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Abstract

Input-to-state stability (ISS) of a feedback interconnection of two discrete-time ISS systems

satisfying an appropriate small gain condition is investigated via the Lyapunov method. In particular,

an ISS Lyapunov function for the overall system is constructed from the ISS Lyapunov functions of

the two subsystems. We consider parameterized families of discrete-time systems that naturally arise

when an approximate discrete-time model is used in controller design for a sampled-data system.
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1 Introduction

The small gain theorem is one of the most important tools in robustness analysis and controller design

for nonlinear control systems. A particularly useful version of the small gain theorem for nonlinear

continuous-time systems was proved in [3] by Jiang et al. and it is based on the input-to-state stability

(ISS) property introduced by Sontag in [12] (see also [13]). A range of related result for continuous-time

systems can be found in [2, 11, 14, 15] and for nonlinear discrete-time systems in [5]. All of the above

results rely on trajectory based proofs of the small gain theorem and they do not construct a Lyapunov

function for the overall interconnected system. The first partial construction of a Lyapunov function for

the feedback connection of two continuous-time ISS systems satisfying a small-gain condition that we

are aware of was proposed in [4].

It is the main purpose of this paper to present a discrete-time version of the results in [4]. Indeed, we

present a partial construction of an ISS Lyapunov function from the ISS Lyapunov functions of two inter-

connected discrete-time ISS systems satisfying a small-gain condition. While the constructed Lyapunov

function in the discrete-time case has the same form as the one constructed in [4] for continuous-time

systems, the proofs of the two results are significantly different.

Our main result is a useful tool for a range of nonlinear discrete-time control problems. In particular,

the constructed Lyapunov function can be used together with results in [7, 9] to design ISS controllers

for nonlinear sampled-data systems via their approximate discrete-time plant models. We also remark

that our main result is closely related to results on changes of supply rates for ISS discrete-time systems

investigated in [10] and for IOSS discrete-time systems investigated in [6] and it can be regarded as an

appropriate generalization of the results in [10].
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2 Preliminaries

The set of real numbers is denoted by R. A function γ : R≥0 → R≥0 is of class K if it is continuous,

strictly increasing and zero at zero; it is of class K∞ if it is of class K and unbounded. Functions of class

K∞ are invertible. We say that a function q : R≥0 → R>0 is positive if it is continuous and q(s) > 0 for

all s ≥ 0. A function q : R≥0 → R≥0 is positive definite if it is continuous, q(0) = 0 and q(s) > 0 for all

s > 0. A function α : R≥0 → R>0 is of class L if it is positive and α(s) is strictly decreasing to zero as

s →∞. Given two functions α(·) and γ(·), we denote their composition and multiplication respectively

as α ◦ γ(·) and α(·) · γ(·). Identity function is denoted by Id, that is Id(s) := s.

Consider a family of parameterized discrete-time systems

x(k + 1) = FT (x(k), u(k)) . (1)

where x ∈ Rn and u ∈ Rm are respectively the state and input of the system. It is assumed that FT is

well defined on arbitrarily large compact sets for sufficiently small T , where T > 0 is the sampling period,

which parameterizes the system and can be arbitrarily assigned. Parameterized discrete-time systems

(1) commonly arise when an approximate discrete-time model is used for designing a digital controller

for a nonlinear sampled-data system (see [7, 9]). For instance, if we use the Euler model of ẋ = f(x, u)

for controller design then we have FT (x, u) := x + Tf(x, u). Non-parameterized discrete-time systems

are a special case of (1) when T is constant (for instance T = 1). We use the following definition.

Definition 2.1 The system (1) is semiglobally practically input-to-state stable (SP-ISS) w.r.t. input u

if there exist functions α, α ∈ K∞, a positive definite function α and γ ∈ K, and for any strictly positive

real numbers ∆x, ∆u, ν and ν̃ there exists T ∗ > 0 such that for all T ∈ (0, T ∗) there exists a continuous

function VT : Rn → R≥0 such that for all |x| ≤ ∆x, |u| ≤ ∆u and T ∈ (0, T ∗) the following holds:

α(|x|) ≤VT (x) ≤ α(|x|) , (2)

VT (x) ≥ γ(|u|) + ν ⇒ VT (FT )− VT (x) ≤ −Tα(VT (x)) , (3)

VT (FT ) ≤VT (x) + ν̃ . (4)

The function VT is called a SP-ISS Lyapunov function for the system (1). ¥

Definition 2.2 (Lipschitz uniform in small T) A family of functions VT : Rn → R≥0 is Lipschitz

uniformly in small T if given any ∆x > 0 there exists T ∗ > 0 such that for all T ∈ (0, T ∗) and

max{|x| , |y|} ≤ ∆x the following holds:

|VT (x)− VT (y)| ≤ L |x− y| . (5)

¥

Remark 2.1 We note that for continuous-time systems, if ∆x > α−1(γ(∆u)+ν) then the condition (4)

is not needed in the definition of SP-ISS and a condition that corresponds to (3) is enough to guarantee

an appropriate ISS bound on the trajectories of the system. However, for discrete-time systems, the

condition (3) alone is not enough to guarantee even the boundedness of the trajectories of the system no
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matter how large ∆x is compared to ∆u and ν. This is illustrated by the system x(k + 1) = FT (x(k))

where FT (·) is any continuous function satisfying (the example is taken from [8])

FT (x) =





2∆x |x| ≤ ν/2

2 |x| |x| ≥ 2∆x

0 ν ≤ |x| ≤ ∆x ,

(6)

and ∆x and ν are arbitrarily positive real numbers. With, for example, VT (x) = |x|, we have for all

|x| ≤ ∆x that

|x| ≥ ν ⇒ ∆VT := VT (FT (x))− VT (x) = −VT (x). (7)

Yet, every trajectory grows without bound. Note that the condition (7) gives the right bound on ∆VT for

all ∆x ≥ |x| ≥ ν. However, this example shows that some information about VT (FT (x)) is required even

for values of x such that |x| ≤ ν in order to assert a bound on trajectories of the system. Consequently,

we have included the condition (4) as a part of SP-ISS characterization in Definition 2.1. We note that

the condition (4) is not restrictive and is satisfied in most situations of interest. Example 2.1 illustrates

a particular case of this condition. ¥

Example 2.1 Consider a continuous-time nonlinear system ẋ = f(x, u) where f is bounded on compact

sets. Suppose we use the Euler discrete-time model of the system x(k + 1) = FT (x(k), u(k)) := x(k) +

Tf(x(k), u(k)) to analyse its properties. Consider also a Lyapunov function VT that is uniformly (locally)

Lipschitz in small T . Then, we can write on compact sets:

VT (FT ) = VT (x) + VT (x + Tf(x, u))− VT (x) ≤ VT (x) + LT |f(x, u)| . (8)

Since there exists M > 0 so that |f(x, u)| ≤ M , then given any ν̃ > 0 there exists T ∗ > 0 (we can take

T ∗ = ν̃
LM ) so that for all T ∈ (0, T ∗) we have that (4) holds. ¥

Remark 2.2 If instead of (3), we used the following Lyapunov condition in Definition 2.1

∆VT ≤ −Ta(|x|) + Tγ(|u|) + Tν , a, γ ∈ K∞ , (9)

then we would not need (4). However, the above given formulation leads to a more complicated statement

and proof of our main result and hence we have opted to use the conditions as stated in Definition 2.1.

We emphasize that (3) and (4) are equivalent to (9) if an appropriate condition holds. Indeed, it is

trivial to see that (9) implies both (3) and (4). The opposite holds if there exists σ ∈ K∞ such that for

any strictly positive r, ν there exists T ∗ > 0 such that the following holds

max
T∈(0,T∗),|x|≤γ(r),|u|≤r

∣∣∣∣
∆VT

T

∣∣∣∣ ≤ σ(r) + ν , (10)

and then we can write that for any (∆x,∆u, ν) there exists T ∗ > 0 such that the following holds:

∆VT ≤ −Tα(VT ) + Tσ(|u|) + Tν .

The condition (10) is slightly stronger than (4) but it often holds.
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We note that the condition (9) was used in [9] to provide a framework for design of input-to-state sta-

bilizing controllers for sampled-data systems via their approximate discrete-time models. Hence, results

of this paper in cases when the condition (10) holds provide a tool for ISS controller design within the

framework of [9]. In Section 4 we present an example which illustrates the importance of the particular

definition of SP-ISS that we use when the controller design is based on an approximate discrete-time

plant model. ¥

3 Main result

In this section we state and prove Theorem 3.1, which is the main result of this paper. Theorem 3.1 is

a discrete-time version of the continuous-time result [4]. The statements of both results are similar but

the proofs are notably different and the differences are commented on below (see Remark 3.2).

The focus of this paper is a family of parameterized discrete-time interconnected systems

Σ1 : x1(k + 1) = F1T (x1(k), x2(k), u(k)) ,

Σ2 : x2(k + 1) = F2T (x1(k), x2(k), u(k)) .
(11)

In the sequel we will assume that the subsystem Σ1 is SP-ISS with respect to inputs x2 and u and

the subsystem Σ2 is SP-ISS with respect to inputs x1 and u. More precisely, we suppose that for

i, j ∈ {1, 2}, i 6= j, there exist functions αi, αi ∈ K∞, positive definite functions αi, functions γxi , γui ∈ K,

and for any strictly positive real numbers (∆xi ,∆xj ,∆ui , νi, ν̃i) there exist T ∗i > 0 and for any T ∈ (0, T ∗i )

there exist ViT : Rn → R≥0 such that the following hold for all T ∈ (0, T ∗i ), |xi| ≤ ∆xi , |xj | ≤ ∆xj and

|u| ≤ ∆ui :

αi(|xi|) ≤ViT (xi) ≤ αi(|xi|) , (12)

ViT (xi) ≥ max{γxi(VjT (xj)), γui(|u|) + νi} ⇒ ViT (FiT )− ViT (xi) ≤ −Tαi(ViT (xi)) , (13)

ViT (FiT ) ≤ViT (xi) + ν̃i . (14)

Under the above given conditions and an appropriate small gain condition, we show that the overall

system (11) is SP-ISS with respect to the input u. Moreover, we construct a SP-ISS Lyapunov function

VT for the overall system (11) using the SP-ISS Lyapunov functions V1T and V2T of the subsystems Σ1

and Σ2. More precisely, we can state the following result.

Theorem 3.1 Consider the family of parameterized discrete-time interconnected system (11). Suppose

that the following conditions hold:

A1. The subsystem Σ1 is SP-ISS with inputs x2 and u and SP-ISS Lyapunov function V1T .

A2. The subsystem Σ2 is SP-ISS with inputs x1 and u and SP-ISS Lyapunov function V2T .

A3. There exist τ1, τ2 ∈ K∞ such that (Id + τ1) ◦ γx1 ◦ (Id + τ2) ◦ γx2(s) < s, ∀s > 0.

Then, the system (11) is SP-ISS w.r.t. the input u; moreover, there exists ρ ∈ K∞ such that the function

VT (x1, x2) := max{V1T (x1), ρ(V2T (x2))} , (15)

is SP-ISS Lyapunov function for the system (11). Moreover, if V1T , V2T are locally Lipschitz uniformly

in small T , then VT is locally Lipschitz uniformly in small T . ¥
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Proof of Theorem 3.1: Suppose that all conditions of Theorem 3.1 are satisfied. Let α1, α1, α1, γx1 ,

γu1 come from conditions A1, and let α2, α2, α2, γx2 , γu2 come from condition A2. Let τ1, τ2 ∈ K∞ come

from condition A3. Note that without loss of generality we can assume that (Id−αi), i = 1, 2 are positive

definite. For simplicity of notation we introduce γ̃x1(s) := (Id + τ1) ◦ γx1 , γ̃x2(s) := (Id + τ2) ◦ γx2 .

Similar to [4] we denote b := limr→∞ γ̃x2(r) and since γ̃x2 ∈ K, then γ̃−1
x2

is defined on [0, b), γ̃−1
x2

(r) →∞
as r → b− and from A3 we have that

γ̃x1(r) < γ̃−1
x2

(r), ∀r ∈ (0, b) . (16)

Let γ̂x ∈ K∞ be such that

• γ̂x(r) ≤ γ̃−1
x2

(r) for all r ∈ [0, b);

• γ̃x1(r) < γ̂x(r) for all r > 0.

(if γ̃x2 ∈ K∞, then we can take γ̂x(r) = γ̃−1
x2

(r)). Let ρ ∈ K∞ come from Lemma 6.1 such that

γ̃x1(r) < ρ(r) < γ̂x(r) , ∀r > 0 . (17)

Denote q̃(r) := dρ
dr (r), where q̃ is a positive function. Let VT be defined as:

VT (x1, x2) := max{V1T (x1), ρ(V2T (x2))} . (18)

We use the notation x := (xT
1 xT

2 )T , FT := (FT
1T FT

2T )T and the norm |x| := |x1| + |x2|. We show that

the interconnected system (11) is SP-ISS with input u by proving that VT is a SP-ISS Lyapunov function

for the system.

Let arbitrary strictly positive real numbers (∆x, ∆u, ν, ν̃) be given. Let ∆x1 = ∆x2 = ∆x and

∆u1 = ∆u2 = ∆u. Let ε1, ε2 ∈ K∞ be arbitrary functions such that (Id − εi) are positive definite

functions for i = 1, 2. Let ν1 be such that

max
{

ν1, max
s∈[0,∆u]

[ε−1
1 (γu1(s) + ν1)− ε−1

1 ◦ γu1(s)]
}
≤ ν (19)

and let ν2 be such that

max
{

max
s∈[0,∆u]

[ρ(γu2(s) + ν2)− ρ ◦ γu2(s)], max
s∈[0,∆u]

[ε−1
2 ◦ ρ(γu2(s) + ν2)− ε−1

2 ◦ ρ ◦ γu2(s)]
}
≤ ν . (20)

Let ν̃1 > 0 and ν̃2 > 0 be such that

max{ν̃1, max
s∈[0,α2(∆x2 )]

[ρ(s + ν̃2)− ρ(s)]} ≤ ν̃ , (21)

(Id + τ−1
1 )(ν̃1) ≤ ν1

2
, (Id + τ−1

2 )(ν̃2) ≤ ν2

2
. (22)

Let (∆x1 ,∆x2 , ∆u1 ,
ν1
2 , ν̃1) determine T ∗1 > 0 via the condition A1. Let (∆x1 , ∆x2 ,∆u2 ,

ν2
2 , ν̃2) determine

T ∗2 > 0 via the condition A2. Let T ∗ := min{1, T ∗1 , T ∗2 }. In the rest of the proof we assume that |x| ≤ ∆x,

|u| ≤ ∆u and T ∈ (0, T ∗).

First note that γ̃x1(s) ≥ γx1(s), γ̃x2(s) ≥ γx2(s) for all s ≥ 0. Conditions A1 and A2 imply that:

V1T (x1) ≥ max{γx1(V2T (x2)), γu1(|u|) + ν1/2} ⇒ V1T (F1T )− V1T (x1) ≤ −Tα1(V1T (x1)) , (23)

V2T (x2) ≥ max{γx2(V1T (x1)), γu2(|u|) + ν2/2} ⇒ V2T (F2T )− V2T (x2) ≤ −Tα2(V2T (x2)) , (24)

V1T (F1T ) ≤ V1T (x1) + ν̃1 , V2T (F2T ) ≤ V2T (x2) + ν̃2 . (25)
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Moreover, using respectively A1 and A2 and our choice of νi, ν̃i, i = 1, 2 we can write respectively

V1T (F1T ) ≤ max{(Id− Tα1)(V1T (x1)), γ̃x1(V2T (x2)), γu1(|u|) + ν1} , (26)

V2T (F2T ) ≤ max{(Id− Tα2)(V2T (x2)), γ̃x2(V1T (x1)), γu2(|u|) + ν2} . (27)

We only prove (26) and the proof of (27) is omitted since it follows the same steps. Note that if

V1T (x1) ≥ max{γx1(V2T (x2)), γu1(|u|) + ν1/2}, then from (23) we can write that:

V1T (F1T ) ≤ (Id− Tα1)(V1T (x1)) . (28)

On the other hand, if V1T (x1) ≤ max{γx1(V2T (x2)), γu1(|u|) + ν1/2}, then from (25) we have

V1T (F1T ) ≤ V1T (x1) + ν̃1 ≤ max{γx1(V2T (x2)) + ν̃1, γu1(|u|) + ν1/2 + ν̃1} .

By considering two sub-cases τ1 ◦ γx1(V2T (x2)) ≥ ν̃1 and τ1 ◦ γx1(V2T (x2)) ≤ ν̃1, and from definition of

ν1 and ν̃1 we can write that

V1T (F1T ) ≤ max{(Id + τ1) ◦ γx1(V2T (x2)), (Id + τ−1
1 )(ν̃1), γu1(|u|) + ν1/2 + ν̃1}

≤ max{γ̃x1(V2T (x2)), (Id + τ−1
1 )(ν̃1), γu1(|u|) + ν1/2 + ν1/2}

≤ max{γ̃x1(V2T (x2)), ν1/2, γu1(|u|) + ν1} = max{γ̃x1(V2T (x2)), γu1(|u|) + ν1} ,

(29)

and (28), (29) complete the proof of (26). We assume in the sequel that (23)-(27) hold.

We have that 1
2r1 + 1

2ρ(r2) ≤ max{r1, ρ(r2)} ≤ r1 + ρ(r2), for any ρ ∈ K∞, r1 ≥ 0, r2 ≥ 0, and that

for any α1, α2 ∈ K, there exist α, α ∈ K such that α(s1 + s2) ≤ α1(s1) + α2(s2) ≤ α(s1 + s2), ∀s1 ≥
0, s2 ≥ 0, where we can take α(s) := min{α1( s

2 ), α2( s
2 )} and α(s) := 2 max{α1(s), α2(s)}. Using

the definition of VT , we have that VT satisfies (2) with α(s) := min{1/2α1(s/2), 1/2ρ ◦ α2(s/2)} and

α(|x|) := 2 max{α1(s), ρ ◦ α2(s)}. Moreover, from the definition of VT and (21) we have that

VT (FT ) = max{V1T (F1T ), ρ(V2T (F2T )} ≤ max{V1T (x1) + ν̃1, ρ(V2T (x2) + ν̃2)}
≤ max{V1T (x1), ρ(V2T (x2))}+ ν̃ = VT (x) + ν̃ , (30)

which proves that (4) holds.

To show that VT satisfies (3), we consider the following four cases:

Case 1: V1T (x1) ≥ ρ(V2T (x2)) and V1T (F1T ) ≥ ρ(V2T (F2T )). It holds that

∆VT := VT (FT )− VT (x) = V1T (F1T )− V1T (x1) .

Conditions V1T (x1) ≥ ρ(V2T (x2)) and γx1(r) ≤ γ̃x1(r) < ρ(r) for all r > 0 imply V1T (x1) > γx1(V2T (x2)).

Hence, from (23) it holds that if V1T (x1) ≥ γu1(|u|) + ν1 then we have

V1T (F1T )− V1T (x1) ≤ −Tα1(V1T (x1)) .

Since VT (x) = V1T (x1), ν ≥ ν1 and ε−1
1 > Id we have

VT (x) ≥ ε−1
1 ◦ γu1(|u|) + ν ≥ γu1(|u|) + ν ⇒ ∆VT ≤ −Tα1(VT (x)) . (31)
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Case 2: V1T (x1) < ρ(V2T (x2)) and V1T (F1T ) < ρ(V2T (F2T )). It holds that

∆VT = ρ(V2T (F2T ))− ρ(V2T (x2)) . (32)

Conditions V1T (x1) < ρ(V2T (x2)) and ρ−1(r) > γ̃x2(r) ≥ γx2(r), ∀r > 0 imply V2T (x2) > γx2(V1T (x1)).

Hence, from (24) it holds that if V2T (x2) ≥ γu2(|u|) + ν2, we have that

∆V2T = V2T (F2T )− V2T (x2) ≤ −Tα2(V2T (x2)) ⇒ V2T (F2T ) ≤ (Id− Tα2)(V2T (x2)) . (33)

Then using the Mean Value Theorem and the construction of ρ via Lemma 6.1, we have that

∆VT = ρ(V2T (F2T ))− ρ(V2T (x2))

≤ ρ ◦ (Id− Tα2)(V2T (x2))− ρ(V2T (x2)) = −T q̃(V ?
2T ) · α2(V2T (x2)) ,

(34)

with V ?
2T ∈ [(Id − α2)(V2T (x2)), V2T (x2)] (since T < 1) and q̃ is a positive function. Let q̃ generate via

Lemma 6.2 the functions q1 ∈ K∞ and q2 ∈ L. We use the fact that VT (x) = ρ(V2T (x2)) to write that

∆VT ≤ −T q̃(V ?
2T ) · α2(V2T (x2))

≤ −Tq1(V ?
2T ) · q2(V ?

2T ) · α2(V2T (x2))

≤ −Tq1 ◦ (Id− α2)(V2T (x2)) · q2(V2T (x2)) · α2(V2T (x2))

=: −Ta2a(V2T (x2)) = −Ta2a ◦ ρ−1(VT (x)) = −Ta2(VT (x)) .

(35)

Since VT (x) = ρ(V2T (x2)), ε−1
2 > Id and by (20), we have

VT (x) ≥ ε−1
2 ◦ ρ ◦ γu2(|u|) + ν ≥ ρ ◦ γu2(|u|) + ν ⇒ ∆VT ≤ −Ta2(VT (x)) . (36)

Case 3: V1T (x1) < ρ(V2T (x2)) and V1T (F1T ) ≥ ρ(V2T (F2T )). Using (26) it holds that

∆VT = V1T (F1T )− ρ(V2T (x2))

≤ max{(Id− Tα1)(V1T (x1)), γ̃x1(V2T (x2)), γu1(|u|) + ν1} − ρ(V2T (x2)) .
(37)

We now over bound each of the terms in (37). First, by using (61) from Lemma 6.3 with V1T (x1) = s

and V2T (x2) = r, we obtain

(Id− Tα1)(V1T (x1) ≤ −Ta3a ◦ ρ(V2T (x2)) = −Ta3a(VT (x)) . (38)

Next, since γ̃x1(r) < ρ(r), ∀r > 0, the function a3b(r) := ρ(r)− γ̃x1(r) is positive definite and since T < 1

we have that

γ̃x1(V2T (x2))− ρ(V2T (x2)) = −a3b(V2T (x2)) = −a3b ◦ ρ−1(VT (x)) ≤ −Ta3b ◦ ρ−1(VT (x)). (39)

Finally, we consider the third term. Let ε1 ∈ K∞ be such that Id− ε1 is a positive definite function. If

ρ(V2T (x2)) > ε−1
1 ◦ (γu1(|u|) + ν1) then it holds that

−ρ(V2T (x2)) + γu1(|u|) + ν1 ≤ −(Id− ε1) ◦ ρ(V2T (x2)) . (40)

Since VT (x) = ρ(V2T (x2)) and using the definition of ν1 and T < 1, we can write:

VT (x) > ε−1
1 ◦ γu1(|u|) + ν ⇒ ρ(V2T (x2)) > ε−1

1 ◦ (γu1(|u|) + ν1)

⇒ −(Id− ε1) ◦ ρ(V2T (x2)) = −(Id− ε1)(VT (x))

=: −a3c(VT (x)) ≤ −Ta3c(VT (x)) .

(41)
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Combining inequalities (35), (39) and (41), with a3(r) := min{a3a(r), a3b ◦ ρ−1(r), a3c(r)}, we have that

VT (x) > ε−1
1 ◦ γu1(|u|) + ν ⇒ ∆VT ≤ −Ta3(VT (x)) . (42)

Case 4: V1T (x1) ≥ ρ(V2T (x2)) and V1T (F1T ) < ρ(V2T (F2T )). Using condition (27) we have

∆VT = ρ(V2T (F2T ))− V1T (x1)

≤ max{ρ ◦ (Id− Tα2)(V2T (x2)), ρ ◦ γ̃x2(V1T (x1)), ρ(γu2(|u|) + ν2)} − V1T (x1) .
(43)

Now we bound the terms on the right hand side of (43). First, using (62) of Lemma 6.3 with s = V2T (x2)

and r = V1T (x1) we can write

ρ ◦ (Id− Tα2)(V2T (x2))− V1T (x1) ≤ −Ta4a(V1T (x1)) = −Ta4a(VT (x)) . (44)

Since a4b(r) := (Id− ρ ◦ γ̃x2)(r) is positive definite, T < 1 and VT (x) = V1T (x1), we have that

ρ ◦ γ̃x2(V1T (x1))− V1T (x1) ≤ (ρ ◦ γ̃x2 − Id)(V1T (x1))

=: −a4b(V1T (x1)) = −a4b(VT (x)) ≤ −Ta4b(VT (x)) .
(45)

Finally, we consider the third term. Let ε2 ∈ K∞ is such that a4c := Id−ε2 is a positive definite function.

Using the definition of ν2, VT (x) = V1T (x1) and the fact that T < 1, we can write that

VT (x) ≥ ε−1
2 ◦ ρ ◦ γu2(|u|) + ν ⇒ V1T (x) ≥ ε−1

2 ◦ ρ(γu2(|u|) + ν2)

⇒ −(Id− ε2)(VT (x)) =: −a4c(VT (x)) ≤ −Ta4c(VT (x)) .
(46)

Combining (44), (45) and (46), with a4(r) := min{a4a(r), a4b(r), a4c(r)}, we can write that

VT (x) ≥ ε−1
2 ◦ ρ ◦ γu2(|u|) + ν ⇒ ∆VT ≤ −Ta4(VT (x)) . (47)

By combining (31), (36), (42) and (47) and the fact that ε−1
i (r) > r, ∀r > 0, i = 1, 2, we have shown

that (3) holds with

α(r) := min{α1(r), a2(r), a3(r), a4(r)} (48)

γ(r) := max{ε−1
1 ◦ γu1(r), ε

−1
2 ◦ ρ ◦ γu2(r)} (49)

where α is a positive definite function and and γ ∈ K. Hence, the system (11) is SP-ISS.

The last thing left to prove is that if V1T and V2T are Lipschitz, uniformly in small T then VT is

Lipschitz, uniformly in small T . Let ∆x > 0 be given. Let L1, T
∗
1 and L2, T

∗
2 come respectively from the

Lipschitz properties of V1T and V2T for the set |xi| ≤ ∆x, i = 1, 2. Note also that since ρ ∈ C1, it is locally

Lipschitz and let Lρ be its Lipschitz constant for the set V2T (x2) ≤ α2(∆x). Denote x := (xT
1 xT

2 )T and

y := (yT
1 yT

2 )T . Let T ∗ := min{1, T ∗1 , T ∗2 } and consider arbitrary T ∈ (0, T ∗) and max{|x| , |y|} ≤ ∆x.

Introduce the sets: A := {x : V1T (x1) > ρ(V2T (x2))}; B := {x : V1T (x1) = ρ(V2T (x2))}; C := {x :

V1T (x1) < ρ(V2T (x2))}. We consider the following cases, to prove our claim:

Case 1: (x, y ∈ A) or (x ∈ A and y ∈ B) or (x ∈ B and y ∈ A) or (x, y ∈ B)

|VT (x)− VT (y)| = |V1T (x1)− V1T (y1)| ≤ L1 |x1 − y1| . (50)
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Case 2: (x, y ∈ C) or (x ∈ C and y ∈ B) or (x ∈ B and y ∈ C).

|VT (x)− VT (y)| = |ρ(V2T (x2))− ρ(V2T (y2))| ≤ LρL2 |x2 − y2| . (51)

Case 3: x ∈ A and y ∈ C

|VT (x)− VT (y)| = |V1T (x1)− ρ(V2T (y2))| . (52)

Since x ∈ A implies V1T (x1) > ρ(V2T (x2)) and y ∈ C implies V1T (y1) < ρ(V2T (y2)), we have that:

1. If V1T (x1) > ρ(V2T (y2)) then

|V1T (x1)− ρ(V2T (y2))| = V1T (x1)− ρ(V2T (y2)) ≤ V1T (x1)− V1T (y1) ≤ L1 |x1 − y1| . (53)

2. If V1T (x1) ≤ ρ(V2T (y2)) then

|V1T (x1)− ρ(V2T (y2))| = −V1T (x1) + ρ(V2T (y2)) ≤ ρ(V2T (y2))− ρ(V2T (x2)) ≤ LρL2 |x2 − y2| . (54)

Case 4: x ∈ C and y ∈ A. This case follows by symmetry from Case 3.

Hence, we can conclude that

|VT (x)− VT (y)| ≤ L(|x1 − y1|+ |x2 − y2|) , (55)

where L := max{L1, LρL2}. Therefore, VT is Lipschitz uniformly in small T . ¥

Remark 3.1 Similar results can be stated for non-parameterized discrete-time systems x(k + 1) =

F (x(k), u(k)), if all conditions hold on appropriate sets. The relationship between these sets can be

easily deduced from the proof of Theorem 3.1. Moreover, similar results can also be presented for an-

other class of parameterized systems x(k + 1) = FT,h(x(k), u(k)), which naturally arise when a family

of approximate discrete-time models of the continuous-time plant is generated by integrating continuous-

time plant dynamics over one sampling interval of length T > 0 using a numerical integration scheme

with integration period h > 0. In particular, the results that we stated can be regarded as a special case

of this more general situation when T = h (see [8] for more details). ¥

Remark 3.2 We note that the proofs of the continuous-time result in [4] and the discrete-time result in

Theorem 3.1 are notably different although the constructed function VT has the same form. In particular,

while the result in [4] was proved by considering 3 different cases, we need to consider 4 cases in discrete-

time, some of which contained up to three different sub-cases. Moreover, in the proof of the discrete-time

result we needed to use The Mean Value Theorem and Lemma 6.2, which were not needed in the proof

of the continuous-time result in [4]. ¥

4 Example

The following example illustrates that it may happen that an approximate discrete-time model satisfies

a small gain condition but if the gains depend on T (hence, the subsystems are not SP-ISS in the sense

of our Definition 2.1), then the approximate discrete-time model may be stable for all small values of

T but the exact discrete-time model is unstable for all small values of T . This example motivates our
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approach and in particular the consideration of families of parameterized discrete-time systems and the

SP-ISS property that we use.

Consider a continuous-time plant ẋ1 = x1 + u, which is between a sampler and zero order hold.

Suppose that we want to carry out the controller design using the Euler discrete-time approximate

model of the plant

x1(k + 1) = (1 + T )x1(k) + Tu(k) . (56)

Suppose that we use the following family of dynamic controllers

x2(k + 1) = −0.5x2(k)− T 2x1(k) , (57)

u(k) = − 1
T

x2(k)− 2
T

x1(k) . (58)

Note that the approximate closed-loop system (56), (57), (58) can be regarded as a feedback interconnec-

tion of two scalar systems (56) with (58) and (57). Moreover, using Lyapunov functions V1T (x1) = |x1|
and V2T (x2) = |x2| and suppose that T < 1, we can write the following:

|x1| ≥ 2
T
|x2| ⇒ ∆V1T ≤ −T

2
|x1| , (59)

|x2| ≥ 4T 2 |x1| ⇒ ∆V2T ≤ −T

4
|x2| . (60)

In this case the gains are γx1(s) = 2
T s and γx2(s) = 4T 2s. Note that for any M ∈ (0, 1/8) there exist

sufficiently small τ1, τ2 ∈ K∞ so that our small gain condition holds for all T ∈ (0,M ]. We have computed

the eigenvalues of the approximate closed-loop system matrix and obtained that λa
1 = − 1

2 +2T 2 +O(T 3)

and λa
2 = −1 + T − 2T 2 + O(T 3), which indicates that indeed the approximate closed-loop model is

stable for sufficiently small T . However, if we consider the exact closed-loop system consisting of the

exact discrete-time plant model x1(k + 1) = eT x1(k) + (eT − 1)u(k) and (57), (58), we obtain that the

eigenvalues of the system matrix are λe
1 = − 1

2 +2T 2 +O(T 3) and λe
2 = −1− 11

6 T 2 +O(T 3) and obviously

we have that |λe
2| > 1 for all sufficiently small T . In this case, since γx1 and γx2 depend on T , it is not

possible to construct a Lyapunov function VT via (15) that satisfies appropriate bounds in Definition

2.1 uniformly in small T .

5 Conclusions

We have presented in this paper a Lyapunov based small gain theorem for parameterized discrete-

time SP-ISS systems. This is a discrete-time counterpart of the continuous-time results in [4]. We

have presented an example that motivates our results in the case when a discrete-time controller for a

sampled-data plant is based on its approximate discrete-time model.
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6 Appendix

The following technical lemmas are used to prove the main result.
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Lemma 6.1 [4] Let σ1 ∈ K and σ2 ∈ K∞ satisfy σ1(r) < σ2(r) for all r > 0. Then there exists a K∞
function σ such that

• σ1(r) < σ(r) < σ2(r) for all r > 0;

• σ(r) is C1 on (0,∞) and σ′(r) =: q̃(r) is a positive function. ¥

Note that the above given function q̃ is positive but it is not positive definite in general. The following

lemma is a simple consequence of [1, Lemma IV.1]

Lemma 6.2 [1] Let q̃ : R≥0 → R>0 be a positive function. Then there exist a positive definite function

q and functions q1 ∈ K∞ and q2 ∈ L such that q̃(r) ≥ q(r) ≥ q1(r) · q2(r) , ∀r ≥ 0. ¥

Note that the existence of q is trivial to show, whereas the existence of q1 and q2 was proved in [1].

Lemma 6.3 Suppose that we are given a function ρ ∈ K∞ where q(r) := ρ′(r) is a positive function, a

positive definite function α, such that (Id− Tα) is positive definite and T ∈ [0, 1). Then, we can write:

max
0≤s≤ρ(r)

(Id− Tα)(s)− ρ(r) ≤ −Ta1 ◦ ρ(r) (61)

max
0≤ρ(s)≤r

ρ ◦ (Id− Tα)(s)− r ≤ −Ta2(r) , (62)

for some positive definite functions a1 and a2. ¥

Proof of Lemma 6.3: The inequality (61) follows easily from considering two cases s ≤ ρ(r)
2 and

ρ(r)
2 ≤ s ≤ ρ(r). In particular, we obtain a1(r) := max{1

2r, α(r)}. We now prove (62) in more detail.

First, note that if 0 ≤ ρ(s) ≤ r
2 , then

ρ ◦ (Id− Tα)(s)− r ≤ ρ(s)− r ≤ −r

2
. (63)

Consider now ρ(s) ∈ [
r
2 , r

]
. First, we use the Mean Value Theorem to write:

ρ ◦ (Id− Tα)(s)− r ≤ max
r
2≤ρ(s)≤r

ρ ◦ (Id− Tα)(s)− ρ(s) = q(s∗)[−Tα(s)] , (64)

where s∗ ∈ [(Id−α)(s), s] since T < 1. Using Lemma 6.2 we can find two functions q1 ∈ K∞ and q2 ∈ L
such that

−Tq(s∗)α(s) ≤ −Tq1(s∗) · q2(s∗) · α(s) ≤ −Tq1 ◦ (Id− α)(s) · q2(s) · α(s) =: −Tα∗(s) ,

where α∗(·) is a positive definite function. Applying Lemma 6.2 again we obtain q∗1 ∈ K∞, q∗2 ∈ L and

then using the fact that s ∈ [ρ−1(r/2), ρ−1(r)] we can write:

−Tα∗(s) ≤ −Tq∗1(s) · q∗2(s) ≤ −Tq∗1 ◦ ρ−1(r/2) · q∗2 ◦ ρ−1(r) =: −Tα1(r) .

This completes the proof of (62) with a2(r) := min{r/2, α1(r)}. ¥
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