A function
β : R≥0 ×R≥0 → R≥0 is of class KL if β(·, τ) is of class K for each τ ≥ 0 and
β(s, ·) is decreasing to zero for each s > 0. The function β is of class exp-KL
if there exist K, λ > 0 such that β(s, t) = Ks exp(−λt). Class K and KL
functions are useful to characterize stability properties of nonlinear systems
[23]. For instance, suppose that there exists β ∈ KL such that the solutions
φ(t, x◦) of the continuous-time system ẋ = f(x) satisfy

|φ(t, x◦)| ≤ β(|x◦| , t) ∀t ≥ 0, x(0) = x◦ ∈ R
n .

Then, the origin of the system is globally asymptotically stable (GAS). More-
over, if β ∈ exp-KL, then the origin of the system is globally exponentially
stable (GES).

A function f : R
n × R≥0 → R

n is of order O(T p), p > 0, if there exist
ϕ ∈ K∞ and T ∗ > 0 such that for all T ∈ (0, T ∗) and all x ∈ R

n we have
|f(x, T )| ≤ ϕ(|x|)T p. We will use the Mean Value Theorem several times in
the sequel and we state it below for the sake of completeness.

If x and y are two distinct points in R
n, then the (open) line segment

L(x, y) joining two distinct points x and y in R
n is

L(x, y) = {z|z = θx + (1 − θ)y, 0 < θ < 1} .
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Theorem 1.1 (Mean Value Theorem). Assume that f : R
n → R is

continuously differentiable at each point x of an open set S ⊂ R
n. Let x and

y be two points of S such that the line segment L(x, y) ⊂ S. Then there exists
a point z of L(x, y) such that

f(y) − f(x) =
∂f

∂x

∣∣∣∣
x=z

(y − x) .

�

1.3 Zero-Order-Hold Equivalent Models

In this section we present results on discretization of sampled-data systems
assuming the use of zero-order-hold devices. These results provide a basis for
the controller design framework via approximate discrete-time models pre-
sented in the next section. Consider the sampled-data system in Figure 1.1
where we assume that the plant dynamics are linear, i.e.

ẋ = Ax + Bu , (1.1)

where x ∈ R
n, u ∈ R

m are the state and control vectors respectively. The
plant is assumed to be between a sampler (A/D converter) and zero-order-
hold (D/A converter). The control signal is assumed to be piecewise constant,
i.e.

u(t) = u(kT ) =: u(k), ∀t ∈ [kT, (k + 1)T ), k ∈ N (1.2)

where T > 0 is the sampling period. Moreover, we assume that the state
measurements x(k), where5

x(k) := x(kT ) . (1.3)

are available at sampling instants.

A classical approach to controller design for the system (1.1) is to first
discretize the model and then design a controller for the discretized model.
Using the variations of constant formula for the linear system (1.1) we can
compute the solution x at time t ≥ kT that starts from the initial state x(k)
at time kT , while keeping the control constant u(t) ≡ u(k),

x(t) = eA(t−kT )x(k) +

∫ t

kT

eA(t−s)Bu(k)ds .

Evaluating the above equation for t = (k + 1)T , we have

5 One can also assume that only outputs y(k) = Cx(k) + Du(k) are measured but
in this section we want to keep the presentation as simple as possible and do not
consider this case.
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x(k + 1) = ΦT x(k) + ΓT u(k) , (1.4)

where

ΦT := eAT ; ΓT :=

∫ T

0

eAsBds .

The discretized model (1.4) describes the sampled-data system (1.1), (1.2),
(1.3) exactly at sampling instants kT and, in particular, it describes how the
state x(k +1) of the system at the time instant (k +1)T depends on the state
x(k) at the previous sampling instant kT and control u(k) on the sampling
interval [kT, (k + 1)T ).

Note that the model (1.4) is a linear difference equation that is parame-
terized by the sampling period T . The sampling period T is assumed to be
a design parameter which can be arbitrarily assigned. In practice, there is a
range of allowable sampling periods T that depends on the hardware limita-
tions (e.g. the DAQ 2000 I/O card can achieve any sampling periods from
0.01 seconds to 30 minutes). Note that the discrete-time model ignores the
inter-sample behaviour and any controller that is designed using this model
may lead to poor inter-sample behaviour.

Consider now the nonlinear continuous-time control system

ẋ = f(x, u) , x(0) = x◦ . (1.5)

The function f is assumed to be such that, for each initial condition and
each constant control, there exists a unique solution defined on some (perhaps
bounded) interval of the form [0, τ). We can compute the solution x at time t ≥
kT that starts from the initial state x(k) while keeping the control constant
u(t) ≡ u(k) as

x(t) = x(k) +

∫ t

kT

f(x(s), u(k))ds .

Suppose that the solutions are well defined and evaluate the above equations
for t = (k + 1)T ,

x(k + 1) = x(k) +

∫ (k+1)T

kT

f(x(s), u(k))ds =: F e
T (x(k), u(k)) . (1.6)

The equation (1.6) represents the exact discrete-time model of the nonlinear
sampled-data system (1.5), (1.2), (1.3) and it is the nonlinear counterpart of
(1.4). We emphasize that F e

T is not known in most cases since computing F e
T

explicitly will require an analytic solution of a nonlinear initial value problem.
On the other hand, one can easily write down a range of approximate mod-
els. For example, the forward Euler approximate model of the sampled-data
system (1.5), (1.2), (1.3),

x(k + 1) = x(k) + Tf(x(k), u(k)) =: F Euler
T (x(k), u(k)) , (1.7)
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is often used in the sequel. A range of other approximate models (e.g. us-
ing Runge-Kutta integration methods) can be found in standard books on
numerical analysis [59].

In the sequel, we consider the difference equations corresponding to the
exact and approximate discrete-time models of the sampled data system (1.5),
(1.2), (1.3) that are denoted respectively as

x(k + 1) = F e
T (x(k), u(k)) (1.8)

x(k + 1) = F a
T (x(k), u(k)) (1.9)

and which are parameterized by the sampling period T . We will think of
F e

T and F a
T as being defined globally for all small T even though the initial

value problem (1.5) may exhibit finite escape times. In general, one needs to
use small sampling periods T since the approximate plant model is a good
approximation of the exact model mainly only for small T .

It turns out that most sampled-data literature [2, 16, 21, 33, 34, 56, 60]
uses the following assumption.

Assumption 1 The exact discrete-time model (1.8) for the sampled-data
system (1.5), (1.2), (1.3) is known and it is available to the designer.
In other words, the controller design can be carried out using the exact
discrete-time model (1.8).

Indeed, this assumption is the starting point in the exact discrete-time design
method discussed in the Introduction. On the other hand, Assumption 1 is not
justified in most cases. The exact discrete-time model can not be analytically
computed since it requires solving a nonlinear initial value problem explicit-
ly. Hence, our results are useful in cases when the following more realistic
assumption holds.

Assumption 2 The exact discrete-time model (1.8) for the sampled-data
system (1.5), (1.2), (1.3) is not known exactly and it is not available to
the designer. Therefore, the controller design needs to be carried out using
an approximate discrete-time model (1.9).

We note that Assumption 2 is more natural to use for most nonlinear systems.
Moreover, even in the linear case we use approximate models that come from
numerically computing the matrices ΦT and ΓT in (1.4).

1.4 Motivating Counter-Examples

The approximate model (1.9) is parameterized by T and, in general, we need
to be able to obtain a family of controllers which is parameterized by T and
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which is defined for all small T . There are two reasons for this: (i) F a
T is a good

approximation for F e
T only for small T and, hence, the designed controller will

have to achieve stability of F a
T for all small T ; (ii) finding a controller that

does not depend on T and that stabilizes the approximate family F a
T for all

small T is a harder problem than when the controller is allowed to depend on
T . Hence, we will concentrate in the sequel on controllers of the form6

u(k) = uT (x(k)) . (1.10)

The goal of this section is to show that there may exist a family of controllers
of the form (1.10) that stabilizes the family of approximate models (1.9) for all
small T whereas it destabilizes the family of exact models (1.8) for all small T .
We identify several indicators of lack of stability robustness that typically lead
to these undesirable behaviours. In the next section, we will introduce condi-
tions that rule out each of these non-robustness indicators and this will lead to
a framework for sampled-data controller design via approximate discrete-time
models.

Examples in this section can be interpreted in the following manner. As-
sume that we want to pursue an ad hoc approach to controller design that
many practitioners and researchers have considered. Consider an approximate
plant model (1.9), such as (forward) Euler model, that is a good approximation
for (1.8) when the two models are regarded as ”open-loop”. Suppose, more-
over, that we want to first reduce T sufficiently to guarantee that F a

T is a good
approximation of F e

T and then we design a controller (1.10) that stabilizes F a
T ,

hoping that it will stabilize F e
T because T is already small enough. Examples

presented in this section show that in general this approach is flawed and no
matter how small sampling period T we choose, we can always find a con-
troller (1.10) that stabilizes the approximate model (1.9) but it destabilizes
the exact system (1.8). The following examples (taken from [43]) illustrate
that a careful investigation is needed if controller design is to be carried out
on approximate models.

Example 1.1. (Control with excessive force) Consider the sampled-data
control of the triple integrator

ẋ1 = x2; ẋ2 = x3; ẋ3 = u . (1.11)

Although the exact discrete-time model of this system can be computed, we
base our control algorithm on the family of the Euler approximate discrete-
time models in order to illustrate possible pitfalls in control design based on
approximate discrete-time models. The family of Euler approximate discrete-
time models for this system is given by (1.7). A minimum time dead beat
controller for the Euler discrete-time model is given by

6 For simplicity we consider only static state feedback controllers, while results on
dynamic controllers can be found in the cited references.
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u = uT (x) =

(
−

x1

T 3
−

3x2

T 2
−

3x3

T

)
. (1.12)

The closed-loop system (1.7), (1.12) has all eigenvalues equal to zero for all
T > 0 and hence this discrete-time Euler based closed-loop system is asymp-
totically stable for all T > 0. On the other hand, the closed-loop system con-
sisting of the exact discrete-time model of the triple integrator and controller
(1.12) has an eigenvalue at ≈ −2.644 for all T > 0. Hence, the closed-loop
sampled-data control system is unstable for all T > 0.

Note that in Example 1.1 we have the following properties.

1. Nonuniform bound on overshoot. The solutions of the family of ap-
proximate models with the given controller satisfy for all T > 0 a stability
estimate of the type

|φT (k, x◦)| ≤ bT e−kT |x◦| , k ∈ N

and bT → ∞ as T → 0. Hence, the overshoot in the stability estimate for
the family of approximate models is not uniformly bounded in T .

2. Nonuniform bound on control. The control is not uniformly bounded
on compact sets with respect to the parameter T and in particular we
have for all x 6= 0 that |uT (x)| → ∞ as T → 0.

Example 1.2. (Control with excessive finesse) Consider the system

ẋ = x + u . (1.13)

Again, the exact discrete-time model of the system can be computed, but we
consider a control design based on the ”partial Euler” model

x(k + 1) = (1 + T )x(k) + (eT − 1)u(k) . (1.14)

The control

u = uT (x) = −
T (1 + 1

2T )x

eT − 1
(1.15)

stabilizes the family of approximate models (for T ∈ (0, 2)) by placing the
eigenvalue of the closed-loop at 1 − 1

2T 2. On the other hand, the eigenvalue
of the exact discrete-time closed-loop is located at eT −T − 1

2T 2 > 1, ∀T > 0.

Note that in Example 1.2 we have the following properties.

• Nonuniform attractive rate. For all T > 0, the family of approximate
discrete-time models satisfies

|φT (k, x◦)| ≤ be−kT 2

|x◦| , k ∈ N ,
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where b > 0 is independent of T . Therefore the overshoot is uniformly
bounded in T . However, if we think of kT = t as ”continuous-time”, then
as T → 0, the rate of convergence of solutions is such that for any t > 0 we
have e−tT → 1. In other words, the rate of convergence in continuous-time
is not uniform in the parameter T .

Conditions in our framework for controller design in the next section will rule
out all of the above non-robustness indicators.

1.5 Preliminary Results on Stability and Stabilization

This section contains two main results. In Proposition 1.1 we show under
natural and general conditions that stability of the exact discrete-time model
implies stability of the sampled-data system. Proposition 1.2 provides Lya-
punov conditions to analyze the stability of the exact discrete-time model.

These results are important in proving that stability of approximate model
will guarantee, under appropriate conditions, stability of the sampled-data
system. Indeed, we show in the next section that stability of the approximate
model implies, under certain checkable conditions, the stability of the exact
model and, consequently, we can conclude stability of the sampled-data system
using the results proved in this section.

Note that if Assumption 1 was satisfied, the results of this section could be
used to conclude stability of the sampled-data systems directly from stability
of its exact discrete-time model. However, since we use Assumption 2, more
work will be needed to investigate when stability of the approximate model
implies stability of the exact.

Suppose for simplicity that a parameterized family of control laws (1.10)
was designed for the system so that the closed-loop sampled-data system
becomes

ẋ(t) = f(x(t), uT (x(kT ))) t ∈ [kT, (k + 1)T ) . (1.16)

Hence, with the control (1.10) the closed-loop exact model of this sampled-
data system is

x(k + 1) = F e
T (x(k), uT (x(k))) = Fe

T (x(k)) . (1.17)

Proposition 1.1 given below states that if the sampled-data system (1.16)
has bounded inter-sample behaviour (condition 2), then GAS of the exact
discrete-time model (condition 1) implies UGAS of the sampled-data system7.
The proof of this proposition is presented in [46].

7 Note that the exact discrete-time model (1.17) is time invariant whereas the
sampled-data system (1.16) is periodically time varying because of sampling.
Hence, we talk about ”uniform” GAS for the sampled-data system where unifor-
mity is with respect to the initial time instant t◦.
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Proposition 1.1. Consider a sampled-data system (1.16) and suppose that
the sampling period T > 0 is such that the following two conditions hold.

1. There exists β̃ ∈ KL such that the trajectories of the exact discrete-time
closed-loop system (1.17) satisfy

|x(k)| ≤ β̃(|x◦| , kT ) ∀k ∈ N, x(0) = x◦ ∈ R
n . (1.18)

2. There exists κ ∈ K∞ such that the solutions of the sampled-data system
(1.16) satisfy

|x(t)| ≤ κ(|x◦|) ∀t ∈ [t◦, t◦ + T ], t◦ ≥ 0, x(t◦) = x◦ ∈ R
n . (1.19)

Then there exists β ∈ KL such that the trajectories of the sampled-data system
satisfy8

|x(t)| ≤ β(|x◦| , t − t◦) ∀t ≥ t◦ ≥ 0, x(t◦) = x◦ ∈ R
n . (1.20)

Moreover, if β̃ ∈ exp-KL and κ ∈ K∞ is linear, we can take β ∈ exp-KL. �

Remark 1.1. If the function f is globally Lipschitz then condition 2 of Propo-
sition 1.1 always holds. It is important to note that condition 2 holds for any
locally Lipschitz discrete-time model F e

T in an appropriate relaxed (semiglobal
practical) sense if the sampling period T is sufficiently reduced. We decided
not to state these more general conditions to simplify the presentation. The
more general semiglobal practical stability results (that are also more natural
in this context) can be found in [46].

Condition 2 of Proposition 1.1 holds under natural and general conditions
and it only remains to see how one can satisfy condition 1. The following
result that will help verifying condition 1 in Proposition 1.1 is presented with
a proof.

Proposition 1.2. Suppose there exists a family of Lyapunov functions VT (x)
parameterized by T and α1, α2, α3 ∈ K∞ such that the following conditions
hold for all x ∈ R

n.

α1(|x|) ≤ VT (x) ≤ α2(|x|) ,

VT (Fe
T (x)) − VT (x)

T
≤ −α3(|x|) .

(1.21)

8 It was shown in [12] that the state of the sampled-data system (1.16) at any time
instant t◦ ∈ [kT, (k+1)T ) consists of x(t0) and uT (x(k)). Hence, strictly speaking
the stability bound (1.20) is not equivalent to uniform global asymptotic stability
of the sampled-data system. However, if |uT (x)| ≤ ϕ(|x|) for some ϕ ∈ K∞, our
conditions imply uniform global asymptotic stability of the sampled-data system.
To conclude β ∈ exp-KL, we also need that the function ϕ is linear.
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Then there exists β̃ ∈ KL such that condition 1 of Proposition 1.1 holds.
That is, the solutions of the exact discrete-time model (1.17) satisfy (1.18).
Moreover, if there exist ai > 0 and p > 0 such that αi(s) = ais

p for i = 1, 2, 3,

then condition 1 of Proposition 1.1 holds with β̃ ∈ exp-KL. �

Proof: Note that (1.21) implies

VT (Fe
T (x)) − VT (x)

T
≤ −α3 ◦ α−1

2 (VT (x)) =: −α(VT (x)) .

Denote VT (kT ) := VT (x(kT )). We introduce a variable t ∈ R and define

y(t) := VT (kT ) + (t − kT )VT ((k+1)T )−VT (kT )
T

, t ∈ [kT, (k + 1)T ], k ≥ 0. Note
that 0 ≤ y(kT ) = VT (kT ), k ≥ 0 and y(t) is a continuous function of the
”time” t. Moreover, it is absolutely continuous in t (in fact, piecewise linear)
and we can write for almost all t,

d

dt
y(t) =

VT ((k + 1)T ) − VT (kT )

T
≤ −α(VT (kT )) , for t ∈ [kT, (k + 1)T ), k ≥ 0 ,

≤ −α(y(t)) , for t ≥ 0 .

(1.22)

Let v(t) = β(v0, t) be the (unique) solution of v̇ = −α(v), v(t0) = v0. It is
shown in Lemma 6.1 in [58] that β ∈ KL. By standard comparison theorems
(see for instance [30, Theorem 1.10.2]) we have for y0 = v0 that

y(t) ≤ v(t) = β(y0, t − t0), ∀t ≥ t0 ,

which implies using VT (kT ) = y(kT ) with t = kT, t0 = k0 = 0, y0 = VT (0)
that

|x(k)| ≤ α−1
1 (VT (kT )) ≤ α−1

1 (β(VT (0), kT )) ≤ α−1
1 (β(α2(|x0|), kT )), k ≥ 0 ,

which proves (1.18) with β̃(s, t) := α−1
1 (β(α2(s), t)). Proving that β̃ ∈ exp-KL

under stronger conditions is easy following the same steps. �

Remark 1.2. The above results hold for arbitrarily large T . In other words,
they are not fast sampling results. However, to satisfy some of these conditions
we will need to reduce T in general. For example, to satisfy condition 2 of
Proposition 1.1 on a compact subset of R

n in case f is locally Lipschitz in
x, we need to reduce T sufficiently. Similarly, the results of the next section
will require fast sampling to show that under certain conditions stability of
an approximate model implies stability of the exact model.

1.6 Framework for Controller Design

In this section we show how one can conclude, under certain checkable con-
ditions, that a controller that stabilizes the approximate model F a

T is guar-
anteed to also stabilizes the exact model F e

T . Then, we can conclude that
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the sampled-data model is also stabilized using the results from the previous
section. We will start from the simplest case of exponential stability design
which we will prove in detail. While the proof of this result is quite easy to
follow, the used conditions are quite strong for general nonlinear systems. In
Subsection 1.6.2 we present without proof a more general result on semiglobal
practical stability that uses more natural and less restrictive conditions.

1.6.1 Global Exponential Stabilization

Suppose that Assumption 2 holds and we want to achieve global exponential
stability (GES) of F e

T by stabilizing F a
T . To do this, we assume for conve-

nience that the function f(·, ·) in the continuous-time plant model is globally
Lipschitz (this can be relaxed).

We need to find conditions that guarantee global exponential stability of
the exact discrete-time closed loop system (1.17) via the following discrete-
time approximate closed-loop system

x(k + 1) = F a
T (x(k), uT (x(k))) , (1.23)

where the family of controllers (1.10) that is parameterized by T is designed
using the family of approximate discrete-time models (1.9). In the sequel, we
refer to the exact (1.17) and approximate (1.23) closed loop systems respec-
tively as (F e

T , uT ) and (F a
T , uT ). Using Proposition 1.2, it is reasonable to

aim to design the family of controllers (1.10) so that the following holds for
some Lyapunov function family (these conditions are also strong and can be
relaxed).

a1 |x|
c
≤ VT (x) ≤ a2 |x|

c

VT (F a
T (x, uT (x))) − VT (x)

T
≤ −a3 |x|

c
,

(1.24)

for some c > 0, all x and all T ∈ (0, T ∗) where T ∗ > 0 is fixed. Hence,
Proposition 1.2 guarantees that (F a

T , uT ) is GES for all small T ∈ (0, T ∗).
The reason for requiring this condition to hold for all small T is going to
become clear soon.

We want to see when the above conditions imply that all conditions of
Proposition 1.2 hold for the closed-loop exact discrete-time model if we per-
haps further reduce T . In order to see when this can be achieved, add and
subtract 1

T
VT (F e

T (x, uT (x))) to (1.24) yielding

VT (F e
T (x, uT (x))) − VT (x)

T
≤ −a3 |x|+

VT (F e
T (x, uT (x))) − VT (F a

T (x, uT (x)))

T
.

(1.25)
Suppose also that for all x, y ∈ R

n and all T ∈ (0, T ∗) the following two
conditions hold.
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|VT (x) − VT (y)| ≤ L |x − y| (1.26)

and
|F e

T (x, uT (x)) − F a
T (x, uT (x))| ≤ Tρ(T ) |x| (1.27)

where ρ ∈ K∞. Then, from (1.25), (1.26) and (1.27) we obtain

VT (F e
T (x, uT (x))) − VT (x)

T
≤ −a3 |x| +

L |F e
T (x, uT (x)) − F a

T (x, uT (x))|

T

≤ −a3 |x| +
LTρ(T ) |x|

T
= −a3 |x| + Lρ(T ) |x| .

(1.28)

It is now obvious that for all T ∈ (0, T ∗
1 ) with T ∗

1 := min{T ∗, ρ−1(a3/2L)} we
have that

VT (F e
T (x, uT (x))) − VT (x)

T
≤ −

1

2
a3 |x| , (1.29)

and, hence, we can conclude from Proposition 1.2 that the closed-loop exact
model (F e

T , uT ) is GES. Before discussing this result in detail, we state our
findings in the following proposition.

Proposition 1.3. Suppose there exists T ∗ > 0 such that for all T ∈ (0, T ∗)
the following holds.

1. The closed-loop approximate model (F a
T , uT ) satisfies (1.24). Moreover,

condition (1.26) holds uniformly in T ∈ (0, T ∗).

2. Condition (1.27) holds.

Then for all T ∈ (0, T ∗
1 ), with T ∗

1 := min{T ∗, ρ−1(a3/2L)}, we have that the
closed-loop exact model (F e

T , uT ) satisfies (1.21) with αi(s) = ais for i = 1, 2
and α3(s) = a3

2 s. �

The condition (1.27) quantifies the mismatch between the exact and ap-
proximate closed-loop models and similar conditions are named consistency
in the numerical analysis literature [59]. Note that (1.27) is not easy to use
since we need to first design uT to check it. Hence, it would be better if a
condition involving the (open-loop) exact (1.8) and approximate (1.9) models
is used. This condition is now stated.

Proposition 1.4. Suppose there exist ρ1 ∈ K∞, K > 0 and T ∗ > 0 such that
for all T ∈ (0, T ∗) and all x ∈ R

n, u ∈ R
m the following conditions hold.

|F e
T (x, u) − F a

T (x, u)| ≤ Tρ1(T )[|x| + |u|] (1.30)

and
|u| := |uT (x)| ≤ K |x| . (1.31)

Then condition (1.27) holds for all T ∈ (0, T ∗), with ρ(s) := ρ1(s) · [1+K]. �
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We emphasize that the conditions (1.30) and (1.31) are easier to use than
(1.27).

Combining the statements of Propositions 1.3 and 1.4, these results can
be paraphrased as follows. The exact model (F e

T , uT ) is exponentially stable
if the following conditions hold.

1. Lyapunov exponential stability of (F a
T , uT ) with a globally Lipschitz Lya-

punov function (i.e. (1.24) and (1.26)).

2. Consistency between the approximate F a
T and exact F e

T models of the
open-loop systems (i.e. (1.30)).

3. Uniform boundedness of control law uT with respect to small T (i.e.
(1.31)).

We emphasize that all of the above conditions can be checked without
knowing the explicit expression of F e

T . Indeed, it is obvious that the first
and the third conditions only use the knowledge of F a

T and uT . The second
condition is defined using F e

T but we note that we do not need to know F e
T in

order to verify that the bound (1.30) holds. Indeed, we can state the following
result.

Proposition 1.5. Suppose that the system (1.5) is globally Lipschitz and
f(0, 0) = 0. Suppose, moreover, that F a

T is consistent with F Euler
T defined

in (1.7). That is, there exists T ∗ > 0 and ρ1 ∈ K∞ such that for all x ∈ R
n

and u ∈ R
m we have

∣∣F a
T (x, u) − F Euler

T (x, u)
∣∣ ≤ Tρ1(T )[|x| + |u|] .

Then, F e
T is consistent with F a

T in the sense of (1.30). �

Proof: First, we show that F Euler
T is consistent with F e

T under the given
conditions on f . Indeed, since f is globally Lipschitz and zero at zero, we
have |f(x, u)| ≤ L(|x| + |u|) and the solution φ(t, x, u) of the system (1.5)
starting from x with the constant control u(t) ≡ u exists for all time, is
unique and satisfies

|φ(t, x, u)| ≤ exp(Lt) |x| + (exp(Lt) − 1) |u| ∀t ≥ 0, ∀x, u .

Denote φ(t, x, u) shortly as φ(t). Then, using the above bound on φ(t) and
the Lipschitzity of f we can write
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|F e
T (x, u) − F Euler

T (x, u)|

=

∣∣∣∣∣x +

∫ T

0

f(φ(s), u)ds − x − Tf(x, u)

∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

[f(φ(s), u) − f(x, u)]ds

∣∣∣∣∣

≤

∫ T

0

|f(φ(s), u) − f(x, u)| ds

≤

∫ T

0

L |φ(s) − x| ds

=

∫ T

0

L

∣∣∣∣
∫ s

0

f(φ(τ), u)dτ

∣∣∣∣ ds

≤

∫ T

0

∫ s

0

L |f(φ(τ), u)| dτds

≤

∫ T

0

∫ s

0

L[L |φ(τ)| + L |u|]dτds

≤

∫ T

0

∫ T

0

L[L exp(LT ) |x| + L(exp(LT )− 1) |u| + L |u|]dτds

=
1

2
T 2L2 exp(LT )(|x| + |u|) ,

(1.32)

which completes the proof of consistency between F e
T and F Euler

T . Finally, by
adding and subtracting F Euler

T and using the triangular inequality, we obtain

|F e
T (x, u) − F a

T (x, u)| =
∣∣F e

T (x, u) − F Euler
T (x, u) + F Euler

T (x, u) − F a
T (x, u)

∣∣

≤
∣∣F e

T (x, u) − F Euler
T (x, u)

∣∣ +
∣∣F Euler

T (x, u) − F a
T (x, u)

∣∣

and the conclusion immediately follows since F e
T is consistent with F Euler

T and
by assumption F a

T is consistent with F Euler
T . �

Remark 1.3. The conditions in Propositions 1.3 and 1.4 provide a prescriptive
framework for controller design via approximate models. Indeed, the first step
in this approach is to pick F a

T that is consistent with F e
T in the sense of

(1.30). Then, one would like to design a family of controllers of the form
(1.10) that are bounded in the sense of (1.31) for the family of approximate
models that satisfies the Lyapunov conditions (1.24) and (1.26). All of these
conditions are checkable without knowing the explicit expression of F e

T . Note
that we do not say how one can design such controllers and that is why we
refer to this framework as ”prescriptive” rather than ”constructive”. However,
we will show in Section 1.7 that one can obtain a variety of constructive
procedures within this framework for certain classes of nonlinear systems,
such as separable Hamiltonian systems and systems in strict feedback form.



20 Dina Shona Laila, Dragan Nešić, and Alessandro Astolfi

1.6.2 Semiglobal Practical Stability

The purpose of this subsection is to present several definitions of stability and
consistency that are more general than the ones in the previous subsection
and use them to provide a more general framework for controller design via
approximate models.

Semiglobal practical asymptotic stability property naturally arises when
we relax the conditions of global Lipschitzity on f and GES for (F a

T , uT )
that we used in the previous subsection. For simple illustration, we consider
a parameterized family of discrete-time nonlinear systems

x(k + 1) = FT (x(k), uT (x(k))) . (1.33)

Semiglobal practical asymptotic stability and semiglobal practical asymptotic
stability Lyapunov function for the system (1.33) are defined as follows.

Definition 1.1 (Semiglobal practical asymptotic (SPA) stability).
The family of systems (1.33) is SPA stable if there exists β ∈ KL such that
for any strictly positive real numbers (∆, δ) there exists T ∗ > 0 such that for
all T ∈ (0, T ∗), all initial states x(0) = x◦ with |x◦| ≤ ∆, the solutions of the
system satisfy

|x(k)| ≤ β(|x◦| , kT ) + δ, ∀k ∈ N . (1.34)

�

Definition 1.2 (SPAS Lyapunov function). A continuously differentiable
function VT : R

n → R is called SPAS Lyapunov function for the system FT if
there exist class K∞ functions α(·), α(·), α(·) such that for any strictly positive
real numbers (∆x, ν), there exist L, T ∗ > 0 such that for all T ∈ (0, T ∗) and
for all x, y ≤ ∆x and T ∈ (0, T ∗) the following holds.

α(|x|) ≤ VT (x) ≤ α(|x|) , (1.35)

VT (FT (x, uT (x))) − VT (x) ≤ −Tα(|x|) + Tν (1.36)

|VT (x) − VT (y)| ≤ L |x − y| (1.37)

In this case, we say that the pair (VT , uT ) is Lyapunov SPA stabilizing for the
system FT . �

We now state a more general notion of consistency.

Definition 1.3 (One-step consistency). The family F a
T is said to be one-

step consistent with F e
T if there exist functions ρ, ϕ1, ϕ2 ∈ K∞ such that given

any strictly positive real numbers (∆x, ∆u) there exists T ∗ > 0 such that, for
all T ∈ (0, T ∗), |x| ≤ ∆x, |u| ≤ ∆u we have

|F e
T (x, u) − F a

T (x, u)| ≤ Tρ(T )[ϕ1(|x|) + ϕ2(|u|)] . (1.38)

�
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Definition 1.4. The family of controllers uT is bounded, uniformly in small
T , if there exist κ ∈ K∞ and for any ∆ > 0 there exists T ∗ > 0 such that for
all |x| ≤ ∆ and T ∈ (0, T ∗) we have

|uT (x)| ≤ κ(|x|) .

�

Using the above definitions, we can now state the following result.

Theorem 1.2. Suppose the following conditions hold.

1. F a
T is one-step consistent with F e

T .

2. uT is bounded, uniformly in small T .

3. There exists a SPAS Lyapunov function for the system (F a
T , uT ).

Then the system (F e
T , uT ) is SPA stable and, hence, the sampled-data system

(1.16) is SPA stable. �

The statement of the above theorem is fully consistent with the result
presented in the previous subsection but here we use much weaker (and hence
more general) conditions that yield weaker conclusions. Hence, Theorem 1.2
is much more widely applicable than the results of the previous subsection.

Remark 1.4. Theorem 1.2 can be strengthened in different ways to either ob-
tain global stability (as opposed to semiglobal) or to achieve local exponential
stability. This can be done by combining stronger conditions in Proposition
1.3 with conditions in Theorem 1.2.

Remark 1.5. While conditions of Theorem 1.2 are sufficient (not necessary in
general), they are tight in the sense that if we try to relax any of them, then
we can find a counterexample where the exact closed-loop is not stabilized for
small T . Example 1 and Example 2 in Section 1.4 can be used to illustrate
this.

Indeed, Lyapunov SPA stability of the approximate closed-loop implies
via Proposition 1.2 that9 the approximate closed-loop system is SPA stable in
the sense of Definition 1.1. This rules out two of the non-robustness indicators
shown in Examples 1 and 2: non-uniform overshoot and non-uniform conver-
gence rate. Moreover, the second condition in Theorem 1.2 requires uniform
boundedness of the control law in small T . Hence, conditions of Theorem
1.2 rule out all indicators of non-robustness that we observed in Section 1.4.
Another example that shows the need for the use of continuous Lyapunov
function is presented in [43].

9 Actually, we need a slightly more general statement than Proposition 1.2 that
can be found in [43, 45].
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Remark 1.6. Various extensions and variations of Theorem 1.2 have been pub-
lished in the literature. First, alternative proofs that do not require the knowl-
edge of a Lyapunov function and use SPA stability of closed-loop approximate
model can be found in [45] for time invariant systems and in [40] for time-
varying systems. These results use a slightly different notion of consistency
than the one given in Definition 1.3. A framework for achieving input-to-state
stability (ISS) and integral input-to-state stability (iISS) for systems with
exogenous inputs via approximate discrete-time models can be found in [38]
and [35], respectively. Moreover, similar results for sampled-data differential
inclusions are presented in [43].

1.7 Controller Design Within the Framework

In this section, we present several simple design tools via approximate discrete-
time models that rely on the framework presented in Section 1.6. We empha-
size that any techniques for continuous time controller design can be revisited
within our framework and new control laws will be obtained as a result (e.g.
see the backstepping design in Subsection 1.7.4).

In Subsection 1.7.1 we show that emulation of continuous time controllers
can be regarded as a special case of controller design that fits within our
framework. In this case, we design a continuous-time controller uct(x) for the
continuous-time plant and then implement

u(t) = udt
T (x(k)) t ∈ [kT, (k + 1)T ) , (1.39)

where10

udt
T (x) = uct(x) , (1.40)

i.e. the discrete-time controller is identical to the continuous time controller.
Note that we can still think of emulation as a design via an approximate
model (the continuous-time plant model).

Subsections 1.7.2 and 1.7.3 show that our framework can be used for
continuous-time controller redesign for sampled-data implementation. In this
case, we first design a continuous-time controller uct(x) for the continuous-
time plant model (ignoring sampling) and then in the second step we param-
eterize the controller in the following manner:

udt
T (x) = uct(x) +

M∑

i=1

T iui , (1.41)

where M ≥ 1 is a fixed integer and then we use an approximate model, such as
the Euler model, to design ui = ui(x). This redesign of continuous-time con-
trollers can be directed to achieve different objectives and we will present two

10 We introduce udt

T to be able to compare emulation with other design techniques.
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cases of this controller redesign technique. In Subsection 1.7.2 the Lyapunov
function for the continuous-time closed-loop is used as a control Lyapunov
function for the approximate discrete-time model, assuming the redesigned
controller follows the form (1.41). After substituting the term uct that is
known from (1.40), the extra terms ui’s are regarded as new controls. Once
the ui’s have been computed, the controller (1.41) is implemented. In Subsec-
tion 1.7.3, controller redesign is done starting from a passivity based design
for a class of Hamiltonian systems namely the interconnection and damping
assignment − passivity based control (IDA-PBC) design method. The modi-
fied energy function of the system is used as control Lyapunov function and
design is carried out in a similar way as in Subsection 1.7.2.

Backstepping based on the Euler approximate model is presented in Sub-
section 1.7.4. In this case, we do not design a continuous controller as a first
step in design/redesign but rather we use the Euler approximate model di-
rectly to design udt

T (x) using our framework and then implement it using
(1.39). It is interesting to observe that although we do not assume that the
controller has the form (1.41), we show in our example that the obtained con-
troller has the form (1.41) where uct(x) is a controller that could be obtained
using a continuous-time backstepping design (but we do not need to design it
first). Moreover, we show in our example that in simulations udt

T (x) performs
better than the emulated uct(x).

1.7.1 Emulation

Suppose that a static state feedback controller u = uct(x) has been designed
for the continuous-time system (1.5) ignoring sampling, so that there exists a
smooth Lyapunov function V satisfying the following conditions:

α1(|x|) ≤ V (x) ≤ α2(|x|) (1.42)

∂V

∂x
f(x, uct(x)) ≤ −α3(|x|) , (1.43)

with α1, α2, α3 ∈ K∞. These conditions guarantee GAS of the continuous-time
closed-loop system (f, uct). Suppose also that uct(x) is bounded on compact
sets of the state space. Then, suppose that the controller is ”emulated” using
(1.40). Suppose, moreover that the sampled-data system

ẋ(t) = f(x(t), uct(x(k))) t ∈ [kT, (k + 1)T ) , (1.44)

has solutions that are well defined11 for all initial conditions x(0) = x◦ ∈ R
n

and all t ∈ [0, T ]. Denote F Euler
T := x(k) + Tf(x(k), uct(x(k))).

11 Typically, for locally Lipschitz f the solutions would be defined only in a
semiglobal sense, i.e. for any bounded set of initial conditions there exists T ∗ > 0
such that for all T ∈ (0, T ∗) and all initial conditions from the set we have that
the solutions are well defined for t ∈ [0, T ].
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We will show next that the sampled-data system (1.44) is stable in an
appropriate sense under appropriate conditions. In particular, we can state
the following result.

Theorem 1.3. Suppose that we have found a (locally bounded) controller
uct(x) and a smooth V (x) that satisfy (1.42) and (1.43). Then, (V, uct) is
a Lyapunov SPA stabilizing pair for F Euler

T . Hence, (V, uct) is a Lyapunov
SPA stabilizing pair for F e

T , consequently, the sampled-data system (1.44) is
SPA stable. �

Proof: We first prove that (V, uct) is a Lyapunov SPA stabilizing pair for the

Euler model of the system (1.7). Adding and subtracting
V (F Euler

T
)−V (x)

T
to

(1.43) and using the Mean Value Theorem twice, we obtain

V (F Euler
T ) − V (x)

T

≤ −α3(|x|) +
V (F Euler

T ) − V (x)

T
−

∂V

∂x
(x)f(x, uct(x))

= −α3(|x|) +

[
∂V

∂x
(x + θ1Tf(x, uct(x))) −

∂V

∂x
(x)

]
f(x, uct(x))

≤ −α3(|x|) +

∣∣∣∣
∂V

∂x
(x + θ1Tf(x, uct(x))) −

∂V

∂x
(x)

∣∣∣∣ ·
∣∣f(x, uct(x))

∣∣

≤ −α3(|x|) + θ1T

∣∣∣∣
∂2V

∂x2
(x + θ2Tf(x, uct(x)))

∣∣∣∣ ·
∣∣f(x, uct(x))

∣∣2

≤ −α3(|x|) + Tκ(|x|) ,

where θ1, θ2 ∈ (0, 1), κ ∈ K∞, we assumed that T is bounded and the first
and the second derivatives of V are continuous (V is smooth). Hence, (V, uct)
is a Lyapunov SPA stabilizing pair for F Euler

T . Note that F Euler
T is one-step

consistent with F e
T and uct(x) is assumed to be bounded on compact sets and,

hence, bounded uniformly in small T (since uct(x) is independent of T ). Since
V has continuous first derivative, it is locally Lipschitz and we can conclude
in a similar manner like in the proof of Proposition 1.3 that

V (F e
T ) − V (x)

T
≤ −α3(|x|) + Tκ1(|x|) , (1.45)

for some κ1 ∈ K∞. Hence, (V, uct) is a Lyapunov SPA stabilizing pair for the
exact model F e

T . Finally, we conclude that the sampled-data system (1.44) is
SPA stable from Theorem 1.2. �

Remark 1.7. The analysis given above can be carried out with more generality
and one can prove that emulation leads to preservation of arbitrary dissipation
inequalities in an appropriate sense (see [29] for more details).
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The following example will be used to illustrate all our controller design
and redesign methods. The reason for considering this simple system in strict
feedback form is that we can use backstepping to systematically design a
control law and a Lyapunov function that are needed to apply our framework.

Example 1.3. Consider the continuous-time plant

η̇ = η2 + ξ

ξ̇ = u .
(1.46)

We design a continuous-time backstepping controller [24]. Note that the first
subsystem can be stabilized with the ”control” φ(η) = −η2 − η with the
Lyapunov function W (η) = 1

2η2. Using this information and applying [24,
Lemma 2.8 with c=1], we obtain

uct(η, ξ) = −2η − η2 − ξ − (2η + 1)(ξ + η2) , (1.47)

which globally asymptotically stabilizes the continuous-time system (1.46)
and moreover

V (η, ξ) =
1

2
η2 +

1

2
(ξ + η + η2)2 (1.48)

is a Lyapunov function for the continuous-time closed-loop system. Hence, we
conclude from Theorem 1.3 that the sampled-data system (1.44) is SPA stable.
Simulations for the sampled-data system with the emulated controller are
presented in Subsection 1.7.4 and a comparison to other controllers obtained
in the sequel is presented.

1.7.2 Continuous-Time Controller Redesign

In this subsection we illustrate the Lyapunov based redesign and we refer to
[36] for more details. We assume that a continuous-time controller

u = uct(x) (1.49)

has been designed and a Lyapunov function V satisfying (1.42), (1.43) was
found for the closed-loop continuous-time system. Suppose that we want to
implement a controller of the form (1.41) and we want to further design ui so
that the controller is ”better” in some sense than uct. For simplicity, let us
assume that

udt
T (x) := uct(x) + Tu1(x) ,

and u1(x) is a new control input that we want to design (i.e. we redesign
uct(x)). We do that by using the continuous-time Lyapunov function V as a
control Lyapunov function for an approximate discrete-time model F a

T that is
one step consistent with the exact model F e

T . That is, we consider
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V (F a
T (x, uct(x) + Tu1(x))) − V (x)

T
,

where F a
T is one step consistent with F e

T , and uct and V were obtained from
an arbitrary continuous-time design. There are different possible objectives
that one may try to achieve by designing u1 and we discuss here one obvious
choice. Let us first note that we can easily compute

V (F a
T (x, uct(x))) − V (x)

T
.

One way to design u1 is to require that

V (F a
T (x, uct(x) + Tu1(x))) − V (x)

T
<

V (F a
T (x, uct(x))) − V (x)

T
. (1.50)

In other words, we can design u1 to achieve more decrease for the Lyapunov
function along solutions of the closed-loop approximate model with the re-
designed controller (see [36]). However, not all Lyapunov functions that sat-
isfy (1.42) and (1.43) are appropriate for doing the redesign with the aim
of achieving the objective (1.50). Indeed, increasing the rate of convergence
in this way may lead to increasing the overshoots for some Lyapunov func-
tions, which is highly undesirable (see [36, Example 4.1]). To avoid creating
unacceptable overshoots in this manner, we need to assume that V is ”well
behaved”, that is the overshoot estimates that can be obtained using V for
the closed-loop system are acceptable (see [36, Assumption 2.2]). We acknowl-
edge that finding an appropriate V that satisfies this assumption is difficult
in general. With this assumption, the above described redesign will yield ac-
ceptable overshoots while it will typically improve the rate of convergence of
the approximate and sampled data closed-loop systems.

Finally, note that if u1 = u1(x) is designed to satisfy (1.50) and it is
bounded on compact sets, then we can conclude from our Theorem 1.2 that
the sampled-data system with the redesigned controller is SPA stable. We
revisit Example 1.3 to illustrate this approach.

Example 1.4. Consider the system in Example 1.3 and assume that we have
already designed the controller (1.47) and found the Lyapunov function (1.48).
Assume that the plant (1.46) is between a sampler and a zero-order-hold and
let us use for redesign, its Euler approximate model

η(k + 1) = η(k) + T (η2(k) + ξ(k))

ξ(k + 1) = ξ(k) + Tu(k) .
(1.51)

Denote x := (η ξ)T . Suppose for simplicity that udt(x) = uct(x)+Tu1(x) and
it is then not hard to compute

V (F Euler
T (x, uct(x) + Tu1)) − V (x)

T
= −η2−(ξ+η+η2)2+Tp1(u1, x)+O(T 2)
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where

p1(u1, x) =
1

2
(η2 +ξ)2 +(ξ +η+η2)(u1 +(η2 +ξ)2)+

1

2
(2η+η2 +ξ)2 , (1.52)

and O(T 2) contains higher order terms in T . Since T will have to be chosen
small, we neglect O(T 2) and we chose u1 so that the term p1(u1, x) is made
more negative (note that there are some terms in p1 that can not be made
negative using u1). One obvious choice is

u1(x) = −(η2 + ξ)2 − (ξ + η + η2) , (1.53)

which cancels one term and then provides extra damping to yield

p1(u1(x), x) =
1

2
(η2 + ξ)2 − (ξ + η + η2)2 +

1

2
(2η + η2 + ξ)2 .

We will simulate this controller in the next subsection and make some com-
parisons with other designs.

1.7.3 Discrete-Time Interconnection and Damping Assignment −

Passivity Based Control (IDA-PBC)

In this subsection, the second tool for continuous-time controller redesign
is discussed. While in Subsection 1.7.2 we consider general nonlinear system,
now we consider a class of nonlinear system namely Hamiltonian systems. The
technique used for the controller design is a type of passivity based control
design known as IDA-PBC.

IDA-PBC design is a powerful tool for solving the stabilization problem for
Hamiltonian systems [47, 48, 50]. Although IDA-PBC design is applicable to
a broader class of systems (see [1, 49, 50]), it applies naturally to Hamiltonian
systems due to the special structure of this class of systems.

Consider continuous-time Hamiltonian systems whose dynamics can be
written as [

q̇
ṗ

]
=

[
0 In

−In 0

] [
∇qH
∇pH

]
+

[
0

G(q)

]
u , (1.54)

where p ∈ R
n and q ∈ R

n are the states, and u ∈ R
m, m ≤ n, is the

control action. The matrix G(q) ∈ R
n×m is determined by the way control u

enters the system. The function H(q, p) is called the Hamiltonian function of
the system, and is defined as the sum of the kinetic energy K(q, p) and the
potential energy P (q)12, i.e.

12 Note that in many references the potential energy is commonly denoted with V .
However, we use the notation P instead, to avoid confusion with the notations V

and VT that we have used to denote Lyapunov functions.
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H(q, p) = K(q, p) + P (q) =
1

2
p>M−1(q)p + P (q) , (1.55)

where M(·) is the symmetric inertia matrix.

We consider a simple case when system (1.54) is a separable Hamiltonian
system. For this class of systems, the inertia matrix M is constant, and hence
the kinetic energy and the potential energy of the system are decoupled, i.e.

H(q, p) = K(p) + P (q) =
1

2
p>M−1p + P (q) . (1.56)

We also consider only fully actuated systems, i.e when G(q) is full rank (m =
n). In this setting, ∇qH(q, p) = ∇qP (q) and ∇pH(q, p) = M−1p. The idea
of IDA-PBC design is to construct a controller for system (1.54) so that the
stabilization is achieved assigning a desired energy function

Hd(q, p) = Kd(p) + Pd(q) =
1

2
p>M−1

d p + Pd(q) , (1.57)

that has an isolated minimum at the desired equilibrium point (qe, 0) of the
closed-loop system. IDA-PBC design consists of two steps. First, design the
energy shaping controller ues to shape the total energy of the system to obtain
the target dynamics; second, design the damping injection controller udi to
achieve asymptotic stability. Hence, an IDA-PBC controller is of the form

u = ues(q, p) + udi(q, p) . (1.58)

The energy shaping controller ues is obtained by solving the equation

[
0 In

−In 0

] [
∇qH
∇pH

]
+

[
0

G(q)

]
ues =

[
0 M−1Md

−MdM
−1 0

] [
∇qHd

∇pHd

]
. (1.59)

The first row of (1.59) is directly satisfied, and the second row can be written
as

Gues = ∇qH − MdM
−1∇qHd . (1.60)

Since we consider G full rank (and hence invertible), ues is obtained as

ues = G−1(∇qH − MdM
−1∇qHd) . (1.61)

Moreover, the damping injection controller udi is constructed as

udi = −kvG>∇pHd = −kvG
>M−1

d p, kv > 0 . (1.62)

For more details and more general results about IDA-PBC design for conti-
nuous-time systems, we refer to [48, 49, 50].

In this subsection, we present a discrete-time IDA-PBC controller redesign
to obtain a discrete-time IDA-PBC controller from a controller that is first
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obtained via continuous-time design. This redesign is based on the Euler ap-
proximate model of system (1.54), namely

q(k + 1) = q(k) + T∇pH(q(k), p(k))

p(k + 1) = p(k) − T
(
∇qH(q(k), p(k)) − Gu(k)

)
.

(1.63)

Suppose all conditions of the continuous-time design hold, and we have as-
signed the desired energy function (1.57) for the system. As in Subsection
1.7.2, we assume the Lyapunov function to be well behaved [36] and we are
now ready to state the following theorem.

Theorem 1.4. Consider the Euler model (1.63) of the separable Hamiltonian
system (1.54) with Hamiltonian (1.56) and matrix G invertible. Suppose the
inertia matrix M is diagonal and the desired potential energy Vd is positive
definite. Then the discrete-time controller uT = uT

es + uT
di where

uT
es = G−1

(
∇qH(q, p) − MdM

−1∇qHd(q, p)
)

(1.64)

uT
di = −kvG

>∇pHd(q, p) = −kvG
>M−1

d p , (1.65)

with kv > 0 and ∇qHd(q, p) = ∇qHd(q, p) + TκLvM
−1p, where κ > 0 and

Lv = ∇qqPd(q) ≥ 0 is a SPA stabilizing controller for the Euler model (1.63).
Moreover, there exists a function

V (p, q) = Hd(p, q) + εp>q , (1.66)

with ε > 0 sufficiently small which is a SPAS Lyapunov function for the system
(1.63), (1.64), (1.65). �

Remark 1.8. It is known that Euler approximation is not Hamiltonian con-
serving. To avoid confusion about the motivation of using this method in our
construction we emphasize that IDA-PBC design does not involve Hamilto-
nian conservation as in the numerical analysis context and we need to distin-
guish these two different issues. Constructing ues is not aimed to conserve the
Hamiltonian of the system, but to transform the system to another Hamilto-
nian system by using feedback and shaping the energy of the system (defining
the desired Hamiltonian). Therefore, the use of Euler approximation in this
context is justified.

From the construction of the controller (1.64), it is obvious that the
discrete-time controller is a modification of the controller obtained by em-
ulation of the continuous-time IDA-PBC controller, with the extra term

Tu1 = −G−1MdM
−1

(
∇qHd(q, p) −∇qHd(q, p)

)

= −TG−1MdM
−1κLvM

−1p .
(1.67)
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Moreover, assuming that ε > 0 is of order T , the contribution of the extra
term (1.67) to the Lyapunov difference is

∆V = −T 2p>Mp + O(εT 2) + O(T 3) = −T 2p>Mp + O(T 3) , (1.68)

with M := κM−1LvM
−1 positive semidefinite. Therefore, it is guaranteed

that for ε > 0 and T > 0 sufficiently small, the Lyapunov difference with
the discrete-time redesigned controller is more negative than it is with the
emulation of the continuous-time controller.

Remark 1.9. It is obvious that this IDA-PBC redesign construction follows the
approximate based design framework presented in Section 1.6. The setting we
presented in this subsection is a simple illustration when a strict Lyapunov
function for Hamiltonian system can be constructed in a systematic way. In a
more general situation, especially for the case of underactuated control [27],
finding a strict Lyapunov function is still an open problem.

Example 1.5. Consider the nonlinear pendulum shown in Figure 1.2, which is
a separable Hamiltonian system with dynamic model given as

q̇ = p, ṗ = − sin(q) + u . (1.69)

The Hamiltonian of this system is

H = K(p) + P (q) =
1

2
p2 − cos(q) , (1.70)

and the equilibrium point to be stabilized is the origin. By choosing Md =
M = I and

Pd = − cos(q) +
k1

2
q2 + 1 , k1 ≥ 1 ,

the desired energy function of the system is

Hd = Kd(p) + Pd(q) =
1

2
p2 − cos(q) +

k1

2
q2 + 1 . (1.71)

Applying (1.61) and (1.62), the continuous-time energy shaping and the damp-
ing injection controller for system (1.69) are obtained as

ues(t) = ∇qH − MdM
−1∇qHd = −k1q , (1.72)

udi(t) = −kvG
>∇pHd = −kvp, kv > 0 . (1.73)

Choose the Lyapunov function as

V (q, p) = Hd(p, q) + εqp (1.74)

with ε > 0 sufficiently small. The Lyapunov derivative is obtained as
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Fig. 1.2. Nonlinear pendulum

V̇ (q, p) = Ḣd(p, q) + ε(q̇p + qṗ)

= −kvp
2 + ε(p2 − q sin(q) − k1q

2 − kvqp)

≤ −(kv − ε(1 +
1

2
kv))p2 − εq sin(q) − ε(k1 −

1

2
kv)q

2 .

(1.75)

By choosing kv and k1 appropriately, it can be shown that V is a strict
AS Lyapunov function for the system (1.69), (1.72), (1.73). Moreover, using
Theorem (1.3) we can conclude that the emulation controller u(k) := ues(k)+
udi(k) obtained by sample and hold of the continuous-time controller u(t) is
a SPA stable controller for the plant (1.69).

Now we redesign the controller (1.72) using Theorem 1.4. Applying (1.64)
yields

uT
es(k) = ∇qH − MdM

−1(∇qHd + TκLvM
−1p)

= −k1q − Tκ(cos(q) + k1)p ,
(1.76)

and (1.65) gives uT
es(k) = −kvp. Applying the discrete-time controller

uT (k) := uT
es(k) + uT

di(k) (1.77)

and using the same Lyapunov function (1.74) as in the continuous-time case,
we obtain the Lyapunov difference

∆V := V (q(k + 1), p(k + 1)) − V (q(k), p(k))

≤ −T

(
(kv − ε(1 +

1

2
kv))p2 + εq sin(q) + ε(k1 −

1

2
kv)q2

)

− T 2κ(k1 + cos(q))p2 + O(T 2) .

(1.78)
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By choosing kv , k1 and κ appropriately, we can show that for sufficiently small
T > 0 and ε > 0, V is a strict SPA Lyapunov function for the Euler model
with discrete-time controller.
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Fig. 1.3. Response of the nonliner pendulum
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Fig. 1.4. The desired energy function Hd with kv = 0.

Taking the trajectory of the continuous-time system as reference, Figure
1.3 shows that applying (1.77) keeps the trajectory of the closed-loop system



1 Sampled-Data Control of Nonlinear Systems 33

closer to the reference than using the emulation controller. In the simulation
we have used the initial state (q◦, p◦) = (π/2 − 0.2, 0.5), k1 = 1, kv = 1 and
T = 0.35. Figure 1.4 displays the desired Hamiltonian function when applying
only the energy shaping controller to the plant. In continuous-time IDA-PBC,
ues(t) conserves the Hamiltonian in closed-loop and hence the closed-loop sys-
tem is critically stable. Applying the emulation controller ues(k) immediately
destroys closed-loop stability. On the other hand, the discrete-time controller
uT

es(k) tries to recover Hamiltonian conservation, making the closed-loop sys-
tem less unstable than with ues(k).

Applying each controller to the Euler model of (1.69) and then computing
the difference of the Lyapunov differences, we obtain that

∆V uT

es−∆V ues = −T 2κ(k1+cos(q))p2−εT 2κ(k1+cos(q))qp+O(T 3) . (1.79)

Suppose that ε is of order T , then we can write

∆V uT

es − ∆V ues = −T 2κ(k1 + cos(q))p2 + O(T 3) , (1.80)

which shows that for ε > 0 and T > 0 sufficiently small, ∆V uT

es is more
negative than ∆V ues in a practical sense. This explains why the discrete-time
controller performs better than the emulation controller.

1.7.4 Backstepping via The Euler Model

Backstepping is a systematic controller design technique for a special class
of nonlinear systems in feedback form [24]. The goal is to exploit the special
structure of the system to systematically construct a control law uT for the
Euler approximate model of the system and a Lyapunov function VT that
satisfy all conditions of Theorem 1.2 in Section 1.6. Results of this subsection
are based on [41].

We consider discrete-time backstepping design based on the Euler model
of the system since the Euler model preserves the strict feedback structure
of the continuous-time system that is needed in backstepping. Consider the
continuous-time system

η̇ = f(η) + g(η)ξ

ξ̇ = u .
(1.81)

The Euler approximate model of (1.81) has the following form.

η(k + 1) = η(k) + T [f(η(k)) + g(η(k))ξ(k)] (1.82)

ξ(k + 1) = ξ(k) + Tu(k) . (1.83)

The main result of this subsection is stated next.
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Theorem 1.5. Consider the Euler approximate model (1.82), (1.83). Suppose
that there exists T̂ ≥ 0 and a pair (αT , WT ) that is defined for all T ∈ (0, T̂ )
and that is a SPA stabilizing pair for the subsystem (1.82), with ξ ∈ R regarded
as a control. Moreover, suppose that the pair (αT , WT ) has the following prop-
erties.

1. αT and WT are continuously differentiable for any T ∈ (0, T̂ ).

2. there exists ϕ̃ ∈ K∞ such that

|αT (η)| ≤ ϕ̃(|η|) . (1.84)

3. for any ∆̃ > 0 there exist a pair of strictly positive numbers (T̃ , M̃) such
that for all T ∈ (0, T̃ ) and |η| ≤ ∆̃ we have

max

{∣∣∣∣
∂WT

∂η

∣∣∣∣ ,
∣∣∣∣
∂αT

∂η

∣∣∣∣
}

≤ M̃ . (1.85)

Then, there exists a SPA stabilizing pair (uT , VT ) for the Euler model (1.82),
(1.83). In particular, we can take

uT = −c(ξ − αT (η)) −
∆̃W T

T
+

∆αT

T
(1.86)

where c > 0 is arbitrary, and

∆αT := αT (η + T (f + gξ)) − αT (η) (1.87)

∆̃W T :=

{
∆W T

(ξ−αT (η)) , ξ 6= αT (η)

T ∂WT

∂η
(η + T (f + gξ))g, ξ = αT (η)

(1.88)

∆W T := WT (η + T (f + gξ)) − WT (η + T (f + gαT )) (1.89)

and the Lyapunov function is

VT (η, ξ) = WT (η) +
1

2
(ξ − αT (η))2 .

�

Remark 1.10. The control law (1.86) is in general different from continuous-
time backstepping controllers as the next example will illustrate. Interestingly,
we show in the next example that our control law can be written in the form

uEuler
T (x) = uct(x) + TuEuler

1 (x) ,

where uct(x) is a backstepping controller obtained from continuous-time back-
stepping. We show for the example that uEuler

T yields better performance



1 Sampled-Data Control of Nonlinear Systems 35

(better transients and larger domain of attraction) than the emulated back-
stepping controller uct(x). While we observed this trend in simulations for any
control law designed within our framework, we were unable to prove that this
is true in general.

Remark 1.11. Not every backstepping controller that stabilizes the Euler
model will stabilize the exact model. Indeed, the dead beat controller in our
first motivating example in Section 1.4 can be obtained using backstepping
and we saw that it was destabilizing the sampled-data system for all sampling
periods T . This further illustrates the importance of using our framework for
controller design via approximate discrete-time models.

Example 1.6. [41] We revisit the system in Example 1.3 but now we want to
use Theorem 1.5 based on the Euler model (1.51) of the system (1.46).

Again, the control law φ(η) = −η2 − η globally asymptotically stabilizes
the η-subsystem of (1.51) with the Lyapunov function W (η) = 1

2η2. Using the
construction in Theorem 1.5, we obtain the controller

uEuler
T (η, ξ) = uct(η, ξ) + TuEuler

1 , (1.90)

where uct(x) is the same as in Examples 1.3 and 1.4 and the following uEuler
1

is obtained as

uEuler
1 = −

1

2
(ξ − η + η2) − (ξ + η2)2 . (1.91)

From Theorem 1.5 we see that uEuler
T SPA stabilizes the Euler model (1.51).

This can be proven with the Lyapunov function V (η, ξ) = 1
2η2+ 1

2 (ξ+η+η2)2.
Hence, using Theorem 1.2 we conclude that the same controller SPA stabilizes
the exact model and consequently the sampled-data system.

Next we compare the controller (1.90) with the controllers that were de-
signed in Examples 1.3 and 1.4. First, note that the terms u1 in (1.53) and
uEuler

1 in (1.91) are different. Moreover, all controllers become the same and
equal to uct(x) for T = 0. Hence, it makes sense to compare the controllers
for small T .

Figure 1.5 shows the time response of the system (1.81) when applying
respectively the emulation controller, the redesigned controller and the Euler
based discrete-time controller. The response using continuous-time controller
is used as reference. In the simulation, we set x◦ = (2 2)> and T = 0.5. It
is shown that the emulation controller destabilizes the system, whereas the
redesign and the Euler based controllers maintain the response of the system
relatively close to the continuous-time response.

In Figure 1.6 we show the simulation result when we increase the initial
state to x◦ = (400 400)>. We do not plot the response of the system with
emulation controller since it is obviously unstable. Interestingly, with the re-
design controller and the Euler based controller, the stability of the closed-loop
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Fig. 1.5. Closed-loop responses of the system (1.81) for small initial states.

system is preserved although the initial state in this simulation is 200 time
larger than the one used in Figure 1.5. In fact, for these two controllers, the
stability is still maintained for larger initial states in any direction in the state
space.

1.8 Design Examples

In this section two examples are presented to illustrate the various design tools
we have discussed in Section 1.7. It will also be shown that the design fits
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Fig. 1.6. Closed-loop response of the system (1.81) for large initial states.

with the framework proposed in Section 1.6. In the first example a jet engine
system is considered, and the emulation and the Euler based backstepping
design are applied to solve the stabilization problem of the jet engine. In the
second example, a stabilization design for an inverted pendulum is studied.
A backstepping design and an IDA-PBC design are applied to the system.
Simulation results are presented to show the performance of each controller
designed.
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1.8.1 Jet Engine System

A simplified Moore-Greitzer model of a jet engine with the assumption of no
stall is given by

ẋ1 = −x2 −
3

2
x2

1 −
1

2
x3

1

ẋ2 = −u ,
(1.92)

where x1 and x2 are respectively related to the mass flow and the pressure
rise through the engine after an appropriate change of coordinates (see [24]
for more details). We will apply both the continuous-time and the Euler based
backstepping design discussed in Subsection 1.7.4 to this system, and compare
the performance of the controller obtained by the Euler based backstepping
design with the one obtained by emulation of the continuous-time controller.

Choose φ(x1) = − 3
2x2

1 + x1 and W (x1) = 1
2x2

1. Applying [24, Lemma 2.8]
and choosing c = 1, the continuous-time controller is obtained as

uct(x1, x2) = −x1 +c(x2 +
3

2
x2

1 +
1

2
x3

1)+(3x1−1)(−x2−
3

2
x2

1−
1

2
x3

1) . (1.93)

Moreover, using the Euler approximate model of (1.92) and applying Theorem
1.5, we obtain the discrete-time Euler-based controller

uEuler
T (x1, x2) = uct(x1, x2) + Tu1(x1, x2) , (1.94)

where

u1(x1, x2) =
1

2
(x2 + x1 +

3

2
x2

1 + x3
1) .

We implement the controller (1.94) and the discrete-time emulation of (1.93)
to control the continuous-time plant (1.92), comparing the performance. The
simulation results with parameters c = 1, x◦ = (2, 3)> and T = 0.2 are
illustrated in Figure 1.7.

It is shown that the Euler-based controller outperforms the emulation
controller and for the chosen simulation parameters, it keeps the response of
the closed-loop system close to the response of the continuous-time closed-loop
system.

1.8.2 Inverted Pendulum

Consider a nonlinear dynamic model of an inverted pendulum as illustrated
in Figure 1.8, namely

q̇ = p

ṗ = sin(q) + u .
(1.95)
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Fig. 1.8. Inverted pendulum

This dynamic model is in strict feedback form. This system also belongs to
the class of separable Hamiltonian systems with the Hamiltonian function

H =
1

2
p2 + cos(q) . (1.96)

Therefore, we can apply both the backstepping design and the IDA-PBC
redesign to construct a stabilizing controller for this system. Note that q = 0
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is the equilibrium point of this system and is an unstable equilibrium. The
control design in this case is aiming at stabilizing this equilibrium point.

Backstepping Design

Choose φ(q) = −q and W (q) = 1
2q2. The continuous-time controller is ob-

tained as
uct(q, p) = − sin(q) − (1 + c)(p + q) . (1.97)

Applying Theorem 1.5, we design a discrete-time controller for the Euler ap-
proximate model of the system (1.95)

q(k + 1) = q(k) + Tp(k)

p(k + 1) = p(k) + T (sin(q) + u) .
(1.98)

We obtain the Euler based controller

uEuler
T (q, p) = uct(q, p) + Tu1(q, p) , (1.99)

with

u1(q, p) = −
1

2
(p − q) .

Implementing the controller (1.99) and the discrete-time emulation of (1.97)
to the continuous-time plant (1.95), we compare the performance of the two
controllers, using the continuous-time controller performance as reference. The
simulation results with parameters c = 1, (q◦, p◦) = (π

2 −0.2, 1
2 ) and T = 0.5

are displayed in Figure 1.9.

IDA-PBC Redesign

We apply the results discussed in Subsection 1.7.3 to design a stabilizing
controller for the inverted pendulum (1.95). From the Hamiltonian (1.96) we
have that M = I and P = cos(q). To bring the energy to the minimum
level at the equilibrium point, we assign a new energy function Hd for the
pendulum, by keeping Md = M = I and choosing the new potential energy
Pd = − cos(q) + 1

2k1q
2 + 1. Hence,

Hd =
1

2
p2 − cos(q) +

1

2
k1q

2 + 1 . (1.100)

Using the continuous-time IDA-PBC design, we obtain the controller

uct(q, p) = ues(q, p) + udi(q, p) , (1.101)

with



1 Sampled-Data Control of Nonlinear Systems 41

−1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

q

p

continuous
emulation
Euler based

0 1 2 3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Time (second)

To
rq

ue
, u

continuous
emulation
Euler based

Fig. 1.9. Responses of the inverted pendulum with backstepping controllers.

ues(q, p) = −2 sin(q) − k1q (1.102)

udi(q, p) = −kvp . (1.103)

With this controller, we obtain

Ḣd = −kvp2 . (1.104)

Utilizing La Salle Invariance Principle we can show that the closed-loop ap-
proximate model is asymptotically stable. Moreover, using Theorem 1.3, we
can conclude that the discrete-time controller obtained by emulation of (1.101)
is a SPA stabilizing controller for the inverted pendulum (1.95).
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Moreover, using Theorem 1.4 we will redesign the emulation controller, to
improve the performance of the system. Consider the Euler model (1.98) and
applying (1.64) and (1.65), the redesigned controller is obtained as

uT
dt(q, p) = uct(q, p) + Tu1(q, p) ,

u1(q, p) = −G−1MdM
−1κLV (q)M−1p = −κ(cos(q) + k1)p .

(1.105)

While in the continuous-time design we can use the desired Hamiltonian as a
Lyapunov function and utilize La Salle Invariance Principle to conclude sta-
bility of the continuous-time system, the same approach cannot be applied in
this controller redesign. In order to apply the framework provided in Theo-
rem 1.2 a strict Lyapunov function for the closed-loop approximate model is
required, whereas the desired Hamiltonian does not satisfy this. For that we
need to construct a strict Lyapunov function applying (1.66), and we choose
such function to be

V (q, p) = Hd(q, p) + εqp . (1.106)

Applying the controller (1.105) to stabilize the Euler model (1.98), the Lya-
punov difference is obtained as

∆V := V (q(k + 1), p(k + 1)) − V (q(k), p(k))

≤ −T

(
(kv − ε(1 +

1

2
kv))p2 + εq sin(q) + ε(k1 −

1

2
kv)q2

)

− T 2κ(k1 + cos(q))p2 + O(T 2) .

(1.107)

By choosing kv , k1 and κ appropriately, we can show that for sufficiently
small T > 0 and ε > 0, V is a strict SPAS Lyapunov function for the Euler
model with the discrete-time controller. Moreover, using Theorem 1.6 we can
conclude SPA stability of the exact model and the sampled-data system (1.95),
(1.105). The sampled-data simulation results with parameters k1 = 1, kv = 2,
κ = 1, (q◦, p◦) = (π

2 − 0.2, 1
2 ) and T = 0.5 are illustrated in Figure 1.10.

1.9 Overview of Related Literature

The results we have presented in the earlier sections are only the basic of
research that has been done in the topic covered by this chapter. Indeed
there is a lot more research done in parallel directions, both for the direct
discrete-time design and the emulation (re)design. A similar and more general
design framework than what has been provided in Section 1.6 is presented in
[45]. This framework uses trajectory based analysis and instead of using one
step consistency, a multistep consistency property is utilized. More general
design frameworks are presented in [43] where nonlinear systems represented
as differential inclusion are considered, and in [39] where nonlinear systems
with exogenous inputs are studied.
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Fig. 1.10. Response of the inverted pendulum with IDA-PBC controller.

Recently, researcher has started to build design tools within the various
frameworks mentioned above. Design exploring model predictive control or
receding horizon techniques are presented in [20, 37].

Although the frameworks consider only time invariant systems, the exten-
sion to time-varying systems is direct. Results presented in [40] on asymptotic
stabilization for time-varying cascaded systems and in [26] on input-to-state
stabilization of systems in power form using time varying control are examples
of this extension.

A problem that one may face in applying the framework is that it requires
the knowledge of a strict Lyapunov function for the system. While for linear
systems a strict Lyapunov function is available for free, in the sense that
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a quadratic Lyapunov function can always be used, it is not the case for
nonlinear systems in general. Moreover, when the controller is designed based
on an approximate model, powerful tools to conclude stability, either SP-AS
or SP-ISS, for continuous-time systems, such as La Salle Invariance Principle
and Matrosov Theorem are not directly applicable for sampled-data system
when stability is attained in a semiglobal practical sense (see discussion in
Subsection 1.8.2). Hence results from [42] that provide a partial construction
of Lyapunov functions, that in some sense generalizes the construction used
in Theorem 1.4 are very useful to replace La Salle Invariant Principle. In
[28] a Lyapunov function construction for interconnected systems is proposed
utilizing a nonlinear small gain theorem. In [44] a result similar to Matrosov
theorem is developed.

There are more research and studies related to the topic presented in
this chapter that follow a different framework. Approaches using feedback
linearization are discussed for instance in [3, 18] and references therein. A
geometric framework for feedback linearization is utilized in [8, 11]. Singular
perturbation is used as the main tool to solve sampled-data control problems
in [7, 9]. Adaptive control approach based on Euler model is used in [31] and
robust stabilization using discontinuous control is studied in [22] (see also
references therein).

While we only consider static state feedback in this chapter, assuming the
availability of all states is sometimes not realistic. The issue of observability,
as well as controllability, of discrete-time systems is studied in [55, 57]. Results
on discrete-time controller design and stabilization using output feedback are
presented for instance in [5, 10, 14, 54]. A framework for designing a discrete-
time observer based on the approximate model of the plant is presented in [4].
When implementing the observer to build a controller for the plant, this result
can also be considered as a framework for designing a dynamic feedback. This
framework can be seen as an extension of the controller design framework
presented in Section 1.6.

Due to the increasing interest of research on nonlinear sampled-data con-
trol systems, the list of related literature will always grow longer. What we
have cited in this section is in any way not a complete list of reference but just
a glimpse of available results on various directions that aims to help readers
to see the variety and fertility of research in this topic.

1.10 Open Problems

There is a wide range of open research problems that one could address.

• Constructive designs for classes of nonlinear systems and their approx-
imate models need to be further developed within our framework. Any
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continuous-time design technique can be revisited within our framework.
If the Euler model is used for design, then the structure of the approximate
model is the same as the structure of the continuous-time system and in
this case the discrete-time design is easier. However, if higher order ap-
proximate models are used for controller design then the structure of the
approximate discrete-time model may be very different from the structure
of the continuous-time model and design becomes harder. In this case, it
seems more natural to use model predictive control that does not exploit
the structure of the model to design the controller.

• The quantitative relationship between the choice of approximate model
used in design and the performance of the obtained controller is unclear.
There is an obvious tradeoff between the complexity of the controller de-
sign and the accuracy of the approximations. Typically, the design is eas-
iest for the Euler model but we expect that better performance could be
obtained if a better approximation was used for controller design. Quanti-
fying this possible improvement in performance appears to be an important
issue.

• Obtaining non-conservative estimates of T ∗ in our theorems would be quite
useful for practicing engineers since choosing an appropriate T is an im-
portant step in our approach. While we do compute T ∗ in our proofs, our
estimates are very conservative and, hence, not useful in practice. We are
not aware of any papers that attempt to address this problem.

• In the presented results, so far we use full state feedback, assuming that
all states are available for measurement. In reality, this is not always the
case due to the physical meaning of the states or the available sensors
and measurement devices may be too expensive. To overcome this situa-
tion, observer design and developing results based on output feedback are
potential solutions.

• Case studies and practical implementations of our algorithms are needed
to motivate new theoretical issues in this area and to assess the developed
theory in practice.
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29. D. S. Laila, D. Nešić, and A. R. Teel. Open and closed loop dissipation inequal-
ities under sampling and controller emulation. European Journal of Control,
8:109–125, 2002.

30. V. Lakshmikantham and S. Leela. Differential and integral inequalities. Aca-
demic Press, New York, 1969.

31. I. M. Y. Mareels, H. B. Penfold, and R. J. Evans. Controlling nonlinear time-
varying systems via Euler approximations. Automatica, 28:681–696, 1992.

32. R. H. Middleton and G. C. Goodwin. Digital control and estimation : a unified

approach. Prentice Hall, 1990.
33. S. Monaco and D. Normand-Cyrot. On the conditions of passivity and lossless-

ness in discrete-time. In Proc. European Control Conference, Brussels, 1997.
34. D. S. Naidu and A. K. Rao. Singular Perturbation Analysis of Discrete Control

Systems. Springer Verlag, New York, 1985.
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36. D. Nešić and L. Grune. Lyapunov based continuous-time nonlinear controller
redesign for sampled-data implementation. Automatica, to appear, 2005.
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39. D. Nešić and D. S. Laila. A note on input-to-state stabilization for nonlinear

sampled-data systems. IEEE Trans. Auto. Contr., 47:1153–1158, 2002.
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46. D. Nešić, A. R. Teel, and E. Sontag. Formulas relating KL stability estimates of

discrete-time and sampled-data nonlinear systems. Syst. Contr. Lett., 38:49–60,
1999.

47. R. Ortega and E. Garcia-Canseco. Interconnection and damping assignment
passivity-based control: A survey. European J. of Control, 10, No. 5, 2004.

48. R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blankenstein. Stabilization
of a class of underactuated mechanical systems via interconnection and damping
assignment. IEEE TAC, 47:1218–1233, 2002.

49. R. Ortega, A. van der Schaft, I. Mareels, and B. Maschke. Putting energy back
in control. IEEE Contr. Syst. Mag., 21:18–33, 2001.

50. R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar. Interconnection
and damping assignment passivity-based control of port-controlled hamiltonian
systems. Automatica, 38:585–596, 2002.

51. J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman
& Hall, 1994.

52. S. Sastry. Nonlinear Systems. Analysis, Stability and Control. Springer, 1999.
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