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Abstract

We present several equivalent characterizations of uniform global exponential stability (UGES)
and uniform global asymptotic stability (UGAS) of arbitrary closed (not necessarily compact) sets for
nonlinear difference inclusions. In particular, we provide several characterizations of these stability
properties via summability criteria that do not require the knowledge of a Lyapunov function. We
apply our results to prove novel nested Matrosov theorems for UGES and UGAS of the origin for
time-varying nonlinear difference inclusions.

1 Introduction

Qualitative stability theory of dynamical systems is an active research area since, at least, the seminal
works of Poincaré [24] and Lyapunov [18]. The qualitative qualifier refers to the quest for methods which
circumvent the generally impossible task of solving analytically nonlinear dynamical equations to draw
conclusions on the behaviour of solutions.

Among the many definitions of stability (of solutions) of dynamical systems probably the most useful
is Lyapunov stability and, more particularly, asymptotic stability; both introduced by Lyapunov in 1892
along with his second method, also known as ‘direct method’ which relies on the ability to find a function
with certain monotonicity properties as well as its time derivative along the system’s solutions. Since
then, many refinements have been established including a range of definitions, pertaining to the size of
the bassin of attraction (local vs global –cf. [1]), whether the attractor is a “point” or a set –cf. [29], etc.
Definitions and theorems are suited for particular classes of systems: see for instance [10, 9] for the case of
continuous-time continuous systems and [4] for systems with discontinuous right-hand sides. For recent
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examples see for instance [8] for non-autonomous continuous-time systems and [12] for discontinuous
systems.

In this paper we study discrete-time systems with discontinuous right-hand sides, more precisely,
systems described by difference inclusions

x+ ∈ F (x) , (1)

where x ∈ Rn and F (·) is in general a set-valued map (more specific conditions on it will be given later).
The study of such class of systems is important for a number of reasons: for example, they appear

in the search for periodic solutions of continuous-time non-autonomous systems by defining a Poincaré
map –cf. [5]. Also, analysis of discrete-time systems may appear as an intermediary step in the study
of sampled-data systems –cf. [23] via approximately discretized models –cf. [7]. In that respect, it is
generally accepted that discretized systems remain ‘stable’ under small time-step discretization. How-
ever, this entails specificities which must be studied in their own right such as the characterization of
attractors, from a numerics viewpoint –cf. [14] and the introduction of appropriate definitions of stability
for discrete-time systems –cf. [22].

Relatively early results on the study of difference inclusions extend linear systems theory –cf. [20].
See also [3] which establishes similar stability conditions, based on the so-called spectral radius. Yet,
literature on Lyapunov-based methods remains the most developed –cf. [11, 6, 28]. Beyond its generality,
maybe due to the possibility of establishing conditions for robustness –cf. [13] which is another strongly
desirable property of dynamical systems from a control viewpoint.

Methods alternative to Lyapunov’s, acoording to which the goal is to find an auxiliary function whose
derivative along trajectories meets certain desired properties, are so-called integrability criteria. These
are stated as conditions on functions of the trajectories that have to be (uniformly) integrable i.e., the
integral of a function of time over R+ with certain monotonicity properties, along the trajectories of
the system, must be bounded from above by a quantity that does not depend on initial times. In the
discrete-time context such conditions take the form of summability criteria and may also be considered
as conditions on convergence of infinite series. Of broader interest are necessary and sufficient conditions
for stability of sets.

Results that exploit the so-called integrability criteria for uniform global exponential stability (UGES)
and uniform global asymptotic stability (UGAS) of arbitrary sets for continuous-time differential inclu-
sions were recently reported in [27]. These conditions are useful in situations when the uniform stability
has already been established (for instance, via a positive definite function whose derivative along the
solutions of the system is negative semi-definite) and one only needs to check the uniform attractivity.
An interesting application of such theorems is, also reported in [27], is a generalization of the so-called
Matrosov’s theorem [19]. Integrability and summability criteria establish a clear link with input-output
stability –cf. [16] in the classical Lp sense. These results allow us to establish convergence rates for
dynamical systems for which Lyapunov functions are very difficult to construct –cf. [15]1. Closer to
the realm of engineering science integrability conditions may result useful in applied control design; for
instance in cases where Lyapunov-like methods fail, such is the case of stability analysis of tracking-
controlled nonholonomic systems via time-varying controllers in [17].

Summability criteria for sampled-data nonlinear systems when the stability analysis is carried out
via an approximate discrete-time model of the system have been obtained recently2. In particular, a
sampled-data counterpart of the integrability criteria for differential inclusions from [27] was reported
in [21] as well as a counterpart of extended Matrosov theorem for differential equations from [17] was
presented in [22]. In this approach, one needs to establish stability of a family of approximate discrete-
time models that are parameterized with the sampling period and the goal is to establish appropriate
stability properties of this family that would guarantee that the family of exact discrete-time models
will also be stable for sufficiently small sampling periods.

Results in [21, 22] can be modified and used in the special case when the exact discrete time model of
the sampled-data system is known and one does not need to deal with families of discrete-time systems.

1In this respect it is convenient to stress that we are aware of a very recent unpublished (yet) result on the construction
of Lyapunov functions for MRAC systems, by F. Mazenc.

2Since the exact discrete-time model of a nonlinear sampled-data system is often not available to the control designer.
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However, straightforward modifications of results from [21, 22] to this special case would be unnecessarily
restrictive and technical. Hence, we address in this paper the case when the exact discrete-time model
of the system is known and we prove the results under weaker assumptions than what would be possible
by doing the modifications of [21, 22]. In particular, we investigate various stability characterization
of UGES and UGAS of arbitrary sets for nonlinear difference inclusions (1). We emphasize that very
little will be assumed on the set-valued map F (·) and, in particular, we allow F (·) to be discontinuous.
Hence, our results hold under very general assumptions and, moreover, the proofs are less technical than
their continuous-time or sampled-data counterparts. The results in this paper are technically different
from results in [27, 17, 21, 22] and, we believe, will prove very useful for systems of the form (1) as their
sampled-data and continuous-time counterparts have.

The first part of this paper provides several summability criteria for checking UGES (Theorem 1)
and UGAS (Theorem 2) of arbitrary closed sets for difference inclusions of the form (1). These results
parallel recent results on integral characterizations of UGES and UGAS of arbitrary sets for continuous
time nonlinear differential inclusions in [27] and constitute an outgrowth of the main results in [16]
for difference equations. The second part of the paper provides further characterizations of UGES and
UGAS for (1) using the notion of detectability (Theorem 1) and via Matrosov functions (Theorems 3
and 4). Matrosov functions are useful in situations when uniform stability of the system is already
established and one only needs to check uniform attractivity.

Our results on stability of sets may be related to output stability –cf. [25] for the case when the
output corresponds to the distance between the state and the set in question. We define such distance
below.

2 Preliminaries

R and N denote, respectively, the sets of real and natural (that includes zero) numbers. Given c ∈ R we
denote as R≥c the set of all real numbers that are greater than or equal to c (similar notation is used for
the set N). Given a closed set A ⊂ Rn, we denote the distance of an arbitrary x ∈ Rn from this set as:

|x|A := inf
z∈A

|x− z| .

Also, given 0 ≤ δ ≤ ∆, we use the notation HA(δ,∆) := {x ∈ Rn : δ ≤ |x|A ≤ ∆}.

Assumption 1 Consider the system (1). We assume that for each x the set F (x) is non-empty. ¤

The solutions with initial condition x0 ∈ Rn are denoted by φ(·, x0) hence, φ(0, x0) = x0. When F (x) is
multi-valued, the solution generated by the initial condition x0 is not uniquely defined. We denote the
set of all possible solutions starting from x0 as S(x0) and for any function (k, x0) 7→ φ(k, x0) we write
φ ∈ S(x0) if we have that φ(k + 1, x0) ∈ F (φ(k, x0)) for all k ∈ N.

We also use the following standard definitions. A function α : R≥0 → R≥0 is said to belong to class
PD (also α ∈ PD) if it is continuous, zero at zero and positive for all other values of its argument. A
function α : R≥0 → R≥0 is said to belong to class-G (also α ∈ G) if the function is continuous, zero at
zero and nondecreasing. It is said to belong to class-K (also α ∈ K) if α ∈ G and it is strictly increasing.
It is said to belong to class-K∞ (also α ∈ K∞) if α ∈ K and it is unbounded. Note that class-K∞
functions are globally invertible. A function β : R≥0 × N≥0 → R≥0 is said to belong to class-KL (also
β ∈ KL) if the function is nondecreasing is its first argument, non-increasing in its second argument and
lims→0+ β(s, k) = limk→∞ β(s, k) = 0. The following lemma can be proved in a similar manner as the
“Sontag’s lemma” given in [26]:

Lemma 1 Let β ∈ KL and λ ∈ (0, 1). There exist α1, α2 ∈ K∞ such that

α1(β(s, k)) ≤ α2(s)λk ∀s, k .

¤
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The following definition is not standard but we find it useful to state our main results.

Definition 1 A pair of class-G functions (α1, α2) is said to be compatible for uniform global exponential
stability (cUGES) if there exist λ, λ ∈ (0, 1) and Γ ≥ 1 such that

α2(s) ≤ α1(Γ · s); λ · α2(s) ≤ α2(λ · s) ∀s ≥ 0 .

¤

For instance, functions αi(s) = ais
p, i = 1, 2 are cUGES if ai > 0, i = 1, 2 and p > 0. Similarly, the

functions α1(s) = α2(s) = arctan(s) are cUGES (for instance, we can take Γ = 1, λ = λ = 0.5).
We can state the following lemma whose proof is given in the appendix:

Lemma 2 If the pair of class-G functions (α1, α2) is cUGES, then for each µ ∈ [0, 1) there exist Γ ∈ R≥1

and λ ∈ [0, 1) such that:
µkα2(s) ≤ α1(s · Γλk) ∀s ∈ R≥0, k ∈ N . (2)

¤

Remark 1 It is straightforward to show that if the pair (α1(s), α2(s)) is cUGES, then for any Γ ∈ R≥1

we have that the pair (α1(s), α2(Γ · s)) is cUGES. ¤

3 Characterizations of stability of sets

In this section, we provide two main results that establish several equivalent characterizations of set
UGES (Theorem 1) and set UGAS (Theorem 2). These results are later used to prove further character-
izations of UGES/UGAS via the detectability conditions (Theorem 1) and Matrosov functions (Theorem
3 and 4). Proofs of all main results are presented in Section 4.

3.1 Uniform global exponential stability of sets

Let A ⊂ Rn be a (given) closed (not necessarily compact) set. We introduce the following definitions
for system (1).

Definition 2 A ⊂ Rn is uniformly globally exponentially stable (UGES) for the system (1) if there exist
Γ ∈ R≥1 and λ ∈ [0, 1) such that for all x0 ∈ Rn and all φ ∈ S(x0) we have

|φ(k, x0)|A ≤ Γλk |x0|A ∀k ∈ N . (3)

¤

When A = {0} UGES boils down to the usual definition of uniform exponential stability of the origin
–cf. [27].

Definition 3 The closed set A is finite-step contractive (FSC) for the system (1) if there exist k∗ ∈ N
and λ◦ ∈ [0, 1) such that for each x0 ∈ Rn and each φ ∈ S(x0) there exists k ∈ {0, . . . , k∗} such that

|φ(k, x0)|A ≤ λ◦ · |x0|A . (4)

¤

The following result establishes several equivalent characterizations of UGES for the system (1).

Theorem 1 The statements enumerated below are equivalent:
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1. A ⊂ Rn is UGES for the system (1);

2. A ⊂ Rn is FSC for the system (1) and there exists Γ1 ∈ R≥1 such that

|w|A ≤ |x|A · Γ1 ∀x ∈ Rn, w ∈ F (x) ; (5)

3. there exist α1 ∈ K∞, α2 ∈ G such that the pair (α1, α2) is cUGES and for each x0 ∈ Rn and each
φ ∈ S(x0) we have

∞∑

k=0

α1 (|φ(k, x0)|A) ≤ α2 (|x0|A) ; (6)

4. for each α1, α2 ∈ K∞ such that (α−1
1 ,Γ · α−1

2 ) is cUGES for all Γ ∈ R≥1, there exists Γ2 ∈ R≥1

such that for each x0 ∈ Rn and φ ∈ S(x0) we have

∞∑

k=0

α1 (|φ(k, x0)|A) ≤ Γ2 · α2 (|x0|A) . (7)

¤

Remark 2 A continuous-time counterpart of Theorem 1 is given in [27, Theorem 2]. A sampled-data
counterpart of this results is given in [21]. We note that the notion of cUGES was not used in [27, 21].

¤

3.2 Uniform global asymptotic stability of sets

For closed sets A ⊂ Rn and solutions φ ∈ S(x0) of systems (1) we introduce the more general definitions
of asymptotic stability.

Definition 4 The closed set A ⊂ Rn is uniformly stable if for each ε > 0 there exists δ(ε) > 0 such that
for all x0 ∈ Rn satisfying |x0|A ≤ δ, we have |φ(k, x0)|A ≤ ε for all k ∈ N and all φ ∈ S(x0). The set A
is uniformly globally stable (UGS) if moreover δ has the property that δ →∞ as ε →∞. ¤

Remark 3 Following [9], we can show that the set A is UGS if and only if there exists ρ ∈ K∞ such
that for all x0 ∈ Rn and φ ∈ S(x0) we have

|φ(k, x0)|A ≤ ρ(|x0|A) ∀k ∈ N . (8)

Moreover, if ρ is a linear function we say that the set A is UGS (for the system (1) ) with linear growth.
¤

Definition 5 The closed set A ⊂ Rn is uniformly globally attractive (UGA) for the system (1) if for
each pair of strictly positive reals (r, ε) there exists k∗ ∈ N such that:

|x0|A ≤ r, φ ∈ S(x0), k ≥ k∗ =⇒ |φ(k, x0)|A ≤ ε . (9)

¤

Remark 4 Similarly to UGS we have the following characterization of UGAS. The set A is UGAS if
there exists β ∈ KL such that for all x0 ∈ Rn and all φ ∈ S(x0) we have

|φ(k, x0)|A ≤ β(|x0|A , k) ∀k ∈ N . (10)

When A = {0} we recover Barbashin’s definition of UGAS (of the null solution) –cf. [2]. ¤
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The following result establishes several equivalent characterizations of UGAS of sets for the system
(1).

Theorem 2 The following statements are equivalent:

1. the closed set A is UGAS for the system (1);

2. (a) the closed set A is UGA for the system (1) and
(b) there exists ρ ∈ K∞ such that for all x ∈ Rn and all w ∈ F (x) we have |w|A ≤ ρ(|x|A);

3. (a) A is UGS for the system (1) and
(b) there exists η ∈ PD and α2 ∈ G such that for all x0 ∈ Rn and all φ ∈ S(x0) we have

∞∑

k=0

η(|φ(k, x0)|A) ≤ α2(|x0|A); (11)

4. (a) there exists ρ ∈ K∞ such that for all x ∈ Rn and all w ∈ F (x) we have |w|A ≤ ρ(|x|A) and
(b) there exist α1 ∈ K, α2 ∈ G such that for each x0 ∈ Rn and φ ∈ S(x0) we have

∞∑

k=0

α1(|φ(k, x0)|A) ≤ α2(|x0|A); (12)

5. there exist α1 ∈ K∞, α2 ∈ G such that for each x0 ∈ Rn and φ ∈ S(x0) inequality (12) holds;

6. (a) A is UGS for the system (1) and
(b) for each pair of strictly positive real numbers satisfying δ ≤ ∆ there exists a continuous

function ωδ,∆ : Rn → R and strictly positive real numbers ωm and γ such that
i. ωδ,∆(x) ≥ ωm for all x ∈ HA(δ,∆) and
ii. for all x0 ∈ HA(δ,∆), φ ∈ S(x0) and all k ∈ N we have

k∑

i=0

ωδ,∆(φ(i, x0)) ≤ γ. (13)

¤

Remark 5 A continuous-time counterpart of Theorem 2 is given in [27, Theorem 1] and its sampled-
data counterpart can be found in [21]. ¤

3.3 Detectability

In this subsection, we consider the system (1) with an output y ∈ Rp defined as:

y ∈ H(x) , (14)

where H(·) is in general multi-valued. Given x0 ∈ Rn, we denote by SH(x0) all possible pairs of
trajectories and outputs that satisfy equations (1), (14), that is we write (φ, y) ∈ SH(x0) if φ ∈ S(x0)
and y(j, x0) ∈ H(φ(j, x0)) for all j ∈ N.

Definition 6 Let α1, α2, α3 ∈ G. The closed set A is said to be (α1, α2, α3)-detectable for the system
system (1), (14) if for each x0 ∈ Rn and (φ, y) ∈ SH(x0) we have

k∑

j=0

α1(|φ(j, x0)|A) ≤ α2(|x0|A) +
k∑

j=0

α3(|y(j, x0)|) ∀k ∈ N . (15)

¤

6



The following statement follows as a corollary of previous theorems.

Corollary 1 Suppose that there exist α1 ∈ K∞ and α2, α, α ∈ G such that the following conditions hold:

1. the closed set A is (α1, α2, α)-detectable for the system (1), (14);

2. for each x0 ∈ Rn and (φ, y) ∈ SH(x0) we have

∞∑

k=0

α(|y(k, x0)|) ≤ α(|x0|A). (16)

Then, the closed set A is UGAS for the system (1). If moreover the pair (α1, α2 + α) is cUGES, the set
A is UGES for the system (1). ¤

Proof of Theorem 1: Combining (16) with (α1, α2, α)-detectability, we have

∞∑

k=0

α1(|φ(k, x0)|A) ≤ α2(|x0|A) + α(|x0|A) . (17)

UGAS of A follows directly from Theorem 2. If, moreover, the pair (α1, α2 + α) is cUGES, then UGES
of A follows from Theorem 1. ¥

Remark 6

• It is possible to modify the definition of detectability so that (15) holds with |y(j, x0)|B instead
of |y(j, x0)| where B ⊂ Rp is a closed set. With this modification, we would need to modify the
condition (16) in the same manner.

• The condition in item 2 of the corollary holds e.g., if there exists a positive definite function V
and class K∞ functions α1 and α2 such that V (x) ≤ α1(|x|A) and V (w) ≤ V (x) − α(|y|). Then,
applying the sum from k = 0 to infinity on both sides of the latter inequality, we recover (16).
Hence, Corollary 1 establishes UGAS and UGES under detectability and “Krasovskii-LaSalle-type”
conditions. Correspondingly, in the next section we present results which generalize the latter in
the spirit of Matrosov’s theorem –cf. [19, 17].

¤

3.4 Matrosov Theorem for UGES

In this and the next subsection we apply our results to two Matrosov theorems, for UGES and UGAS
of the origin, for time-varying systems

x+ ∈ F (x, k) . (18)

The above system can be rewritten as:

x+ ∈ F (x, p(k))
k+ = p(k) + 1 , (19)

where p : R≥0 7→ Z≥0 is such that for all k ∈ Z≥0 we have that p(s) = k, ∀s ∈ [k, k + 1), and we can
think of the system (19) as time invariant. In this case, we consider stability of the origin of the system
(18) which is equivalent to considering stability of the set A := {(x, k) : x = 0} for the time invariant
system (19). Hence, we can use all the definitions and results from the previous sections if we replace
|x|A by |x|.

Theorem 3 The origin of the system (18) is UGES if the following conditions hold:
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1. the system (18) is UGS with linear growth;

2. there exist α1 ∈ K∞, α2 ∈ G, µ ∈ R≥1, functions ϕ : Rn → Rr, ψ : Rn ×N→ Rs and m functions
Wi : Rn × N→ R and symmetric matrices Yi ∈ R(r+s)×(r+s), i ∈ {1, 2, . . . ,m} such that

(a) the pair (α1, Γ · α2) is cUGES for each Γ ∈ R≥1;

(b) for all x ∈ Rn and k ∈ N we have

α1(|x|) ≤ |ϕ(x)|2 , |ψ(x, k)| ≤ µ |ϕ(x)| , (20)

(c) for all i ∈ {1, . . . , m}, all x ∈ Rn and all k ∈ N,

|Wi(x, k)| ≤ α2(|x|) (21)

and for all w ∈ F (x, k) we have

Wi(w, k + 1) ≤ Wi(x, k) +
[

ϕ(x)
ψ(x, k)

]T

Yi

[
ϕ(x)

ψ(x, k)

]
; (22)

(d) the following properties hold for the matrices Yi and y = [ΦT ΨT ]T for all Φ ∈ Rr and Ψ ∈ Rs:

i. for each j ∈ {1, . . . , m}, yT Yiy = 0 for all i ∈ {1, . . . , j − 1} implies yT Yjy ≤ 0 and
ii. yT Yiy = 0 for all i ∈ {1, . . . ,m} implies Φ = 0

¤

Remark 7 Theorem 3 provides conditions for UGES of difference inclusions (18). We are not aware
whether a continuous-time version of this result has been published in the literature. ¤

Next, we illustrate our Theorem 3 with an example.

Example 1 We show that the origin of the following system

x+ = x− g(x, k) =: f(x, k) (23)

is UGES under the following conditions:

1. there exists ε > 0 such that xT g(x, k) ≥ 1
2 (1 + ε) |g(x, k)|2 for all x, k;

2. there exist c1, c2 > 0 and k∗ ∈ N such that for all x ∈ Rn and k ∈ N we have

c2
1 |x|2 ≤

k+k∗∑

j=k

|g(x, j)|2 ≤ c2
2 |x|2 ; (24)

3. there exists L > 0 such that for all k ∈ N and all x1, x2 ∈ Rn we have

|g(x1, k)− g(x2, k)| ≤ L |x1 − x2| . (25)

Define V1(x) := |x|2. Then, from item 1 above we have

V1(f(x, k)) = |x− g(x, k)|2 ≤ V1(x)− ε |g(x, k)|2 ,

which establishes item 1 of Theorem 3. Let λ ∈ (0, 1) and define W1(x) := V1(x),

W2(x, k) := −
∞∑

j=k

λj−k |g(x, j)|2 .

8



Using item 2 above, we obtain |g(x, j)|2 ≤ c2
2 |x|2 for all j ∈ N and all x ∈ Rn hence,

|W2(x, k)| ≤ c2
2

1
1− λ

|x|2 .

Then, using item 2 we obtain
W2(x, k) ≤ −λk∗c2

1 |x|2 .

Moreover, using item 3 we get

|g(x1, k)|2 − |g(x2, k)|2 ≤ c2(|x1|+ |x2|)L |x1 − x2|

and, furthermore,

|W2(x1, k)−W2(x2, k)| ≤ 1
1− λ

sup
j∈N≥k

∣∣∣|g(x1, j)|2 − |g(x2, j)|2
∣∣∣

≤ 1
1− λ

sup
j∈N≥k

(|g(x1, j)|+ |g(x2, j)|) |g(x1, j)− g(x2, j)|

≤ 1
1− λ

c2(|x1|+ |x2|)L |x1 − x2| . (26)

Next, using the definition of W2 and the fact that f(x, k) = x− g(x, k), we obtain

W2(f(x, k), k + 1) = λ−1(W2(f(x, k), k) + |g(f(x, k), k)|2)
= W2(f(x, k), k) + (λ−1 − 1)W2(f(x, k), k) + λ−1 |g(f(x, k), k)|2
≤ W2(f(x, k), k)− (λ−1 − 1)λk∗c2

1 |x|2 + λ−1 |g(x, k)|2

+(λ−1 − 1)
1

1− λ
c2(2 + c2) |x|L |g(x, k)|+ λ−1c2(2 + c2) |x|L |g(x, k)| .

Let ϕ(x) := |x|, ψ(x, k) := |g(x, k)|, α1(s) := s2, µ := c2, α2(s) := c2
2·s2

1−λ and

Y1 :=
[

0 0
0 −√ε

]
; Y2 :=

[ −(λ−1 − 1)λk∗c2
1 c2(2 + c2)Lλ−1

c2(2 + c2)Lλ−1 λ−1

]
.

With these definitions, item 2 of Theorem 3 holds, which establishes UGES of the origin. ¤

3.5 Matrosov theorem for UGAS

The following statement is the discrete-time counterpart of the extended Matrosov theorem [17, Theorem
1] for continuous-time systems and of [22] for sampled-data systems.

Theorem 4 The origin of system (1) is UGAS if:

1. there exist functions V : Rn × N→ R≥0 and α1, α2 ∈ K∞ such that

(a) α1(|x|) ≤ V (x, k) ≤ α2(|x|) for all x ∈ Rn, k ∈ N;

(b) V (f, k + 1)− V (x, k) ≤ 0 for all x ∈ Rn, k ∈ N;

2. for each ∆ > 0 there exist

• numbers m ∈ N, µ ∈ R≥0,

• a function ψ : Rn × N→ Rp,

• m functions Wi : Rn × N→ R,

• m continuous functions Yi : Rn+p → R

9



such that

(a) for all i ∈ {1, . . . , m}, |x| ≤ ∆, k ∈ N

max {|Wi(x, k)|, |ψ(x, k)|} ≤ µ
Wi(f, k + 1)−Wi(x, k) ≤ Yi(x, ψ(x, k)) ∀f ∈ F (x, k) ; (27)

(b) the following properties hold for the functions Yi:

i. for each j ∈ {1, · · · ,m}, Yi(x, z) = 0 for all i ∈ {1, . . . , j − 1} and |x| ≤ ∆, |z| ≤ µ imply
Yj(x, z) ≤ 0 and

ii. Yi(x, z) = 0 for all i ∈ {1, · · · ,m} and |x| ≤ ∆, |z| ≤ µ imply x = 0.

¤

4 Proofs

4.1 Proof of Theorem 1

(1 =⇒ 4): Let item 1 and Definition 2 generate Γ ∈ R≥1 and λ ∈ [0, 1) such that (3) holds. Pick
arbitrarily a cUGES pair (α−1

1 , Γα−1
2 ) and, for any µ ∈ [0, 1), let Lemma 2 generate Γ∗ ∈ R≥1 and

λ∗ ∈ [0, 1) such that
µkΓα−1

2 (s) ≤ α−1
1 (sΓ∗λk

∗)

The latter holds, in particular, for µ = λ hence

α1

(
λkΓα−1

2 (s)
) ≤ s Γ∗λk

∗ ∀s ∈ R≥0, k ∈ N. (28)

Therefore, for s = α2(|x0|A) and any x0 ∈ Rn we have, using (3),

α1(|φ(k, x0)|A) ≤ α1(λkΓ |x0|A) ≤ α2(|x0|A)Γ∗λk
∗.

Evaluating the sum from k = 0 to ∞ on both sides of the inequalities above, we obtain

∞∑

k=0

α1(|φ(k, x0)|A) ≤ Γ∗
∞∑

k=0

λk
∗ α2(|x0|A), (29)

so item 4 the theorem holds with Γ2 := Γ∗
1−λ∗

.

(4 =⇒ 3): Let α1(s) = α2(s) = s. Then, (ᾱ−1
1 ,Γ · α−1

2 ) is cUGES for each Γ ∈ R≥1. Hence, using item
4, there exists Γ2 ∈ R≥1 such that

∞∑

k=1

α1(|φ(k, x0)|A) ≤ Γ2 · α2(|x0|A) . (30)

Define α1(s) := α1(s) = s and α2(s) := Γ2 · α2(s) = Γ2 · s and note that the pair (α1, α2) is cUGES.
This and (30) immediately shows that item 3 of the theorem holds.
(3 =⇒ 2): By assumption we have

α1(|φ(1, x0)|A) ≤ α2(|x0|A), ∀ x0 ∈ Rn, φ ∈ S(x0) (31)

or, equivalently, for all x ∈ Rn and w ∈ F (x) we have

|w|A ≤ α−1
1 ◦ α2(|x|A) (32)

Since (α1, α2) is cUGES by assumption, there exists Γ1 ∈ R≥1 such that (5) holds.
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We show next that the system (1) is FSC. By assumption the pair (α1, α2) is cUGES hence, by
Lemma 2 there exist Γ ∈ R≥1 and λ ∈ [0, 1) such that for all j ∈ N,

0.5jα2(s) ≤ α1(Γλjs) ∀s ∈ R≥0 . (33)

Let j∗ ∈ N satisfy Γλj∗ ≤ 0.5 and k∗ ∈ N satisfy (k∗ + 1)−1 ≤ 0.5j∗ . It follows from (33) that

(k∗ + 1)−1α2(s) ≤ α1(0.5s) ∀s ∈ R≥0 (34)

or equivalently,
α2(s) ≤ (k∗ + 1)α1(0.5s) ∀s ∈ R≥0 . (35)

Next, we show by reductio ad absurdum that FSC holds with this k∗ and λ◦ = 0.5. Assume it does
not i.e., suppose that there exists x0 ∈ Rn and φ ∈ S(x0) such that |φ(k, x0)|A > 0.5 |x0|A for all
k ∈ {0, 1, . . . , k∗}. Then, since α1 ∈ K∞, we have

(k∗ + 1)α1(0.5 |x0|A) <

k∗∑

k=0

α1(|φ(k, x0)|A) ≤ α2(|x0|A) , (36)

which contradicts (35).
(2 =⇒ 1): Without loss of generality, assume that Γ1 ∈ R≥1 and λ◦ ∈ (0, 1). Then, from FSC we have
that for any x0 and φ ∈ S(x0) there exists a sequence of times ji, i ∈ Z≥0, such that ji+1− ji ≤ k∗ (and,
consequently, ji ≤ ik∗) such that

|φ(ji, x0)|A ≤ λi
◦|x0|A ≤

(
λ

1
k∗◦

)ji |x0|A =: λji |x0|A .

Moreover, from (5) we have that for any k ∈ [ji, ji+1] the following holds:

|φ(k, x0)|A ≤ Γk−ji

1 |φ(ji, x0)|A
≤ Γk−ji

1 λji |x0|A
≤ Γk∗

1 λ−(k−ji)λk|x0|A
≤ Γk∗

1 λ−k∗λk|x0|A
=

Γk∗
1

λ◦
λk|x0|A .

Hence, (3) holds with Γ := Γk∗
1 /λ◦ and λ = (λ◦)1/k∗ . ¥

4.2 Proof of Theorem 2

Without loss of generality we assume that functions ρ ∈ K∞ satisfy ρ(s) ≥ s, ∀s ≥ 0. Throughout this
proof ρk denotes the k-fold composition of the function ρ with itself:

ρk(s) := ρ ◦ ρ ◦ · · · ◦ ρ︸ ︷︷ ︸
k times

(s), k ∈ Z≥1.

Clearly, if ρ ∈ K∞ then ρk ∈ K∞ for each k ∈ Z≥1.

(2 =⇒ 1):
Uniform stability: We first show that the origin is uniformly stable i.e., for each ε > 0 there exists δ > 0
such that for all x0 ∈ Rn satisfying |x0|A ≤ δ, we have |φ(k, x0)|A ≤ ε for all k ∈ N. Pick ε > 0 arbitrarily
and let item 2(a) generate, via Definition 5, k∗ such that (9) holds for the pair (r, ε) = (ε, ε). Let δ0 > 0
be such that ρk∗(δ0) ≤ ε and define δ = min {ε, δ0}. Using this and item 2(b) it is now straightforward
to verify that |x0|A ≤ δ implies |φ(k, x0)|A ≤ ε for all k ∈ N.
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Uniform global boundedness: Next we establish uniform global boundedness i.e., there exist µ ≥ 0 and
γ ∈ K∞ such that, for all initial conditions and all solutions we have |φ(k, x0)|A ≤ µ + γ(|x0|A). We
take µ = 1. Let δ > 0 come from uniform stability for ε = 1. Then, for each ∆ ≥ δ, let k∗(∆) come from
uniform global attractivity for (r, ε) = (∆,∆). Without loss of generality, we can assume that k∗(·) is
non decreasing on [δ,∞). Then, it may be verified that for all x0 ∈ Rn satisfying |x0|A ≥ δ, we have

|φ(k, x0)|A ≤ ρk∗(|x0|A)(|x0|A) ∀k ∈ N . (37)

Finally, we let γ be any function in class-K∞ satisfying ρk∗(s)(s) ≤ γ(s) for all s ∈ [δ,∞). It now can
be verified that for all initial conditions, solutions and k ∈ N, we have |φ(k, x0)|A ≤ µ + γ(|x0|A).
Uniform stability and uniform global boundedness imply uniform global stability:
This is seen as follows: We take the uniform stability relationship ε 7→ δ(ε) > 0 and find a class-K∞
function η such that η(ε) ≤ δ(ε) for all ε > 0. Next we note that η can be inverted on its range, denoted
[0, η∞). If η∞ = ∞ then we define ρ2 := η−1. Otherwise let η∗ ∈ (0, η∞) satisfy η−1(η∗) = µ + γ(η∗)
and define

ρ2(s) :=
{

η−1(s) s ∈ [0, η∗]
µ + γ(s) s ≥ η∗ .

(38)

It is straightforward to see that ρ2 ∈ K∞ and that the uniform global stability bound holds with ρ2.
Uniform global stability and uniform global attractivity imply UGAS:
Regarding the mapping (ε, ∆) 7→ k∗(ε, ∆) that comes from uniform global attractivity, we can assume
without loss of generality that
- for each ∆ > 0, k∗(·, ∆) is non-increasing on R>0 and, with uniform global stability, k∗(ε, ∆) = 0 for ε
sufficiently large i.e., ε ≥ ρ2(∆);
- for each ε > 0 k∗(ε, ·) is nondecreasing on R>0.
Let ψ∆ : R>0 → R>0 be a function that is strictly decreasing and onto R>0 (hence invertible on R>0)
and satisfies

ψ∆(ε) ≥ k∗(∆, ε) ∀ε > 0 . (39)

We claim that |x0|A ≤ ∆ implies |φ(k, x0)|A ≤ ψ−1
∆ (k) for all k ∈ Z≥1. To see this, for each k ∈ Z≥1

let ε := ψ−1
∆ (k) and then note that, from (39), ψ∆(ε) = k ≥ k∗(∆, ε). Therefore, from uniform global

attractivity, |φ(k, x0)|A ≤ ε = ψ−1
∆ (k). Finally, for each ∆ > 0 define ψ−1

∆ (0) := ∞ and define

β(s, k) := min
{

ρ2(s), inf
∆∈(s,∞)

ψ−1
∆ (k)

}
. (40)

It is straightforward to verify that β ∈ KL and that |φ(k, x0)|A ≤ β(|x0|A , k) for all x0 ∈ Rn and k ∈ N.
(3 =⇒ 2): We only need to establish uniform global attractivity. Let ∆ > 0 and ε > 0 be given. Using the
function ρ ∈ K∞ from uniform global stability, let δ := ρ−1(ε). Then |x0|A ≤ δ implies |φ(k, x0)|A ≤ ε
for all k ∈ N. Define

η∗ = min
s∈[δ,ρ(∆)]

η(s) . (41)

Then let k∗ be the smallest nonnegative integer satisfying

k∗ ≥ α2(∆)
η∗

− 1 . (42)

We claim that for each x0 satisfying |x0|A ≤ ∆ and φ ∈ S(x0), there exists k ∈ {0, 1, . . . , k∗} such that∣∣φ(k, x0)
∣∣
A ≤ δ. If not then

∞∑

k=0

η(|φ(k, x0)|A) ≥
k∗∑

k=0

η(|φ(k, x0)|A) > (k∗ + 1)η∗ ≥ α2(∆) ≥ α2(|x0|A) . (43)

Considerting φ(k, x0) for k ≥ k as a solution starting at φ(k, x0), it follows that |x0|A ≤ ∆ and k ≥ k∗

imply |φ(k, x0)|A ≤ ε.
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(4 =⇒ 2): This implication is very similar to the previous one. We just need to establish uniform global
attractivity. Let ∆ > 0 and ε > 0 be given. Let δ > 0 be such that α1(s) ≤ α2(δ) implies s ≤ ε. Such a
δ exists since α1 ∈ K and α2 ∈ G. Note that |x0|A ≤ δ implies |φ(k, x0)|A ≤ ε for all k ∈ N since

α1(|φ(k, x0)|A) ≤
∞∑

i=0

α1(|φ(i, x0)|A) ≤ α2(|x0|A) ≤ α2(δ) . (44)

Next let k∗ be the smallest nonnegative integer satisfying

k∗ ≥ α2(∆)
α1(δ)

− 1 . (45)

We claim that for each x0 satisfying |x0|A ≤ ∆ and φ ∈ S(x0), there exists k ∈ {0, . . . , k∗} such that
|φ(k, x0)|A ≤ δ. If not then

∞∑

k=0

α1(|φ(k, x0)|A) ≥
k∗∑

k=0

α1(|φ(k, x0)|A) > (k∗ + 1)α1(δ) ≥ α2(∆) ≥ α2(|x0|A) . (46)

Considering φ(k, x0) for k ≥ k as a solution starting at φ(k, x0), it follows that |x0| ≤ ∆ and k ≥ k∗

imply |φ(k, x0)|A ≤ ε.
(5 =⇒ 4): We only need to establish part (a) of item 4 since part (b) is obvious. By assumption
α1(|w|A) ≤ α2(|x0|A) for all x0 ∈ Rn and w ∈ F (x0). Thus |w|A ≤ α−1

1 ◦ α2(|x0|A) =: ρ(|x0|A). This
establishes the result.
(5 =⇒ 3): We only need to establish part (a) of item 3 since part (b) is obvious. By assumption, for all
k ∈ N, all x0 ∈ Rn

α1(|φ(k, x0)|A) ≤
∞∑

i=0

α1(|φ(i, x0)|A) ≤ α2(|x0|A) (47)

or, equivalently, |φ(k, x0)|A ≤ α−1
1 ◦ α2(|x0|A) i.e., the origin is uniformly globally stable.

(1 =⇒ 5): According to Lemma 1, there exists α1, α2 ∈ K∞ such that

α1(β(s, k)) ≤ α2(s)
(

1
2

)k+1

∀(s, k) ∈ R≥0 × N . (48)

Then ∞∑

k=0

α1(|φ(i, x0)|A) ≤
∞∑

k=0

α2(|x0|A)
(

1
2

)k+1

= α2(|x0|A) . (49)

(3 =⇒ 6): Since items 3(a) and 6(a) are identical, we only need to show that 3(b) implies 6(b). This is
immediate with the following definitions ωδ,∆(x) := η(|x|A), ωm := mins∈[δ,∆] η(s), γ := α2(∆). Then,
item 6(b)i holds by definition of ωm and 6(b)ii holds because for all x0 ∈ HA(δ,∆), φ ∈ S(x0) and all
k ∈ N we have

k∑

i=0

ωδ,∆(φ(i, x0)) ≤
∞∑

i=0

η(|φ(i, x0)|A) ≤ α2(|x0|A) ≤ α2(∆) = γ .

(6 =⇒ 1): Since A is assumed to be UGS we only need to prove UGA. From item 6(a), let ρ ∈ K∞ be
such that for all x0 ∈ Rn, φ ∈ S(x0) and k ∈ N we have

|φ(k, x)|A ≤ ρ(|x0|A) . (50)

Let the strictly positive numbers (r, ε) be given. Define ∆ := ρ(r) and δ := min{∆, ρ−1(ε)}. Let δ,∆
generate ωδ,∆(x), ωm and γ. Define k∗ := max

{
j ∈ N : j ≤ 2γ

ωm

}
. We claim that for all x0 ∈ HA(0, r)

and all φ ∈ S(x0) there exists k′ ∈ [0, k∗] such that |φ(k′, x0)|A ≤ ρ−1(ε). This establishes the result

13



since the time invariance of the system and (50) imply that for all x0 ∈ HA(0, r) and k ≥ k∗ we have
|φ(k, x0)|A ≤ ε.

Assume that the claim is not true that is, there exists x0 ∈ HA(0, r) and φ ∈ S(x0) such that
|φ(k, x0)|A > ρ−1(ε) for all k ∈ [0, k∗]. From (50) and the definition of δ it follows that

φ(k, x0) ∈ HA(δ,∆) ∀k ∈ [0, k∗] .

It follows that ωδ,∆(φ(k, x0)) ≥ ωm for all k ∈ [0, k∗]. Hence,

k∗∑

i=0

ωδ,∆(φ(i, x0)) ≥ (k∗ + 1)ωm ≥ 2γ

ωm
ωm = 2γ ,

which contradicts 6(b). Hence, the set A is UGA for the system (1). ¥

4.3 Proof of Theorem 3

Let y = [ΦT ΨT ]T . We shall use the following two claims.

Claim 1 Suppose that all conditions of Theorem 3 hold. Then, for each µ > 0 there exists ε > 0 such
that

(A):
{

ΦT Φ = 1 & ΨT Ψ ≤ µ2 & yT Yiy = 0 ∀i ∈ {1, . . . , m− 1} }

implies

(B):
{

yT Ymy ≤ −ε
}

.

¤

Proof of Claim 1: From item 2d(i) of Theorem 3 we have that yT Yiy = 0 for all i ∈ {1, . . . ,m − 1}
implies yT Ymy ≤ 0. Moreover, item 2d(ii) of Theorem 3 guarantees that yT Ymy < 0 since from (A) we
have ΦT Φ = 1 6= 0. Note that the first two inequalities in (A) imply that y belongs to a compact set.
Finally, we take ε to be the minimum of −yT Ymy over this compact set, which proves (B). ¥

Claim 2 Suppose that all conditions of Theorem 3 hold. Let all conditions of Theorem 3 hold. Let
` ∈ {2, . . . , m}, µ > 0, ε > 0 and a continuous function Ỹ` : Rn+p → R be given and satisfy the property
that

(1): (A) implies (B) where

(A):
{

ΦT Φ = 1 & ΨT Ψ ≤ µ2 & yT Yiy = 0 ∀i ∈ {1, . . . , `− 1} }

(B): { yT Ỹ`y ≤ −ε }

Then,

(2): there exists K`−1 > 0 such that

(A): {
ΦT Φ = 1 & ΨT Ψ ≤ µ2 & yT Yiy = 0 ∀i ∈ {1, . . . , `− 2} }

implies that

(B): { yT (K`−1Y`−1 + Ỹ`)y ≤ − ε
2 }.
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¤

Proof of Claim 2: Due to item 2d(i) of Theorem 3, we can write:

yT Y1y = 0
...

yT Y`−2y = 0





=⇒ yT Y`−1y ≤ 0 (51)

Hence, since the property 1B holds, the property 2B is automatically satisfied when yT Y`−1y = 0, in fact
with the upper bound −ε. By continuity, there exists η ∈ R>0 such that the bound in the property 2B
holds for all K`−1 ∈ R≥0 and y satisfying yT Y`−1y ∈ [−η, 0] in addition to the conditions in 2B. Finally,
letting M denote the maximum of yT Ỹ`y over the set ΦT Φ = 1, ΨT Ψ ≤ µ2, we can take

K`−1 :=
ε
2 + M

η
. (52)

¥
We now prove the theorem. We apply the first claim and then repeatedly apply the second claim to

get values Ki > 0, i = {1, . . . ,m− 1} such that for ΦT Φ = 1 and ΨT Ψ ≤ µ2 we have

yT

(
m−1∑

i=1

KiYi + Ym

)
y ≤ − ε

2m−1
.

Next, let

V (x, k) :=
m−1∑

i=1

KiWi(x, k) + Wm(x, k), (53)

Φ = ϕ(x) and Ψ = ψ(x, k). Then, from item 2(c) it follows that for all |x| 6= 0 (which implies ϕ(x) 6= 0),
k ∈ N and f ∈ F (x, k)

V (f, k + 1)− V (x, k) ≤
[

ϕ(x)
ψ(x, k)

]T
(

m−1∑

i=1

KiYi + Ym

) [
ϕ(x)

ψ(x, k)

]
(54)

= |ϕ(x)|



[
ϕ(x)
|ϕ(x)|
ψ(x,k)
|ϕ(x)|

]T (
m−1∑

i=1

KiYi + Ym

)[
ϕ(x)
|ϕ(x)|
ψ(x,k)
|ϕ(x)|

]
 |ϕ(x)| .

Using item 2(b) and the result of the claims, we get

V (f, k + 1)− V (x, k) ≤ − ε

2m−1
|ϕ(x)|2 ≤ − ε

2m−1
α1(|x|) . (55)

This bound also holds when |x| = 0 since, by virtue of the system being stable with linear growth, we
have |f | = 0 when |x| = 0 and f ∈ F (x, k), and from (21) we have Wi(x, k) = 0 whenever |x| = 0.

Letting Γ ∈ R≥1 characterize the system being stable with linear growth (item 1) and defining
K := 1 +

∑m−1
i=1 Ki, it now follows that, for all x0 ∈ Rn, φ ∈ S(x0, k0), and k ∈ N,

∑k
j=0 α1(|φ(j, k0, x0)|) ≤ 2m−1

ε (V (x0, k0)− V (φ(k + 1, k0, x0), k + 1))

≤ 2m−1

ε

(
1 +

∑m−1
i=1 Ki

)
(α2(|x0|) + α2(|φ(k + 1, k0, x0)|))

≤ 2m−1

ε

(
1 +

∑m−1
i=1 Ki

)
(α2(|x0|) + α2(Γ · |x0|))

≤ 2mK
ε α2 (Γ · |x0|) .

Using item 2(a) we have that the pair (α1,
2mK

ε · α2) is cUGES, and thus from Remark 1 the pair(
α1(s), 2mK

ε · α2(Γ · s)
)

is also cUGES. The result now follows directly from item 3 of Theorem 1. ¥
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4.4 Proof of Theorem 4

Throughout this proof, given δ > 0 we define

H := {(x, z) : δ ≤ |x| ≤ ∆ , |z| ≤ µ} . (56)

We first establish two claims.

Claim 3 Let all conditions of Theorem 4 hold. Given δ ∈ (0, ∆], there exists ε > 0 such that:

(A): { (x, z) ∈ H & Yi(x, z) = 0 ∀i ∈ {1, . . . , m− 1} }

implies

(B): { Ym(x, z) ≤ −ε } .

¤

Proof of Claim 3: We prove the claim by contradiction. Suppose that for each integer n, there
exist (xn, zn) ∈ H such that Yi(xn, zn) = 0 for all i ∈ {1, . . . , m − 1}, and Ym(xn, zn) > − 1

n . By
compactness of H, the continuity of Ym(·, ·), and item 2(b)i, the sequence (xn, zn) has an accumulation
point (x∗, z∗) ∈ H such that Yi(x∗, z∗) = 0 for all i ∈ {1, . . . ,m}. By item 2(b)ii, this implies that x∗ = 0
which contradicts the fact that (x∗, z∗) ∈ H. ¥

Claim 4 Let all conditions of Theorem 4 hold. Let ` ∈ {2, . . . ,m}, ε̃ > 0 and a continuous function
Ỹ` : Rn+p → R be given and satisfy the property that

(1): (A) implies (B) where

(A): { (x, z) ∈ H & Yi(x, z) = 0 ∀i ∈ {1, . . . , `− 1} }

(B): { Ỹ`(x, z) ≤ −ε̃ }

Then,

(2): there exists K`−1 > 0 such that

(A): { (x, z) ∈ H & Yi(x, z) = 0 ∀i ∈ {1, . . . , `− 2} }
implies that

(B): { K`−1Y`−1(x, z) + Ỹ`(x, z) ≤ − ε̃

2
}.

¤

Proof of Claim 4: By item 2(b)i, Property 2A implies that Y`−1(z, ψ) ≤ 0. Therefore Property 2A
implies

K`−1Y`−1(x, z) + Ỹ`(x, z) ≤ Ỹ`(x, z) ∀K`−1 ≥ 0. (57)

Now if Y`−1(x, z) = 0 then, due to Property 1, Property 2B holds for all K`−1 ≥ 0 whenever Property
2A holds. We claim further that there exists τ > 0 such that Property 2B holds whenever Property
2A holds and Y`−1(x, z) > −τ . Suppose not i.e., for each integer n there exists (xn, zn) ∈ H such that
Y`−1(xn, zn) > − 1

n and

Ỹ`(xn, zn) > − ε̃

2
. (58)
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Then, by compactness ofH, continuity of Y`−1, and item 2(b)i, the sequence (xn, zn) has an accumulation
point (x∗, z∗) such that Y`−1(x∗, z∗) = 0. But then from Property 1 we have that Ỹ`(x∗, z∗) ≤ −ε̃. By
continuity of Ỹ`(·, ·) this contradicts (58) when n is large and associated with a subsequence converging
to the accumulation point. Then, from the continuity of Ỹ` and compactness of H that we can pick
K`−1 > 0 large enough to satisfy

−τK`−1 + max
(x,z)∈H

Ỹ`(x, z) ≤ − ε̃

2

then Property 2A implies Property 2B. ¥
We now use these two claims to prove Theorem 4. In particular, we will show that the condition 6

in Theorem 2 holds.
From items 1(a) and 1(b) of the theorem, we conclude that the system is UGS, that is there exists

ρ ∈ K∞ such that for all x(k0) = x0 ∈ Rn, k0 ∈ N and φ ∈ S(x0, k0) we have

|φ(k, k0, x0)| ≤ ρ(|x0|) ∀k ≥ k0 .

Let δ ≤ ∆ and introduce ∆̃ := ρ(∆). Let ∆̃ generate µ via item 2 of the theorem and we let (δ, ∆̃, µ)
generate the set H. Using this set H we apply the two claims. According to Claim 3, Property 1 of
Claim 4 holds when ` = m, ε̃ = ε and Ỹ` = Ym. An application of Claim 4 with these choices provides a
value Km−1 such that Property 1 of Claim 4 holds when ` = m− 1, ε̃ = ε/2 and Ỹ` = Km−1Ym−1 + Ym.
Continuing with this iteration, it follows that for each δ > 0 there exists ε > 0 and positive real numbers
Ki, i = 1, . . . , m− 1 such that, for all (x, z) ∈ H

Z(x, z) :=
m−1∑

i=1

KiYi(x, z) + Ym(x, z) ≤ − ε

2m−1
. (59)

Next define the function W : Rn × N→ R as

W (x, k) :=
m−1∑

i=1

KiWi(x, k) + Wm(x, k) . (60)

We denote
ε1 := max

δ≤|x|≤∆̃
U(x) .

According to the conditions of the theorem and the discussion above, we have that, for all (x, k) ∈ Rn×N
with |x| ≤ ∆̃, f ∈ F (x, k)

|W (x, k)| ≤ µ

(
1 +

m−1∑

i=1

Ki

)
=: η , (61)

W (f, k + 1)−W (x, k) ≤ Z(x, ψ(x, k)) , (62)

and, using the bound on ψ in the first inequality of (27) together with (59) we obtain that for all
(x, k) ∈ Rn × N with δ ≤ |x| ≤ ∆̃,

Z(x, ψ(x, k)) ≤ − ε

2m−1
=: −ε2 . (63)

Next, we show that condition 6 of Theorem 2 holds with the following definitions:

ωδ,∆(x, k) := KU(x)− Z(x, ψ(x, k))
ωm := ε2

γ := Kα2(∆) + 2η ,

where K := η+ε2
ε1

.
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Note that we have already showed that the condition 6(a) of Theorem 2 holds. Next, we show that
the condition 6(b)i of Theorem 2 holds. Indeed, since U(·), Z(·, ·) and ψ(·, ·) are continuous functions,
so is ωδ,∆(·, ·). Moreover, since ∆̃ ≥ ∆ and KU(x) ≥ 0, we have for all x such that δ ≤ |x| ≤ ∆ and
k ∈ N that the following holds:

ωδ,∆(x, k) = KU(x)− Z(x, ψ(x, k)) ≥ −Z(x, ψ(x, k)) ≥ ε2 = ωm ,

as desired. Finally, we show that the condition 6(b)ii of Theorem 2 holds. We define

Ṽ (x, k) := KV (x, k) + W (x, k) .

Then, for all |x| ≤ ∆̃, k ∈ N, f ∈ F (x, k) we have

Ṽ (f, k + 1)− Ṽ (x, k) ≤ −ωδ,∆(x, k) ,

which implies using item 1(a), UGS and (61) that for all k0 ∈ N, x(k0) = x0 with δ ≤ |x0| ≤ ∆,
φ ∈ S(x0, k0) and k ≥ k0 we have

k∑

i=0

ωδ,∆(φ(i, k0, x0), i) ≤ Ṽ (x0, k0)− Ṽ (φ(k, k0, x0), k)

= KV (x0, k0) + W (x0, k0)−KV (φ(k, k0, x0), k)−W (φ(k, k0, x0), k)
≤ Kα2(|x0|) + |W (x0, k0)|+ |W (φ(k, k0, x0), k)|
≤ Kα2(∆) + 2η

= γ , (64)

which completes the proof. ¥

5 Conclusions

We have provided several results that can be used to verify UGAS and UGES of arbitrary closed sets
that do not require the knowledge of Lyapunov functions. Instead, we assume appropriate summability
conditions on trajectories of the system. We used these results to prove two Matrosov type results that
can be used to verify UGES and UGAS of the origin. The results and their proofs presented here parallel
the continuous-time and sampled-data counterparts but they are more straightforward and derived under
different assumptions.

References

[1] E. A. Barbashin. Introduction to the theory of stability. Wolters-Noordhoff, Groningen, The Nether-
lands, 1970. Translated by Transcripta Service, London, edited by T. Lukes.
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6 Appendix

Proof of Lemma 2: Let λ, λ ∈ (0, 1) and Γ ∈ R≥1 come from the definition of cUGES. Let p ∈ N
satisfy µp+1 ≤ λ. Such a p exists since λ ∈ (0, 1) and µ ∈ [0, 1). We claim that (2) holds with

Γ :=
Γ

λ
p

p+1
; λ := λ

1
p+1 .

Indeed, for k ∈ N, let j ∈ N satisfy k ∈ {j(p + 1), (j + 1)(p + 1)− 1} and note that

µkα2(s) ≤ µj(p+1)α2(s)
≤ λjα2(s)
≤ λjα1(Γ · s)
≤ α1(λ

j
Γ · s )

≤ α1

(
s · Γ λ

k−p
p+1

)

= α1

(
s · Γ

λ
p

p+1

(
λ

1
p+1

)k
)

.
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