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Abstract— Simple Lyapunov proofs are given for an improved ~and input-output stability when the MAEI [0, 7y a7 ;] With
(relative to previous results that have appeared in the literature)
bound on the maximum allowable transfer interval to guarantee AT < l In(1+ I1-A (1)
global asymptotic or exponential stability in networked control - % + A
systems and also for semiglobal practical asymptotic stability . .
with respect to the length of the maximum aliowable transfer Where\ € [0,1) characterized the contraction of the proto-

interval. We apply our results to emulation of nonlinear col’'s Lyapunov function at transmission times while> 0

controllers in sampled-data systems. described its expansion between transmission times, and
~ > 0 captured the effect of the error signals on the behavior
I. INTRODUCTION of the ideal system through af), gain?

In this paper, we will give a simple Lyapunov proof of an
A networked control system (NCS) is composed of multiimproved (larger) MATI bound, expressed in tertsL and
ple feedback control loops that share a serial communicatiqncorresponding to the case 6§ gains. (A similar approach
channel. This architecture promotes ease of maintenanegn be taken for the generdl, case.) In particular, we
greater flexibility, and low cost, weight and volume. On thesstablish uniform asymptotic or exponential stability when
other hand, if the communication is substantially delayed or
infrequent, the architecture can degrade the overall system”MATI =

performance significantly. Results on the analysis of an 1 r(1—M\)

NCS include [12], [13], [14], [7], [8]. In an NCS, the LrarCtan<21AA(z_1) +1+A> v>1L
delay and frequency of communication between sensors and 11—\ *

actuators in a given loop is determined by a combination L1+ v=L (2
of the channel's limitations and the transmission protocol 1 r(1—\)

used. Various protocols have been proposed in the literature, Earctanh I I DY y<L,
including the “round robin” (RR) and “try-once-discard” A AL

(TOD) protocols discussed in [12] and [13]. We note thaand note that in the first and last expressions we use respec-

sampled-data systems are a special case of NCS sincetiirely the trigopnometric and hyperbolic functions, where

this case all sensor and control signals are transmitted at

each transmission instant. - ‘(7)2 _ 1‘ . 3)
When the individual loops in an NCS are designed assum- L

ing perfect communication, the stability of the NCSis largely t is not obvious, except for the case = L, that (2)

determined by the transmission protocol used and by the sgrovides a larger bound than (1). We will establish that it is

the maximum allowable time between any two transmissiong|ye ; satisfying

in the network. When specialized to sampled-data systems, .
this controller design approach is called “emulation” (see [5], pr=—Lo1—v, ¢1(0)=1, ¢o(n)=1 (4
[2]). Following pion_eering work of Walsh and co.-a.uthors\,\,hereas the bound in (2) is the valug satisfying
[13], [12], we consider the problem of characterizing the
length of the MATI for a given protocol to ensure uniform ¢2 = —2Lga —(#3 + 1), ¢2(0) = A", ¢a(72) = A
global asymptotic or exponential stability. We also demon- ()
strate that our results apply in a straightforward manner @nd that necessarily, > 7, for all L > 0, v > 0 and A €
emulation of nonlinear controllers for digital implementation (0, 1). The above equations can be obtained from appropriate
This appears to be the first result in the literature thdtyapunov arguments that are presented later in our proofs.
provides an explicit formula for the computation of MATI The difference in the bounds for the batch reactor system
in the context of emulation of nonlinear controllers. considered in [7] is reported in Table I. (For more discussion,

In [7] the authors were able to improve on the initial MATISe¢ Remark 1.) The improvement is on the order of 10%.
bounds given in [13], [12] by efficiently summarizing the(The valuesL = 15.73, A = \/1/2, v = 15.9222 for the
properties of protocols through Lyapunov functions and char- . _ . o

For convenience, in a minor departure from the description in [7], we

acterizing the effect Pf transmlssmn_ errors thl’OllQJjgalnS. .. use an inequality rather than a strict inequality in (1) but take be any
They established uniform asymptotic or exponential stabilityumber that isstrictly greater thanthe £,, gain used in [7].



TABLE |

BOUNDS COMPARISON FORTOD/RRPROTOCOLS BATCH REACTOR IN ll. NOTATION AND DEFINITIONS

[7] We denote bR andZ the sets of real and integer numbers,
respectively. Als®R>, = [0, +00), andZ> = {0,1,2,...}.
Definition TOD RR The Euclidean norm is denotéd|. A function o : R>g —
theoretical bound on MATI 0.01 | 0.0082 R is said to be of clas¥C if it is continuous, zero at
v a1 computed in [7] zero and strictly increasing. It is said to be of cldSs, if
theoretical bound on MATHy; 47y | 0.0108 | 0.009 it is of classC and it is unbounded. A functiof : R>q x
via Theorem 1 R>¢ — R>( is said to be of clas& L if 3(-,t) is of class
percentage of increment 8.4 % | 9.76% KC for eacht > 0 and 3(s, -) is nonincreasing and satisfies
using the newrps a1 lim;_,, B(s,t) = 0 for eachs > 0. A function 8 : R>¢ x

R>o x Rsg — R>q is said to be of clas& L. if, for each

r >0, B8(-,r-) and3(-,-,r) belong to classCL.
TOD protocol andy = 21.5275 for the RR protocol are ~ We recall definitions given in [3] that we will use to
reported in [7].) For some systems, the improvement coul@eVvelop a hybrid model of a NCS. The reader should refer to
be over 50%. See the figures below, which address separatBl for the motivation and more details on these definitions.

the casey < L and~ > L. Definition 1: A compact hybrid time domaiis a setD C
We emphasize that the contribution of this paper is ndt>0 X Z>o given by :

only a (modest) improvement in the MATI bound relative g1

to [7] but also a simple Lyapunov proof. At the same D= U([tj,tjﬂ] i)

time, we give a direct Lyapunov proof of a result in [8]
which states that if an NCS is asymptotically stable with
perfect communication then it is semiglobally practicalljvhere J € Z>o and0 = to < t1--- < t;. A hybrid
asymptotically stable with respect toy; 47;. This proof time domainis a setD C Rxo x Zxo such that, for each
also generalizes easily to the case, addressed in [8], whé#e J/) € D, DN ([0,7] x {0,...,J}) is a compact hybrid
there are exogenous inputs to which the system with perfeiéine domain. u
communication is input-to-state stable. Definition 2: A hybrid trajectoryis a pair (dom¢, &)
consisting of hybrid time domain dorg and a functioné
defined on dont that is continuously differentiable ihon
(dom¢) N (Rxg x {j}) for eachj € Z>. [ |

Definition 3: For the hybrid systerfi{ given by the open
state spac&® C R™ and the datg F,G,C, D) where F' :
O — R™ is continuous,GG : O — O is locally bounded,
andC and D are subsets of), a hybrid trajectory¢ : dom
& — O is asolution toH if

1) For all j € Z>o and for almost allt € I; := dom

§N (Rxo x {j}), we have((t, j) € C and{(t, ) =
F(E(t, ).

2) For all (t,5) € dom ¢ such that(t,j + 1) € dom¢,
Fig. 1. Percentage improvement in the MATI bound using Theorem 1 we havet(t,7) € D and&(t,§ + 1) = G(E(, 7).
compared to using [7, Theorem &,= /L = 1. Hence, the hybrid system models that we consider are of the
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_ where we denoted(¢;41,7 + 1) as¢t in the last equation.
Y A We also note that typically” N D # () and, in this case,
if £(0,0) € C N D we have that either a jump or flow
Fig. 2. Percentage improvement in the MATI bound using Theorem Jis possible, the latter only if flowing keeps the stateCin
compared to using [7, Theorem 4},= /L < 1. Hence, the hybrid model we consider may have non-unique
solutions.



IIl. PROBLEM STATEMENT Note that if NCS hag links, then the error vector can be

it _ [, T T ™T i
In this section, we formally state the problem that wéP@rtitioned as follows: = [ej e, ... ¢;]7. The functions

consider and summarize the model of NCS from [7]. In thé andh,, are typically such that', if. thah link gets access
next section, we will embed this model within the hybridtO the network at some transmission timewe have that

framework of [3] by representing it in the form (6) that iSthe corresponding part of the error vector_ has a jump. For
useful in our proofs. several protocols, such as the round robin and Try-Once-

We pursue the controller design technique proposed IiScard protocols (see [7]), we typically assume thais

fat o () —
[12], [13] and further developed in [7], [8]. The plant model St to.zero at t!mej ' that.'s e?(tﬂ' ) = 0. Hoyvever, we
is given by equations: emphasize that this assumption is not needed in general. This

allows us to write the models,, h, for protocols commonly

ip = fp(xp,u) (7) found in the literature (see [7], [8] for more details).
y = gp(ap). We combine the controller and plant states into a vector
x = (zp,zc) and using the error vector defined earlier
The first step in controller design is to ignore the network = (e, e, ), we can rewrite (9) as a system with jumps that
and design a stabilizing controller for the plant: is more amenable for analysis:
to = folwo,y) (8) & = flze) Vte[tit]  (10)
u = ge(ze) . e = g(x,e) Vt € [tj—1,t;] (11)
The second step in the design is to implement the above e(t}) = h(jelty)), (12)

controller over the network and determine the value of a ‘

network parameter (MATI) that guarantees that the samféhereée < t;11 —t; < 7 forall j € Z>o, z € R™,
controller implemented over the network will yield stability. ¢ € R"* and f, g andh are obtained using straightforward
Note that this approach is very similar to the emulatioff@lculations from (9), see [7]. In order to write (11), we
approach to controller design of sampled-data systems. assumed that functiongr and gc in (9) are continuously

Now we describe the model of NCS. Let the Sequencgifferentiable (this assumption can be relaxed). We refer to

t;,j € Z=o of monotonically increasing transmission time<(12) as a protocol. The protocol determines the algorithm by

satisfy e < tj1 —t; < 7 for all j € Zs, and some which access to the network is assigned to different nodes
fixed €.7 > 6 Notejthgte is arbitrary and it is used to in the system. For more details on protocol modelling in this

prevent Zeno solutions in the model given below. At eacf'@nner, see [7], [8]. Note that
t;, the protocol gives access to the network to one of the
nodesi € {1,2,...,¢}. We refer tor as the maximum
allowable transmission intervgMAT]I). Using the plant (7) represents the closed loop system (7), (8) without the net-
and controller (8), we introduce the nonlinear NCS of thgyork. We consider the following problem:

following form

&= f(z,0) (23)

Problem: Suppose that the controller (8) was de-

tp = fp(zp,a) tetj—1,tj] signed for the plant (7) so that the closed loop
Y = gp(zp) system (7), (8) without network (equivalently, the
e = felze,9) tefti—1,tj] system (13)) is globally asymptotically stable. De-
u = go(zo) termine the value of;47; SO that for anye €
Y = fp(xp,l’c,g,ﬁ) te [tj_l,tj] ©) (O,TMAT[] and all 7 € [E,TJWAT[], we have that
@ = folzp,xc,§, ) t € [tio1,] the NCS described by (10), (11), (12) is stable in
z)(t;“) = y(t;) + hy(i,e(t;)) an appropriate sense.
ﬁ(t;“) = u(tj) + hu(i,e(t))) Moreover, we show that the value ofy;ar; computed

d’n [7] and given by (1) is always smaller than the value
of Tapa7r given by (2). Hence, our new result provides
Ga less conservative analytical bound fex; 47y that is
very important in implementing the controller (8) via the
network in the manner described by (9). Indeed, this bound
shows that stabilization is possible with lower bandwidth
e(t) = ( Z?(t) —y(t) ) _ ( €y ) _ of the _communication channel (s@noa“;n is inversely
a(t) — ult) €u proportional to the channel bandwidth).

We often use the choicér = 0 and fc = 0 which means
that the networked version of the outpfitand controla

are kept constant during the transmission intervals (i.e., theln order to streamline the proofs, we map the model (10),
network nodes operate in a similar manner to a zero ordétl), (12) of an NCS that was introduced in the previous
hold). section into a hybrid system of the type (6) discussed in the

where xp and x¢o are respectively states of the plant an
the controller;y is the plant output and is the controller
output;y and ¢ are the vectors of most recently transmitte
plant and controller output values via the netwotkis the
network induced error defined as

IV. MAIN RESULTS



preliminaries section. In particular, we consider systems dbr all (¢, j) in the solution’s domain. ]

the form In order to guarantee asymptotic or exponential stability,
i = flze) we make the following as_sumption:_
¢ = g(z,e) Assumption 1:There exist a functioW : Z>g x R™ —
o= 1 7 € [0, Tarari] R> that is locally Lipschitz in its second argument, a locally
£ =0 (14) Lipschitz, positive definite, radially unbounded functitn:
zt = =z R™ — R>g, a continuous functio : R*» — R, real
61 = h(x,e) 7€ e, 00) num_bersA € (0,_1_), L>0,7>0 ay,aw € Ko and a
T+ =0 continuous, positive definite functiamsuch thatvk € Z>
KTo= k41 ande e R"

wheree > 0 can be arbitrarily smallyy;a7r > € andx €
R"=, e € R, 7 € RZO andk € ZZO'

In what follows we will consider the behavior of all W(k+1,h(k,e)) < AW (k,e) (18)
possible solutions to the hybrid system (14) subject tg na ne
7(0,0) > 0. Since the derivative of- is positive (equal and for allx € Zo, » € R"+ and almost ale € R™,
to one) and whenr jumps it is reset to zero, it follows oW (k, e) .
that 7 will never take on negative values. According to the < Oe ’g(x’e)> S LWk, ) + H(z) ; (19)
defir)ition of solqtion for a hybrid system, the error vector moreover, for alle € R", all k € Zso, and almost all
can jump, following the rules of the protocol, afteseconds . € R", -
have elapsed from the previous jump. This is because at
the previous jumpr was reset to zero, when the system is (VV (), f(z,e)) < —o(|z|) — o(W(k,e)) — H*(z)
not jumping we haver = 1, and theD set, which enables +2W2(k,€) . (20)
jumps, is the sef{(z,e,7,k) : 7 € [g,00)}. On the other
hand, if 7y, 477 seconds have elapsed from the previous , o , u
jump then the error vectoe must jump. This is because R_’emark 1:T_h|5 assumption is essentially the same as the
the C set is{(z,e,7,%) : 7 € [0,7arar1]}, and thus flows MaiNn assumption _of [7,.The0rem 4] when conmderﬂjg_
are not allowed after reachesryarr. In this way, the 9@ins. The condition o = f(z,e) is expressed here in
time-invariant hybrid system (14) covers all of the possibld€"ms of a Lyapunov function that establishes/&angain y

aw (le]) < W(k,e) < aw([e]) 17)

behaviors described by (10), (11), (12). from W to H whereas in [7, Theorem 4] it is directly in
Standing Assumption 1f and g are continuous and is terms of theL, gain~. However, in practice th&€, gain is
locally bounded. m often verified with a Lyapunov functioll that satisfies (20).

We will give an upper bound omry 47 to guarantee For example, the results in the first row of Table I, which
asymptotic or exponential stability. come from [7], use value\, L, ~) that admit functiongV,
Definition 4: For the hybrid system (14), the setH and a positive definite, quadratic function that satisfy
{(z,e,7,k) ;2 =0, e=0} is uniformly globally asymp- (17)-(20) with o(s) = es? for somee > 0 sufficiently small.
totically stableif there existsg € KLL such that, for each _ . . .
initial condition 7(0,0) € Rso, #(0,0) € Zso, #(0,0) € _ Theorem 1:Under Assumption 1, ifa; 477 in (14) satis-
R"=, ¢(0,0) € R™, and each corresponding solution, fies the bound (2) and < & < T a7 then, for the system

(14), the set{(z,e, 7, k) : x = 0,e = 0} is uniformly glob-
z(t, §) z(0,0) < ally asymptotically stable. If, in addition, there exist strictly

Lo <o (| 50y |[-+=)  as)
for all (¢,7) in the solution’s domain witke > 0 (it avoids

positive real numbersy,, @w, a1, a2, andas such that
Zeno solutions). The set isniformly globally exponentially

aylel < Wik,e) < awlel, ai|z|> < V(z) < as|z|?, and
o(s) > ags? then this set is uniformly globally exponentially
stable if 8 can be taken to have the formi(s,t, k) =
Msexp(—A(t+ k)) for someM > 0 and A > 0.

stable.
In the proof of Theorem 1, Sec. VI-A it is shown that
Definition 5: For the hybrid system (14) the set
{(z,e,7,6):x =0, e=0} is uniformly semiglobally

V(z) + yW?2(k,e) is a strict Lyapunov function for the
discrete-time system that is generated as the composition of
practically asymptotically stablUSPAS) with respect to
v Ay if there existss € KLL and for any pair of positive

flows and jumps in the system (14).
real numbergd, A) there existsra;arr > 0 such that for

Theorem 2:Consider the hybrid NCS (14). Suppose that
the following conditions hold.

each0 < ¢ < Tyra77, each initial conditionr(0,0) € Rs, 1) There exist a functiodV : Z>o x R — R that is

1k(0,0) € Zso, |2(0,0)] < A, |e(0,0)] < A and each locally Lipschitz in its second argument, a continuous,

corresponding solution we have B positive definite functionp and classk., functions
aw, w, o such thatVe € Z> ande € R"e,

[ o (505

tei) o) aw(e) Wk,e) <awlle) (@D
W(k+1,h(k,e)) < W(k,e) — o(e) (22)



and for allx € Z>¢ and almost alk € R, Below, by abuse of notation, we consider the quantity
W (, ¢) (VU (&), F(¢)) even thoughWW is not differentiable with
’8; < a(le]) . (23) respect tox. This is justified since the component (&)
corresponding tos is zero. It is easy to check that for all
2) The origin of& = f(x,0) is globally asymptotically (7, ) and that for almost al(z, e)

stable.
) _ + N2 (ot ot
Then, for (14), the sef(x,e,7,k) : . = 0,e = 0} is US- Uer) =vi=") + ’Y¢(;’ YW= (KT, e™)
PAS with respect tay ar;. ] <V(z) + y AW (k,e) <U(E).  (27)

< — — ) .
V. EMULATION IN SAMPLED -DATA SYSTEMS (VU(©), F(&)) = —ellz]) — o(W(x,€)

In this section, we specialize Theorem 1 to the case Sfinceg is positive definite)” is positive definite and radially
emulation of continuous-time controllers. We believe that thenbounded, and Claim 1 holds, it follows that there exists a
explicit formula which we provide is the first one reportedcontinuous, positive definite functiaf such that
in the literature in this context. For space reasons, we do not (VU(),F(€)) < —a(U(¢)) . (28)

re-state the result of Theorem 2. ) ]
First, we note that sampled-data systems are a special cg$¥n: Py standard results for continuous-time systems (see,

of NCS (see (14)) and they can be described by the followingr example, [10]) and using (27), we have the existence of
model: € KL satisfying

T = f(x,e) B(s,t1 +t2) = B(B(s,t1),t2) V(s,t1,t2) ER>oxR>0xR>0,
L U(E(t.9)) < BUE(0,0)),0.5¢ + 0.5ej)  ¥i(t, ) edomé .

2t = =z (24) Then, using that’ is positive definite and proper, using (17),
et = 0 T € [e,00) Claim 1, and the definition ot/ in (26), uniform global
™ =0 asymptotic stability of the sef(z,e,7,k): 2 =0,e =0}

ollows.

Under the assumptions made in the theorem to guarantee
niform global exponential stability, it follows thatcan be
taken to be linear angy can be taken to be of the form

s,t) = Msexp(—At). Then uniform exponential stability
féllows from the quadratic upper and lower boundsiofx)
and W2(k,e). The proof will be complete after we prove
hglaim 1, which we will do in Section VII-B.

where the main difference with (14) is the simplified modef
of the protocol ¢ = 0) and the absence of theequations.

In other wordsy, andy are transmitted at each transmissio
instant, or equivalently, there is only one link. A straight
forward consequence of this special structure is that for al
function W that satisfies (17), (19) and (20), we have that
also satisfies (18) for any € [0, 1) (in particular, we can let
A = 0). Using this, a direct consequence of Theorem 1 is t
following result on emulation of controllers in sampled-dataB. Proof of Theorem 2

systems: Using (21) and (22), one can combine the ideas in [6] and

Corollary 1: Suppose that (17), (19) and (20) in AS-19 n 22.23] to get a continuously differentiable function
sumption 1 hold. If MATI in (24) satisfies the bound (2)p c K. ando > 0 such that withW(m e) = p(W(k,e))
with A = 0 and0 < e < 7yar; then, for the system .o ’ |

(24), the sef{(z,e,7) : = 0,e = 0} is uniformly globally N N
asymptotically stable. If, in addition, there exist strictly W(k+1,h(k,e)) < e "W(k,e) . (29)

positive real numbersyy,, aw, 01, G, and a3 suc;h that  sing the last assumption of the Theorem, let the smooth
awle] < W(e) < awlel, arfz|® < V(z) < as|2[®, and  fnction 1V be the one obtained from Kurzweil's converse
o(s) > a3s? then this set is uniformly globally exponentially Lyapunov theorem [4], satisfying

stable. '

The proof of Corollary 1 follows directly from the proof (VV(2), f(2,0)) < —av(|z]) (30)
of Theorem 1 by lettingh — 0* in the formula (2). for someay € K. Using the definition of and F'(¢) from
VI. PROOFS OF MAIN RESULTS the proof of Theorem 1, define
A. Proof of Theorem 1 U(&) :=V(x) 4+ e 7T/ T™MATIT (5, ) . (31)
Let ¢ : [O,TMATI] — R be the solution to Then, using (29)7 (14), and (31), we get
¢=2L¢—1(@*+1)  Y0)=r"". () UED) < V(@) + e Wike) <UE) . (32)
We W?” establish the following claim in the next section: Using the continuity off, (30), (21) and (23), we also have
Claim 1: ¢(7) € [\, A7"] for all 7 € [OvTMTATI}- the existence of a continuous functigrsatisfyingy(x, 0) =
We will use the definitiong := [z, e, 7, x| andF(£) :== ¢ for all 2 and such that

[f(x,e)T,g(:L’,e)T, 1,O]T. Define (VU(&),F (&) < —av(|z|) + ¢(z,€)

, 33
U(€) :=V(z) +vo(T)W3(k,e) . (26) — Tagarroe T ™A po ayy(Je]) - (33)



Now the continuous-time arguments given in [1] or [11sgn(0) 0. The first formula in (2) whenfy
Lemma 2.1] can be used to assure that, for each pair of comes from using the fact that 1 f W
strictly positive real numberg < A there existspyrarr >0 1
such that, for almost aff in the set

>

s [arctan (%) — arctan (ﬁ)} and that for allcy
c1 > 0 we havearctan(cy) — arctan(c;) = arctan((cz
c1)/(1 + c1c2)). The second formula in (2), wheh = ~,
follows from the fact that-1 fb =1 (}7 1). The third

2 Ty

{(l’,e,T,H):gg H: i :H S&,TE [O>TMATI] s KJEZ>0}

we have formula in (2), wheny < L foIIows from 1 f (Lr/‘j% =
(VU(€),F(&)) < =05y (|z]) — 0.5ay, (le]) . (34) + [arctanh(%) - arctanl‘(ﬁ)}. Then, the last formula

The result follows using standard continuous-time argumen'l'g (2) is obtained b{ ucsmg the identity arctdok) —
like in the proof of Theorem 1. arctanc,) = arctanh( 2o )

Cc2C1
VII. VIIl. CONCLUSIONS
We have provided a simple Lyapunov proof for certain
results that have appeared previously in the literature on the
stability of networked control systems. Along the way, we
have provided some modest improvements to the previous
results. We hope that the Lyapunov approach to proving

ftablhty for networked control systems will lead to better

PROOF OFCLAIM 1 AND THAT THE BOUND IS
BETTER

A. A race between differential equations

In this section we establish the following fact:

Lemma 1:For each\ € (0,1), the valuer; in (4) is less
than the valuer in (5).
This lemma shows that Claim 1 in the proof of Theorem

holds whenry; 47y satisfies the bound given by the right-
hand side of (1). Thus, the proof of Theorem 1 is complet
in this case. In the next subsection, we establish that the
bound (2) is equal to the valug in (5). This will establish [1]
Claim 1 and finish the proof of Theorem 1 as it is stated. It
will also confirm that the bound omny; o7; reported here is

larger than the bound reported in [7]. 2]
Proof of Lemma 1Note thatr, = 754 + 70— Wherers 3]
and »_ satisfy
¢2 = —2L¢y—7(¢5+1), (35) M
$2(0) =1, @o(7a4) = A, do(—72—) =271
[5]
Define 7. := 71. Let ¢1(-), respectively¢s(-), denote
the solution of (4), respectively (35). Sincg (r14) = 5
62(724) = A anden(—_) = A~L, we havel — 42 — [
deS_TL+) d;’;\+ and —)\—2 = d¢2§;2—) _ _dﬁi‘;{ ) d‘l’27 These
equatlons yield [7]
d7'1+ o -1 d72+ o -1 (8]
dx LA+’ dx 2L +y(A2+ 1)’
dry_ -1 _ -1 [9]
dh  N22LA 4 A(A2+1))  2LA+y(A2+1)
Using A2 +1< 2, 4 =71, andm, = 7oy + 72— gives (101
[11]
drp _dn (36)
dX d\
Sincer; = m = 0 when A = 1, the condition (36) 12
establishes the lemma.
13
B. Proof of Claim 1 13l
Claim 1 follows immediately from the following lemma. [14]

Lemma 2: The right-hand side of (2) is equal to the value
79 in (5) (cf. (25)).

Proof. By definition we can writer, = — [, =
A+L ds L
fA L eosgnLa)(2) where s o+ L

is defined in (3) and sQn) is the sign function with

insight into the design of protocols for these systems and
gnll also inspire even sharper analysis tools.
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