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Abstract

We present sufficient conditions that guarantee that a discrete-time controller that input-to-state
stabilizes an approximate discrete-time model of a nonlinear sampled-data plant with disturbances
would also input-to-state stabilize (in an appropriate sense) the exact discrete-time plant model.

1 Introduction

A stumbling block in controller design for nonlinear sampled-data control systems is the absence of a
good model for the design. Indeed, even if the continuous-time plant model is known, we can not in
general compute the exact discrete-time model of the plant since this requires an explicit analytic solution
of a nonlinear differential equation. This has motivated research on controller design via approximate
discrete-time models for sampled-data nonlinear systems [1, 2, 6]. A drawback of these early results was
their limited applicability: they investigate a particular class of plant models, a particular approximate

discrete-time plant model (usually Euler) and a particular controller.

A more general framework for stabilization of disturbance-free sampled-data nonlinear systems via
their approximate discrete-time models that is applicable to general plant models, controllers and ap-
proximate discrete-time models was first presented in [7, 9]. In this paper, we generalize results in
[9] by: (i) considering sampled-data nonlinear systems with disturbances; (ii) providing a framework
for the design of input-to-state stabilizing (ISS) controllers based on approximate discrete-time plant
models (for more details on ISS see [11, 12, 5]). In particular, we provide sufficient conditions on the
continuous-time plant model, the controller and the approximate discrete-time model, which guarantee
that if the controller input-to-state stabilizes the approximate discrete-time plant model it would also
input-to-state stabilize the exact discrete-time plant model. Our results apply to dynamic controllers

and our approach benefits from the results on numerical integration schemes in [13] and [3, 4].
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dsl}Qee.mu.oz.au.



2 Preliminaries

Sets of real and natural numbers (including 0) are denoted respectively as R and N. For a given
function w : R>g — R", we use the following notation: wy[k] := {w(t) : t € [KT,(k + 1)T'|} where
k € Nand T > 0; and w(k) is the value of the function w(-) at ¢ = kT,k € N. We denote the
norms |lws[k]llo, = sup,eper, ety [w(7)] and [lwl|,, := sup, o |w(7)| and in the case when w(-) is a
measurable function (in the Lebesgue sense) we use the essential supremum in the definitions. If there
exists 7 > 0 such that [|w||, < r, then we write w € L. Consider a continuous-time nonlinear plant

with disturbances:

&(t) = f(x(t), u(t), w(t)) , 1)

where z € R, 4 € R™ and w € RP are respectively the state, control input and exogenous disturbance.
It is assumed that f is locally Lipschitz and f(0,0,0) = 0. We will consider two cases: w(-) are
measurable functions (in the Lebesgue sense); and w(-) are continuously differentiable functions. We
will always make precise which case we consider. The control is taken to be a piecewise constant signal
u(t) = w(kT) =: u(k), Vt € [kT,(k+ 1)T), k € N, where T' > 0 is the sampling period. Also, we
assume that some combination (output) or all of the states (x(k) := z(kT)) are available at sampling
instant kT, k € N. The exact discrete-time model for the plant (1), which describes the plant behavior

at sampling instants k7', is obtained by integrating the initial value problem

&(t) = f(2(t), u(k), w(t)) , 2)

with given wy[k], u(k) and zo = x(k), over the sampling interval [kT, (k +1)T']. If we denote by x(¢) the
solution of the initial value problem (2) at time ¢ with given zo = x(k), u(k) and wy[k], then the exact
discrete-time model of (1) can be written as:
(k+1)T
z(k+1) =xz(k) + /kT f(z(7),u(k),w(r))dr =: Fp(z(k),u(k),ws[k]) . 3)
We refer to (3) as a functional difference equation since it depends on wy[k]. We emphasize that F§ is
not known in most cases. Indeed, in order to compute F% we have to solve the initial value problem (2)

analytically and this is usually impossible since f in (1) is nonlinear. Hence, we will use an approximate

discrete-time model of the plant to design a controller.

Different approximate discrete-time models can be obtained using different methods. For example,

we may first assume that the disturbances w(-) are constant during sampling intervals, w(t) = w(k) ,Vt €



[T, (k + 1)T] and then use a classical Runge-Kutta numerical integration scheme (such as Euler) for

the initial value problem (2). In this case, the approximate discrete-time model can be written as
z(k + 1) = Fr(z(k), u(k), w(k)) - (4)

We refer to the approximate model (4) as an ordinary difference equation since F% does not depend on
wy¢[k] but on w(k). For instance, the Euler approximate model is z(k+1) = (k) + T f(z(k), u(k), w(k)).
Recently, numerical integration schemes for systems with measurable disturbances were considered in

[3, 4]. Using these numerical integration techniques we can obtain an approximate discrete-time model
z(k + 1) = Fr(z(k), u(k), wy[k]) , ()

which is in general a functional difference equation. For instance, the simplest such approximate
discrete-time model, which is analogous to Euler model, has the following form z(k + 1) = =z(k) +
k(;ﬂ)T fz(k),u(k),w(s))ds (see [3]). Since we will consider semiglobal ISS (see Definition 2.2), we will

think of F% and F¢ as being defined globally for all small T, even though the initial value problem (2)

may exhibit finite escape times (see discussion on pg. 261 in [9]).

The sampling period T is assumed to be a design parameter which can be arbitrarily assigned. Since
we are dealing with a family of approximate discrete-time models Fif, parameterized by 7', in order to
achieve a certain objective we need in general to obtain a family of controllers, parameterized by T'. We

consider a family of dynamic feedback controllers

z(k+1) Gr(z(k),z(k)) (©)
u(k) = ur(z(k),2(k)) ,

where z € R?=. To shorten notation, we introduce % := (27 2T)T

¢ s oe (FHE, 2 (8),2(8), )
Aew.) = ("G

, T € R"#, where nz := n, +n, and

(7)

The superscript ¢ may be either e or a, where e stands for ezact model, a for approzimate model. We
omit the superscript if we refer to a general model. The second argument of 74 (%, -) (third argument of

Ft) is either a vector w(k) or a piece of function wy[k]. We use the following:

Definition 2.1 (Lyapunov-SP-ISS) The family of systems Z(k + 1) = Fr(Z(k),w¢[k]) is Lyapunov
semiglobally practically input-to-state stable (Lyapunov-SP-ISS) if there exist functions' ay,az, a3 € Koo

and ¥ € K, and for any strictly positive real numbers (A1, Ay, 61,02) there exist strictly positive real

LA function +y : R>0 — Ryp is of class-K if it is continuous, zero at zero and strictly increasing. It is of class-Koo if it
is of class-K and is unbounded. A continuous function § : R>¢ X R>o = R is of class-KL if 3(:,7) is of class-K for each
7 > 0 and (s, -) is decreasing to zero for each s > 0.



numbers T* and L such that for all T € (0,T*) there exists a function Vp : R** — R>¢ such that for all

Z € R™ with |Z| < Ay and all w € Lo with ||w||, < Ay the following holds:

a(d) < Vi@ < a3 ®)
FVe(Fr(@,wp) ~Ve@) < —an(1#l) + Ahwgll) + 61 ©)

and, moreover, for all x1,xs,2z with |(Z‘T zT)T| , |($g zT)T| € [62,A1] and all T € (0,T*), we have
|Vr(z1,2) — Vr(z2,2)| < L|z1 — x2|. The function Vr is called an ISS-Lyapunov function for the family
Fr. |

Remark 2.1 In the case when the family of parameterized closed-loop discrete-time nonlinear systems
is an ordinary difference equation Z(k + 1) = Fr(Z(k),w(k)), the condition (9) is replaced by: for all

T € (0,T*), all ¥ € R™ with |%| < A1 and all w € R with |w| < Ay we have

1 N N _ -

Ve (Fr(@,w) = Vr(@)] < —as(2]) +F(|w]) + 61 , (10)
and V is called an ISS-Lyapunov function for the family Fr. [ |

The following definition is a semiglobal-practical version of the ISS property used in [11, 12] and we use

it in the case when we consider measurable disturbances w.

Definition 2.2 (Semiglobal practical-ISS) The family of systems &(k + 1) = Fr(@(k),ws[k]) is
semiglobally practically input-to-state stable (SP-ISS) if there exist 8 € KL andy € Koo such that for any
strictly positive real numbers (Az, Ay, ) there exists T* > 0 such that for oll T € (0,T*), |2(0)] < Az
and w(-) with [|w||, < Ay, the solutions of the system satisfy |Z(k)| < B(|Z(0)|,kT) + v(||lw|l) + 9,

Vk e N ]

The following semiglobal practical “ISS like property” was used in [8] and we use it when the disturbances

are continuously differentiable.

Definition 2.3 (Semiglobal practical derivative ISS) The family of systems &(k + 1) = Fr(Z(k),
wylk]) is semiglobally practically derivative input-to-state stable (SP-DISS) if there exist § € KL and
v € Koo such that for any strictly positive real numbers (Az, Ay, Ay, d) there exists T* > 0 such that
for all T € (0,T7%), |£(0)] < Az and all continuously differentiable w(-) such that ||w||, < A, and

|||l < Ay, the solutions of the family Fr satisfy |Z(k)| < B(|Z(0)|,kT) + y([lw|l,) +J, VEkEN. =

Definition 2.4 ur is said to be locally uniformly bounded if for any Az > 0 there exist strictly positive

numbers T* and A, such that for all T € (0,T*) and all |Z| < Az we have |ur(Z)] < A,. ]



In order to prove our main results, we need to guarantee that the mismatch between F7 and Fi¢ is small
in some sense. We define two consistency properties, which will be used to limit the mismatch. Similar
definitions can be found in numerical analysis literature (see Definition 3.4.2 in [13]) and recently in the
context of sampled-data systems (see Definition 1 in [9]). In the sequel we use the notation z = z(k),

u = U(k), w = U)(k), Wy = wf[k]

Definition 2.5 (One-step weak consistency) The family F¢ is said to be one-step weakly consistent
with F% if given any strictly positive real numbers (Ay, Ay, Ay, Ay), there exist a function p € K and
T* > 0 such that, for allT € (0,T%), all z € R™ ,u € R™ with |z| < A,, [u] < A, and functions w(-) that
are continuously differentiable and satisfy ||wy|| < Ay and ||wy|| < Ay , we have |Ff — Ff| < Tp(T).

Definition 2.6 (One-step strong consistency) The family F¢ is said to be one-step strongly con-
sistent with F% if given any strictly positive real numbers (Ay, Ay, Ay), there exist a function p € Koo
and T* > 0 such that, for oll T € (0,T*), all z € R ,u € R™,w € Lo with |z] < Ay, |u| < Ay,

lwsll, < Aw, we have |Fp — Fp| < Tp(T). ]
Sufficient checkable conditions for one-step weak and strong consistency are given next.

Lemma 2.1 F{ is one-step weakly consistent with Fy. if the following conditions hold: 1. Fj is one-
step weakly consistent with FEUeT (z, u,w) := z+T f(z,u,w); 2. given any strictly positive real numbers
(A, Ay, Ay, Ay), there exist py € Koo, p2 € Koo, T* > 0, such that, for all T € (0,T*), all 21,25 € R
with max{|z1|,|z2|} < Az, all u € R™ with |u| < A, and all w1, ws € RP with max{|wi|,|wz|} < Ay,

the following holds |f(z1,u, w1) — f(z2,u,w2)| < p1(|z1 — 22]) + p2(|wr — wa]). n

Lemma 2.2 F} is one-step strongly consistent with Fj. if the following conditions hold: 1. Ff is
one-step strongly consistent with FEYeT (z, u,wy) = x + fk(;-i—l)Tf(x,u,w(s))ds; 2. given any strictly
positive real numbers (Ag, Ay, Ay), there exist p1 € Koo, T* > 0, such that, for all T € (0,T*) and for
all z1, 25 € R™ with max{|z1|,|z2|} < Az, all u € R™ with |u] < Ay and all w € RP with |lw| < Ay,

the following holds |f(z1,u,w) — f(z2,u,w)| < p1(|z1 — 22|). ]

Proof of Lemma 2.1: Let (A;, Ay, Ay, Ay) be given. Using the numbers (R, Ay, Ay, Ay), where
R, = A; + 1, let the second condition of the lemma generate T} > 0, p1 € K and p2 € K. Since f

is locally Lipschitz, it is locally bounded and there exists a number M > 0 such that for all |z]| < R,,



lul < Ay, |w|,, < Ay we have |f(z,u,w)| < M. Let T* := min{T},1/M}. It follows that, for each

|z| < Ag, [lwyll,, < Ay and all t € [T, (k + 1)T], where T € (0,T), the solution z(t) of

E(t) = fz(t),u,w(t)) , zo = x(k) == (11)
satisfies |z(t)| < R, and |z(t) — z| < M(t — k¥T) < MT and since w(-) is continuously differentiable by
definition, we have |w(t) — w(k)| < Ay (t—kT) < AyT, for allt € kT, (k+1)T] and T € (0,T*). It then
follows from condition 2 of the lemma that, for all |2] < Az, |u| < Ay, [lwyll, < Aw, [lws[k]l]l, < Ag,

and all T € (0,T*),

(k+1)T (k+1)T
< / pr(|a(r) — )dr + / pa(fw(r) — w])dr
kT kT

< Tp(MT) +Tpa(ApT) < TH(T) (12)

(k+1)T
/k [ @(r)su, w(r)) — f(@,u,w)]dr

T

where p(s) := p1(Ms) + p2(Ays) is a Koo function since p; and py are K. Since

(k+1)T

Fy =2+ Tf(0,u,w) + / (@), u,0(r)) — (@, u,w)ldr | (13)
_,—/ kT
FTEuler

the result follows from (12) and the first condition of the lemma, which implies the existence of g; € Koo,
such that |Fg — FFuer| < Tpy(T). Finally, by letting p = 5 + j1 we prove that F{ is one-step weakly

consistent with F'7. Proof of Lemma 2.2 is omitted since it follows closely the proof of Lemma 2.1. =

3 Main Results

In this section, we state and prove our main results (Theorems 3.1 and 3.2). The results specify conditions
on the approximate model, the controller and the plant, which guarantee that the family of controllers
(GT,ur) that input-to-state stabilize F/% would also input-to-state stabilize F%. for sufficiently small T'.
We emphasize that our results are given for general approximate discrete-time models F¢ (not only
for the Euler approximation). Moreover, under certain mild conditions our results can be extended
to include inter-sample behavior as well (see [10]). Finally, an example is presented to illustrate our

approach.

Theorem 3.1 Suppose that: (i) The family of approzimate discrete-time models F3.(Z,-) is Lyapunov-
SP-ISS (where either (9) or (10) holds); (i) Fg is one-step weakly consistent with Ff%; (i) ur is

uniformly locally bounded. Then, the family of exact discrete-time models F5(%,wy) is SP-DISS. [

Theorem 3.2 Suppose that: (i) The family of approzimate discrete-time models F¢ (&, wy) is Lyapunov-
SP-ISS (where (9) holds); (ii) F% is one-step strongly consistent with Ff%.; (iii) ur is uniformly locally

bounded. Then, the family of exact discrete-time models F(Z,wy) is SP-ISS. [ ]



The following lemmas are needed to complete proofs of both theorems. We prove only Lemma 3.1 for
the case of ordinary difference equations (i.e., when (10) holds) and then comment on the changes in the

proof for the case of functional difference equations (i.e., when (9) holds) and the proof of Lemma 3.2.

Lemma 3.1 If all conditions in Theorem 3.1 are satisfied, then there exist ¥ € Ko such that for any

strictly positive numbers (Cz, Cy, Cy,v), there exists T* > 0 such that for all T € (0,T*), we have

2] < Cs , |lwlle <Cuw, i)l <Cy Ve (F5(%,wy)) — Vr(Z) 1
{max{VT(f%(:T:,wf)),VT(;ﬁ)}Zﬁ/(||w||oo)+y} = :,’f S < -zos(2]) . (19)

Lemma 3.2 If all conditions in Theorem 3.2 are satisfied, then there exist ¥ € Ko such that for any

strictly positive numbers (Cg, Cy, V), there exists T* > 0 such that for all T € (0,T*), we have

max{Vr (Fz(Z, wy)), Vr(2)} 2 A(llwlly) +

Cw } — VT(f%(i'7wqf)) - VT(i') S _ia3(|a~:|) . (15)

Proof of Lemma 3.1: First, we prove the following fact:

Fact 1: Suppose that for any strictly positive numbers (&1,£2,6~1) there exists T, > 0 such that for
all T € (0,T2%), |# < Ay and |w| < Ay we have that (10) holds. Then, for any strictly positive numbers
(A1, A, As, d1) there exists T > 0 such that for all T € (0,7), |Z] < A; and continuously differentiable

disturbances with ||w||, < Az and |||, < Az we have that

VriZr@ ) = Ve@ < gy (1@) + 3(lwyl,.) + 6 (16)

Proof of Fact 1: Let (A1, Ay, Az, ;) be given. Let & be such that SUPge(o,a,] | V(8 + 8) —7(s)| < 4.

Let 31 = Ay, 82 = Ao, 5~1 = 671 and let the numbers (51,82,&) generate T, > 0 from the

condition of Fact 1. Let T, := min (T;j, A~ ) Consider arbitrary T € (0,T7), |#| < A; and any
continuously differentiable disturbance with |lw||,, < A, and ||@||,, < As. From the Mean Value
Theorem and our choice of T it follows that for all t € [kT, (k+1)T], k € N we have that |w| = |w(k)| <
w(t) = wkT)| + |[w(t)] < |l (¢ = KT) + llwsllye < AT + [lwplly < AsTy + [lwyll o < 8+ [lwgll,

Finally, using our definitions of g, 8, we can write:

VeZrEe) V@) < ay(|a]) + 5(jul) + 3
= —as(1a]) +Aholl) + 3wl - Ahegll) + & an
< —aal(a) + A(hwsll) + 7 (8 + orll) = 3wy lle) + %
< —as(l) + lwgll) + & + %



which completes the proof of the fact. Now we continue the proof of Lemma, 3.1.

Suppose that all conditions in Theorem 3.1 (where (10) holds) are satisfied. Using Fact 1 it follows
that all conditions in Theorem 3.1 (where (16) holds) are also satisfied. Let §(s) := as o a3 ' (45(s)).

Let arbitrary strictly positive numbers (Cz,Cy,Cy,v) be given. Using (Cz,Cy,Cy,v), we define:

€:= %a;l(

v

v £
2

); 61 :==min{2ay (£), 23005 (2ai(e))}; 62 := a3 " (3a1(e)); and A := a7 ' (a2(C;) +
F(Cy) + 01) + €. Let the numbers (1,02, A, €) generate the numbers 77 > 0 and L > 0 from con-
dition (i) of Theorem 3.1 (where (16) holds). Let A generate A, > 0 and Ty > 0 from condi-
tion (iii) of Theorem 3.1. Let the quadruple (A, Ay, Cy,Cy) generate Ty > 0 and p from condition
(ii) of Theorem 3.1. Let strictly positive numbers Tj, Ty, T;,T7 be such that: Lp(T}) < tas(d2);
Tep(Ty) < & TgA(Cw) < tan (f€); and T ($a3(Cz) + 5(Cw) + 01 + Lp(T3)) < %. Finally, we take
T* = min{T}, T§, T, Tp, T, T, TF, 1)

In the calculations that follow, we consider arbitrary T € (0,7*), |%| < Cj, |lwl|,, < Cw and

||| < Cy- From (8), (9) and definition of A and the fact that 7* < 1, we have that

|F2(&,w)| < o' (Vo (F4 (3, w))) < o' (Ve (@) + TA(lwll) + Th1) < a7 (a2(Cz) +7(Cw) +61) < A
(18)

Using the condition (ii) of Theorem 3.1, inequality (18) and our choice of A and T™* (in particular the

choice of TZ), we can write:

(&, wp)| < |F3(F,w)| + | Fg(&,wp) — Ff(&,w)| < a7 (aa(Cz) +5(Cw) + 61) + Tp(T) 19)
< afl(ag(Ci) + (Cw) +51) +e=A.

,-'?
Suppose that Vr(Fz(Z,wy)) > 4(Cy) + 5. From (8), the definition of € and the choice of T, we have
| Fe(&,w5)| > et (z) =2>e€, (20)
2
and then using the condition (ii) of Theorem 3.1 and our choice of T, we have
|F2(@,0)| > = |F5(3,wp) = Fp(@,0)| + | F5@0p)] > ~Tp(T) +a5" (5) > —e+2e=¢. (1)
From our choice of T* < 1, T¢, 61, and € and using the inequality (16) it follows that:

%al(e) < %al(e) + %al(e) - ial () - ial (£) < (0 - T3(C) - To, (22)

< a(|F7(E,w)]) = TH(Cw) — Ty < Vp(Fi(E, w)) — TY(||lwll ) — T < V(%) < ax(|2]) ,

A

which implies:

a2 a7 (@) = (23)



Note that d2 < e. From the conditions (i) and (ii) of Theorem 3.1 and from the choice of T* (in particular

the choice of T and T7'), the choice of §; and d> and using (18)-(23) we deduce that Vr(F§) > 4(Cy)+ %
implies
(Cuw) + g < Vo(Fp) = Ve(®) + V(&) + Ve (Fr) = Vo (Fr) < Vo(F7) = Ve(&) + Vo (Fr) = Vi (Fr)|

+Vir(&) < TA(Cy) + T + LTp(T) + Vir(3) < g + Vi (&) (24)

Hence, we can conclude that

Ve(F5) 2 4(Cu) + 5 = V(@) > 3(Cu). (25)

Again using the conditions (i) and (ii) of Theorem 3.1 and from the choice of T* (in particular the choice
of T}), the choice of §; and d2 and using (18)-(25) we can write:

Vo (Fi (%, wy)) = V(%) Vr(Fi (&, w)) = Vi (2) + [V (F7 (&, wy)) — Vi (Fg(E, w))]
—Tas(|2]) + T(llwlloo) + Té1 + LTp(T)

—Tas(|]) = 2Las(|#]) + TH(Cw) + T as(62) + Tas(d2)
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Suppose now that Vi (Fg(Z,wy)) < 4(Cw) + 5 and Vp(Z) > 4(Cy) + v. From our choice of T* (in

particular the choice of T7), it follows that:

v

- N N v - v v T 5
Vi(Fo(e,wp) ~ V@) < ACW) + 5 Vi@ +5 -5 < 2 < —gasllEl),  (@0)
<0
which shows that (14) is valid, and this completes the proof of Lemma 3.1. [ |

The proof of Lemma 3.1 for the case of functional difference equations and the proof of Lemma 3.3
follow the same steps as above except that we do not need to use Fact 1 since (9) holds. Also, in the
case of functional difference equations of Lemma 3.1 we use one-step weak consistency and in the case
of Lemma 3.3 we use one-step strong consistency. The next lemma is needed in proofs of Theorems 3.1

and 3.2 and it was proved as a part of the proof of Theorem 2 in [9].

Lemma 3.3 Let W C Lo and let aj,as,a3 € Koo. Let strictly positive real numbers (d, D) be such
that a1 (D) > d and let T* > 0 be such that for any T € (0,T*) there exists a function Vr : R* — R>
such that for all T € (0,T*) and all # € R™ we have a1(|Z]) < Vr(Z) < a2(|Z|) and, moreover, for
all & € R™ with max{Vr(Fr(z,wys)),Vr(Z)} > d and |2| < D, allw € W and oll T € (0,T*) the

following holds VT(fT(i’wa))fvT(i) < —Las(|z|). Then, there exist a function B € KL such that for all




T € (0,T%), |£(0)| < ag' 0o ai(D) and w € W and all k € N the solutions of the family of discrete-time

models &(k + 1) = Fr((k), wys[k]) ewist and satisfy |3(k)| < B(|#(0)|, kT) + a;*(d). ]

Proof of Theorem 3.1: Let arbitrary strictly positive real numbers (Az, Ay, Ay, ) be given and let
all conditions in Theorem 3.1 hold. Let ¥ € K come from Lemma 3.1. We define (Cz,Cy,Cyu,v) as:
Cw = Ay, Cy := Ay, v > 0 is such that supse[O,Aw][afl(”y(s) +v) —a; 04(s)] < 6, and the number
Cs = max{a; " (%(Aw) +v) + 1,07 0 ax(Az)}.

Using Lemma 3.1, let (Cz, Cy, Cy,v) generate T* > 0, such that (14) holds. Introduce D := Cz and
d := A(||w||,) + v, and from the choice of (Cz, Cy,Cy,v) we have that a;(D) > d. Let W be a set
of continuously differentiable functions defined as follows W := {w € Lo| [|w||, < Cu,||w]l, < Cu}-
With these definitions of (D, d) and W, together with (8), we have that all conditions of Lemma 3.3
hold. Hence, we can conclude that for all T € (0,7%*), £(0) € R, |£(0)| < Az and w € L with

lw]lo < Aw, 0], < Ay and all k& > 0 we have that the solutions of Ff(#,wy) exist and satisfy

|1Z(k)| < B(12(0)],kT) + a7 ' (d) < B(Z(0)],kT) + a7 ' (A(llwlle) +v) o8)
28
< B(Z(0)], kT) + a7 0 A(|lwllo) + 8 = B(Z(0)],kT) +(|lwll o)+,
where (s) := a7 ' 04(s). This completes the proof of Theorem 3.1. The proof of Theorem 3.2 is omitted

since it follows closely the proof of Theorem 3.1. [
We illustrate below our results via an example.

Example 3.1 Consider the scalar continuous-time plant &(t) = z3(t) +u(t) +w(t) and its approzimate

discrete-time model x(k +1) = z(k) + T (z®(k) + u(k)) + fk(;H)T w(s)ds =: Ff(x(k),u(k), ws[k]), which

can be obtained from numerical integration schemes described in [3]. The following three controllers:

ub(z) = —2° -2
ur(z) = —-2®—-z-Tz (29)
wh(z) = —55[1+2T2? —V1-4T|=

can be shown to yield respectively the following three dissipation inequalities with V(x) = %m2 :

V(F%(M%r(ﬂ%),w))*v(z)
V(Ff(zuz(z)ws)) -V (e)

T
V(F7 (2,uf(2),ws) V()
T

2 2

—222 + § |wy ||, + T ||lwg ||, + Ta?
2 2 2 2 3

—12? + LlwgllZ + (T + L) lwy|l2, + (T + L + L-)a? (30)
2 2

—3a2 + 5 [JwgllS, + T llwgllZ, -

ININ IA

From our choice of V(x) and (30) it follows that the approzimate discrete-time model with any of the
controllers (29) is Lyapunov SP-ISS. Moreover, since the approzimate discrete-time model is the same
as ﬁ’q‘?“l” in the first condition of Lemma 2.2, it follows that F$ is one-step strongly consistent with Fi.

Finally, all of the controllers in (29) are locally uniformly bounded (for ul. and u2. this is obvious and
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for u. this can be seen by using the Taylor series expansion /1 —4T = 1— 2T + O(T?)). Therefore,
for F$¢, V(x) and any controller in (29) we have that all conditions of Theorem 3.2 hold. Hence, we can
conclude using Theorem 3.2 that each of controllers (29) semiglobally practically input-to-state stabilizes

the exact discrete-time plant model.

Tfs] ROA estimate Ts] x Amplitude of disturbance
up(k) | wz(R) | ui(k) C [ ur®) [ui () [ ui(k)
025 | [2.99,2.99] | [-2.90,2.90] | [-2.66,2.66] 0.25 | 2.66 | 2.50 | 3.04 | 4.37
0.15 | [4.104.10] | [-4.04,4.04] | [-4.01,4.01] 0.15 | 4.01 | 348 | 3.95 | 420
0.05 [-7.78,7.78] [-7.75,7.75] [-7.75,7.75] 0.05 | 7.75 | 6.84 7.12 7.15
0.001 | [-67.81,67.81] | [-67.81,67.81] | [-67.81,67.81] 0.001 | 67.81 | 63.62 | 63.70 63.70

Table 1: ROAs in disturbance free case. Table 2: Performance with a disturbance

We applied the controllers (29) via a sampler and zero order hold to the continuous-time plant model
and compared the performance of the three controllers via simulations in SIMULINK?. Note that the
controller uk.(z) may be obtained using a continuous-time design (obtain V< —%wz + %wz for the
continuous-time closed-loop) and controller discretization. In Table 1 we estimated regions of attraction
(ROA) of the closed-loop sampled-data system with controllers (29) for different sampling periods. The

controller ul. gives the largest ROA for all tested sampling periods. In Table 2 we summarize simulations

1 rad

for different sampling periods and fized initial states with a sinusoidal disturbance of frequency 1 Z2=.

The values of amplitude of the sinusoidal disturbance recorded in Table 2 are the largest values for which
solutions of the sampled-data closed-loop system stay bounded. It is obvious that the controller u3. is the
most robust with respect to the test disturbance for all tested sampling periods. Similar observations were
obtained for other initial states and disturbances that are not presented in Table 2. From Tables 1 and 2
we see that the performance of all controllers (29) becomes very similar for small sampling periods which
can be expected since the dissipation inequalities in (30) differ only in terms of order T, which can be
made arbitrarily small on compact sets by reducing T'. Difference in performance of controllers (29) is

more pronounced for larger sampling periods (see Tables 1 and 2).
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