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Abstract— Simple Lyapunov proofs are given for an improved
(relative to previous results that have appeared in the literature)
bound on the maximum allowable transfer interval to guarantee
global asymptotic or exponential stability in networked control
systems and also for semiglobal practical asymptotic stability
with respect to the length of the maximum allowable transfer
interval. We apply our results to emulation of nonlinear
controllers in sampled-data systems.

I. I NTRODUCTION

A networked control system (NCS) is composed of multi-
ple feedback control loops that share a serial communication
channel. This architecture promotes ease of maintenance,
greater flexibility, and low cost, weight and volume. On the
other hand, if the communication is substantially delayed or
infrequent, the architecture can degrade the overall system
performance significantly. Results on the analysis of an
NCS include [12], [13], [14], [7], [8]. In an NCS, the
delay and frequency of communication between sensors and
actuators in a given loop is determined by a combination
of the channel’s limitations and the transmission protocol
used. Various protocols have been proposed in the literature,
including the “round robin” (RR) and “try-once-discard”
(TOD) protocols discussed in [12] and [13]. We note that
sampled-data systems are a special case of NCS since in
this case all sensor and control signals are transmitted at
each transmission instant.

When the individual loops in an NCS are designed assum-
ing perfect communication, the stability of the NCS is largely
determined by the transmission protocol used and by the so-
called “maximum allowable transfer interval” (MATI), i.e.,
the maximum allowable time between any two transmissions
in the network. When specialized to sampled-data systems,
this controller design approach is called “emulation” (see [5],
[2]). Following pioneering work of Walsh and co-authors
[13], [12], we consider the problem of characterizing the
length of the MATI for a given protocol to ensure uniform
global asymptotic or exponential stability. We also demon-
strate that our results apply in a straightforward manner to
emulation of nonlinear controllers for digital implementation.
This appears to be the first result in the literature that
provides an explicit formula for the computation of MATI
in the context of emulation of nonlinear controllers.

In [7] the authors were able to improve on the initial MATI
bounds given in [13], [12] by efficiently summarizing the
properties of protocols through Lyapunov functions and char-
acterizing the effect of transmission errors throughLp gains.
They established uniform asymptotic or exponential stability

and input-output stability when the MATI∈ [0, τMATI ] with

τMATI ≤ 1
L

ln
(

1 +
1− λ
γ
L + λ

)
(1)

whereλ ∈ [0, 1) characterized the contraction of the proto-
col’s Lyapunov function at transmission times whileL > 0
described its expansion between transmission times, and
γ > 0 captured the effect of the error signals on the behavior
of the ideal system through anLp gain.1

In this paper, we will give a simple Lyapunov proof of an
improved (larger) MATI bound, expressed in termsλ, L and
γ corresponding to the case ofL2 gains. (A similar approach
can be taken for the generalLp case.) In particular, we
establish uniform asymptotic or exponential stability when

τMATI ≤

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and note that in the first and last expressions we use respec-
tively the trigonometric and hyperbolic functions, where

r :=

√∣∣∣∣
( γ

L

)2

− 1
∣∣∣∣ . (3)

It is not obvious, except for the caseγ = L, that (2)
provides a larger bound than (1). We will establish that it is
an improvement by first noting that the bound in (1) is the
valueτ1 satisfying

φ̇1 = −Lφ1 − γ , φ1(0) = 1 , φ1(τ1) = λ (4)

whereas the bound in (2) is the valueτ2 satisfying

φ̇2 = −2Lφ2 − γ(φ2
2 + 1) , φ2(0) = λ−1 , φ2(τ2) = λ

(5)
and that necessarilyτ2 > τ1 for all L > 0, γ > 0 and λ ∈
(0, 1). The above equations can be obtained from appropriate
Lyapunov arguments that are presented later in our proofs.
The difference in the bounds for the batch reactor system
considered in [7] is reported in Table I. (For more discussion,
see Remark 1.) The improvement is on the order of 10%.
(The valuesL = 15.73, λ =

√
1/2, γ = 15.9222 for the

1For convenience, in a minor departure from the description in [7], we
use an inequality rather than a strict inequality in (1) but takeγ to be any
number that isstrictly greater thantheLp gain used in [7].



TABLE I

BOUNDS COMPARISON FORTOD/RR PROTOCOLS: BATCH REACTOR IN

[7]

Definition TOD RR

theoretical bound on MATI 0.01 0.0082

τMATI computed in [7]

theoretical bound on MATIτMATI 0.0108 0.009

via Theorem 1

percentage of increment 8.4 % 9.76%

using the newτMATI

TOD protocol andγ = 21.5275 for the RR protocol are
reported in [7].) For some systems, the improvement could
be over 50%. See the figures below, which address separately
the caseγ < L andγ ≥ L.

We emphasize that the contribution of this paper is not
only a (modest) improvement in the MATI bound relative
to [7] but also a simple Lyapunov proof. At the same
time, we give a direct Lyapunov proof of a result in [8]
which states that if an NCS is asymptotically stable with
perfect communication then it is semiglobally practically
asymptotically stable with respect toτMATI . This proof
also generalizes easily to the case, addressed in [8], where
there are exogenous inputs to which the system with perfect
communication is input-to-state stable.
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Fig. 1. Percentage improvement in the MATI bound using Theorem 1
compared to using [7, Theorem 4],γ̃ = γ/L ≥ 1.
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Fig. 2. Percentage improvement in the MATI bound using Theorem 1,
compared to using [7, Theorem 4],γ̃ = γ/L < 1.

II. N OTATION AND DEFINITIONS

We denote byR andZ the sets of real and integer numbers,
respectively. AlsoR≥0 = [0,+∞), andZ≥0 = {0, 1, 2, . . . }.
The Euclidean norm is denoted| · |. A function α : R≥0 →
R≥0 is said to be of classK if it is continuous, zero at
zero and strictly increasing. It is said to be of classK∞ if
it is of classK and it is unbounded. A functionβ : R≥0 ×
R≥0 → R≥0 is said to be of classKL if β(·, t) is of class
K for eacht ≥ 0 and β(s, ·) is nonincreasing and satisfies
limt→∞ β(s, t) = 0 for eachs ≥ 0. A function β : R≥0 ×
R≥0 × R≥0 → R≥0 is said to be of classKLL if, for each
r ≥ 0, β(·, r, ·) andβ(·, ·, r) belong to classKL.

We recall definitions given in [3] that we will use to
develop a hybrid model of a NCS. The reader should refer to
[3] for the motivation and more details on these definitions.

Definition 1: A compact hybrid time domainis a setD ⊂
R≥0 × Z≥0 given by :

D =
J−1⋃

j=0

([tj , tj+1], j )

where J ∈ Z≥0 and 0 = t0 ≤ t1 · · · ≤ tJ . A hybrid
time domainis a setD ⊂ R≥0 × Z≥0 such that, for each
(T, J) ∈ D, D ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid
time domain. ¥

Definition 2: A hybrid trajectory is a pair (domξ, ξ)
consisting of hybrid time domain domξ and a functionξ
defined on domξ that is continuously differentiable int on
(dom ξ) ∩ (R≥0 × {j}) for eachj ∈ Z≥0. ¥

Definition 3: For the hybrid systemH given by the open
state spaceO ⊂ Rn and the data(F,G, C, D) whereF :
O → Rn is continuous,G : O → O is locally bounded,
andC andD are subsets ofO, a hybrid trajectoryξ : dom
ξ → O is a solution toH if

1) For all j ∈ Z≥0 and for almost allt ∈ Ij := dom
ξ ∩ (R≥0 × {j}), we haveξ(t, j) ∈ C and ξ̇(t, j) =
F (ξ(t, j)).

2) For all (t, j) ∈ dom ξ such that(t, j + 1) ∈ dom ξ,
we haveξ(t, j) ∈ D andξ(t, j + 1) = G(ξ(t, j)).

Hence, the hybrid system models that we consider are of the
form:

ξ̇(t, j) = F (ξ(t, j)) ξ(t, j) ∈ C

ξ(tj+1, j + 1) = G(ξ(tj+1, j)) ξ(tj+1, j) ∈ D .

We sometimes omit the time arguments and write:

ξ̇ = F (ξ) ξ ∈ C (6)

ξ+ = G(ξ) ξ ∈ D ,

where we denotedξ(tj+1, j + 1) asξ+ in the last equation.
We also note that typicallyC ∩ D 6= ∅ and, in this case,
if ξ(0, 0) ∈ C ∩ D we have that either a jump or flow
is possible, the latter only if flowing keeps the state inC.
Hence, the hybrid model we consider may have non-unique
solutions.



III. PROBLEM STATEMENT

In this section, we formally state the problem that we
consider and summarize the model of NCS from [7]. In the
next section, we will embed this model within the hybrid
framework of [3] by representing it in the form (6) that is
useful in our proofs.

We pursue the controller design technique proposed in
[12], [13] and further developed in [7], [8]. The plant model
is given by equations:

ẋP = fP (xP , u) (7)

y = gP (xP ) .

The first step in controller design is to ignore the network
and design a stabilizing controller for the plant:

ẋC = fC(xC , y) (8)

u = gC(xC) .

The second step in the design is to implement the above
controller over the network and determine the value of a
network parameter (MATI) that guarantees that the same
controller implemented over the network will yield stability.
Note that this approach is very similar to the emulation
approach to controller design of sampled-data systems.

Now we describe the model of NCS. Let the sequence
tj , j ∈ Z≥0 of monotonically increasing transmission times
satisfy ε ≤ tj+1 − tj ≤ τ for all j ∈ Z≥0 and some
fixed ε, τ > 0. Note that ε is arbitrary and it is used to
prevent Zeno solutions in the model given below. At each
tj , the protocol gives access to the network to one of the
nodes i ∈ {1, 2, . . . , `}. We refer to τ as themaximum
allowable transmission interval(MATI). Using the plant (7)
and controller (8), we introduce the nonlinear NCS of the
following form

ẋP = fP (xP , û) t ∈ [tj−1, tj ]
y = gP (xP )

ẋC = fC(xC , ŷ) t ∈ [tj−1, tj ]
u = gC(xC)
˙̂y = f̂P (xP , xC , ŷ, û) t ∈ [tj−1, tj ]
˙̂u = f̂C(xP , xC , ŷ, û) t ∈ [tj−1, tj ]

ŷ(t+j ) = y(tj) + hy(i, e(tj))
û(t+j ) = u(tj) + hu(i, e(tj))

(9)

where xP and xC are respectively states of the plant and
the controller;y is the plant output andu is the controller
output; ŷ and û are the vectors of most recently transmitted
plant and controller output values via the network;e is the
network induced error defined as

e(t) :=
(

ŷ(t)− y(t)
û(t)− u(t)

)
=

(
ey

eu

)
.

We often use the choicêfP = 0 and f̂C = 0 which means
that the networked version of the outputŷ and controlû
are kept constant during the transmission intervals (i.e., the
network nodes operate in a similar manner to a zero order
hold).

Note that if NCS has̀ links, then the error vector can be
partitioned as followse = [eT

1 eT
2 . . . eT

` ]T . The functions
hu andhy are typically such that, if theith link gets access
to the network at some transmission timetj we have that
the corresponding part of the error vector has a jump. For
several protocols, such as the round robin and Try-Once-
Discard protocols (see [7]), we typically assume thatei is
reset to zero at timet+j , that is ei(t+j ) = 0. However, we
emphasize that this assumption is not needed in general. This
allows us to write the modelshu, hy for protocols commonly
found in the literature (see [7], [8] for more details).

We combine the controller and plant states into a vector
x := (xP , xC) and using the error vector defined earlier
e = (ey, eu), we can rewrite (9) as a system with jumps that
is more amenable for analysis:

ẋ = f(x, e) ∀t ∈ [tj−1, tj ] (10)

ė = g(x, e) ∀t ∈ [tj−1, tj ] (11)

e(t+j ) = h(j, e(tj)) , (12)

where ε ≤ tj+1 − tj ≤ τ for all j ∈ Z≥0, x ∈ Rnx ,
e ∈ Rne andf , g andh are obtained using straightforward
calculations from (9), see [7]. In order to write (11), we
assumed that functionsgP and gC in (9) are continuously
differentiable (this assumption can be relaxed). We refer to
(12) as a protocol. The protocol determines the algorithm by
which access to the network is assigned to different nodes
in the system. For more details on protocol modelling in this
manner, see [7], [8]. Note that

ẋ = f(x, 0) (13)

represents the closed loop system (7), (8) without the net-
work. We consider the following problem:

Problem: Suppose that the controller (8) was de-
signed for the plant (7) so that the closed loop
system (7), (8) without network (equivalently, the
system (13)) is globally asymptotically stable. De-
termine the value ofτMATI so that for anyε ∈
(0, τMATI ] and all τ ∈ [ε, τMATI ], we have that
the NCS described by (10), (11), (12) is stable in
an appropriate sense.

Moreover, we show that the value ofτMATI computed
in [7] and given by (1) is always smaller than the value
of τMATI given by (2). Hence, our new result provides
a less conservative analytical bound forτMATI that is
very important in implementing the controller (8) via the
network in the manner described by (9). Indeed, this bound
shows that stabilization is possible with lower bandwidth
of the communication channel (sinceτMATI is inversely
proportional to the channel bandwidth).

IV. M AIN RESULTS

In order to streamline the proofs, we map the model (10),
(11), (12) of an NCS that was introduced in the previous
section into a hybrid system of the type (6) discussed in the



preliminaries section. In particular, we consider systems of
the form

ẋ = f(x, e)
ė = g(x, e)
τ̇ = 1
κ̇ = 0





τ ∈ [0, τMATI ]

x+ = x
e+ = h(κ, e)
τ+ = 0
κ+ = κ + 1





τ ∈ [ε,∞)

(14)

whereε > 0 can be arbitrarily small,τMATI ≥ ε and x ∈
Rnx , e ∈ Rne , τ ∈ R≥0 andκ ∈ Z≥0.

In what follows we will consider the behavior of all
possible solutions to the hybrid system (14) subject to
τ(0, 0) ≥ 0. Since the derivative ofτ is positive (equal
to one) and whenτ jumps it is reset to zero, it follows
that τ will never take on negative values. According to the
definition of solution for a hybrid system, the error vectore
can jump, following the rules of the protocol, afterε seconds
have elapsed from the previous jump. This is because at
the previous jumpτ was reset to zero, when the system is
not jumping we havėτ = 1, and theD set, which enables
jumps, is the set{(x, e, τ, κ) : τ ∈ [ε,∞)}. On the other
hand, if τMATI seconds have elapsed from the previous
jump then the error vectore must jump. This is because
the C set is{(x, e, τ, κ) : τ ∈ [0, τMATI ]}, and thus flows
are not allowed afterτ reachesτMATI . In this way, the
time-invariant hybrid system (14) covers all of the possible
behaviors described by (10), (11), (12).

Standing Assumption 1:f andg are continuous andh is
locally bounded. ¥
We will give an upper bound onτMATI to guarantee
asymptotic or exponential stability.

Definition 4: For the hybrid system (14), the set
{(x, e, τ, κ) : x = 0 , e = 0} is uniformly globally asymp-
totically stableif there existsβ ∈ KLL such that, for each
initial condition τ(0, 0) ∈ R≥0, κ(0, 0) ∈ Z≥0, x(0, 0) ∈
Rnx , e(0, 0) ∈ Rne , and each corresponding solution,

∣∣∣∣
[

x(t, j)
e(t, j)

]∣∣∣∣ ≤ β

(∣∣∣∣
[

x(0, 0)
e(0, 0)

]∣∣∣∣ , t, εj

)
(15)

for all (t, j) in the solution’s domain withε > 0 (it avoids
Zeno solutions). The set isuniformly globally exponentially
stable if β can be taken to have the formβ(s, t, k) =
Ms exp(−λ(t + k)) for someM > 0 andλ > 0. ¥

Definition 5: For the hybrid system (14) the set
{(x, e, τ, κ) : x = 0 , e = 0} is uniformly semiglobally
practically asymptotically stable(USPAS) with respect to
τMATI if there existsβ ∈ KLL and for any pair of positive
real numbers(δ,∆) there existsτMATI > 0 such that for
each0 < ε ≤ τMATI , each initial conditionτ(0, 0) ∈ R≥0,
κ(0, 0) ∈ Z≥0, |x(0, 0)| ≤ ∆, |e(0, 0)| ≤ ∆ and each
corresponding solution we have

∣∣∣∣
[

x(t, j)
e(t, j)

]∣∣∣∣ ≤ max
{

β

(∣∣∣∣
[

x(0, 0)
e(0, 0)

]∣∣∣∣ , t, εj

)
, δ

}
,

(16)

for all (t, j) in the solution’s domain. ¥
In order to guarantee asymptotic or exponential stability,

we make the following assumption:
Assumption 1:There exist a functionW : Z≥0 × Rne →

R≥0 that is locally Lipschitz in its second argument, a locally
Lipschitz, positive definite, radially unbounded functionV :
Rnx → R≥0, a continuous functionH : Rnx → R≥0, real
numbersλ ∈ (0, 1), L ≥ 0, γ > 0, αW , αW ∈ K∞ and a
continuous, positive definite function% such that,∀κ ∈ Z≥0

ande ∈ Rne

αW (|e|) ≤ W (κ, e) ≤ αW (|e|) (17)

W (κ + 1, h(κ, e)) ≤ λW (κ, e) (18)

and for allκ ∈ Z≥0, x ∈ Rnx and almost alle ∈ Rne ,
〈

∂W (κ, e)
∂e

, g(x, e)
〉
≤ LW (κ, e) + H(x) ; (19)

moreover, for alle ∈ Rne , all κ ∈ Z≥0, and almost all
x ∈ Rnx ,

〈∇V (x), f(x, e)〉 ≤ −%(|x|)− %(W (κ, e))−H2(x)
+γ2W 2(κ, e) . (20)

¥
Remark 1:This assumption is essentially the same as the

main assumption of [7, Theorem 4] when consideringL2

gains. The condition oṅx = f(x, e) is expressed here in
terms of a Lyapunov function that establishes anL2 gain γ
from W to H whereas in [7, Theorem 4] it is directly in
terms of theL2 gain γ. However, in practice theL2 gain is
often verified with a Lyapunov functionV that satisfies (20).
For example, the results in the first row of Table I, which
come from [7], use values(λ,L, γ) that admit functionsW ,
H and a positive definite, quadratic functionV that satisfy
(17)-(20) with%(s) = εs2 for someε > 0 sufficiently small.
¥

Theorem 1:Under Assumption 1, ifτMATI in (14) satis-
fies the bound (2) and0 < ε ≤ τMATI then, for the system
(14), the set{(x, e, τ, κ) : x = 0, e = 0} is uniformly glob-
ally asymptotically stable. If, in addition, there exist strictly
positive real numbersαW , αW , a1, a2, and a3 such that
αW |e| ≤ W (κ, e) ≤ αW |e|, a1|x|2 ≤ V (x) ≤ a2|x|2, and
%(s) ≥ a3s

2 then this set is uniformly globally exponentially
stable.

In the proof of Theorem 1, Sec. VI-A it is shown that
V (x) + γW 2(κ, e) is a strict Lyapunov function for the
discrete-time system that is generated as the composition of
flows and jumps in the system (14).

Theorem 2:Consider the hybrid NCS (14). Suppose that
the following conditions hold.

1) There exist a functionW : Z≥0 × Rne → R≥0 that is
locally Lipschitz in its second argument, a continuous,
positive definite function% and class-K∞ functions
αW , αW , α such that,∀κ ∈ Z≥0 ande ∈ Rne ,

αW (|e|) ≤ W (κ, e) ≤ αW (|e|) (21)

W (κ + 1, h(κ, e)) ≤ W (κ, e)− %(e) (22)



and for allκ ∈ Z≥0 and almost alle ∈ Rne ,
∣∣∣∣
∂W (κ, e)

∂e

∣∣∣∣ ≤ α(|e|) . (23)

2) The origin of ẋ = f(x, 0) is globally asymptotically
stable.

Then, for (14), the set{(x, e, τ, κ) : x = 0, e = 0} is US-
PAS with respect toτMATI . ¥

V. EMULATION IN SAMPLED -DATA SYSTEMS

In this section, we specialize Theorem 1 to the case of
emulation of continuous-time controllers. We believe that the
explicit formula which we provide is the first one reported
in the literature in this context. For space reasons, we do not
re-state the result of Theorem 2.

First, we note that sampled-data systems are a special case
of NCS (see (14)) and they can be described by the following
model:

ẋ = f(x, e)
ė = g(x, e)
τ̇ = 1

}
τ ∈ [0, τMATI ]

x+ = x
e+ = 0
τ+ = 0



 τ ∈ [ε,∞)

(24)

where the main difference with (14) is the simplified model
of the protocol (e+ = 0) and the absence of theκ equations.
In other words,u andy are transmitted at each transmission
instant, or equivalently, there is only one link. A straight-
forward consequence of this special structure is that for any
functionW that satisfies (17), (19) and (20), we have that it
also satisfies (18) for anyλ ∈ [0, 1) (in particular, we can let
λ = 0). Using this, a direct consequence of Theorem 1 is the
following result on emulation of controllers in sampled-data
systems:

Corollary 1: Suppose that (17), (19) and (20) in As-
sumption 1 hold. If MATI in (24) satisfies the bound (2)
with λ = 0 and 0 < ε ≤ τMATI then, for the system
(24), the set{(x, e, τ) : x = 0, e = 0} is uniformly globally
asymptotically stable. If, in addition, there exist strictly
positive real numbersαW , αW , a1, a2, and a3 such that
αW |e| ≤ W (e) ≤ αW |e|, a1|x|2 ≤ V (x) ≤ a2|x|2, and
%(s) ≥ a3s

2 then this set is uniformly globally exponentially
stable.

The proof of Corollary 1 follows directly from the proof
of Theorem 1 by lettingλ → 0+ in the formula (2).

VI. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1

Let φ : [0, τMATI ] → R be the solution to

φ̇ = −2Lφ− γ(φ2 + 1) φ(0) = λ−1 . (25)

We will establish the following claim in the next section:
Claim 1: φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, τMATI ].

We will use the definitionsξ :=
[
xT , eT , τ, κ

]T
andF (ξ) :=[

f(x, e)T , g(x, e)T , 1, 0
]T

. Define

U(ξ) := V (x) + γφ(τ)W 2(κ, e) . (26)

Below, by abuse of notation, we consider the quantity
〈∇U(ξ), F (ξ)〉 even thoughW is not differentiable with
respect toκ. This is justified since the component inF (ξ)
corresponding toκ is zero. It is easy to check that for all
(τ, κ) and that for almost all(x, e)

U(ξ+) = V (x+) + γφ(τ+)W 2(κ+, e+)
≤ V (x) + γλW 2(κ, e) ≤ U(ξ). (27)

〈∇U(ξ), F (ξ) 〉 ≤ −%(|x|)− %(W (κ, e)) .

Since% is positive definite,V is positive definite and radially
unbounded, and Claim 1 holds, it follows that there exists a
continuous, positive definite functioñ% such that

〈∇U(ξ), F (ξ)〉 ≤ −%̃(U(ξ)) . (28)

Then, by standard results for continuous-time systems (see,
for example, [10]) and using (27), we have the existence of
β ∈ KL satisfying

β(s, t1 + t2) = β(β(s, t1), t2) ∀(s, t1, t2) ∈R≥0×R≥0×R≥0,

U(ξ(t, j)) ≤ β(U(ξ(0, 0)), 0.5t + 0.5εj) ∀(t, j)∈domξ .

Then, using thatV is positive definite and proper, using (17),
Claim 1, and the definition ofU in (26), uniform global
asymptotic stability of the set{(x, e, τ, κ) : x = 0, e = 0}
follows.

Under the assumptions made in the theorem to guarantee
uniform global exponential stability, it follows that̃% can be
taken to be linear andβ can be taken to be of the form
β(s, t) = Ms exp(−λt). Then uniform exponential stability
follows from the quadratic upper and lower bounds onV (x)
and W 2(κ, e). The proof will be complete after we prove
Claim 1, which we will do in Section VII-B.

B. Proof of Theorem 2

Using (21) and (22), one can combine the ideas in [6] and
[9, p. 22-23] to get a continuously differentiable function
ρ ∈ K∞ and σ > 0 such that withW̃ (κ, e) := ρ(W (κ, e))
we have

W̃ (κ + 1, h(k, e)) ≤ e−σW̃ (κ, e) . (29)

Using the last assumption of the Theorem, let the smooth
function V be the one obtained from Kurzweil’s converse
Lyapunov theorem [4], satisfying

〈∇V (x), f(x, 0)〉 ≤ −αV (|x|) (30)

for someαV ∈ K∞. Using the definition ofξ andF (ξ) from
the proof of Theorem 1, define

U(ξ) := V (x) + e−στ/τMAT I W̃ (κ, e) . (31)

Then, using (29), (14), and (31), we get

U(ξ+) ≤ V (x) + e−σW̃ (κ, e) ≤ U(ξ) . (32)

Using the continuity off , (30), (21) and (23), we also have
the existence of a continuous functionϕ satisfyingϕ(x, 0) =
0 for all x and such that

〈∇U(ξ), F (ξ)〉 ≤ −αV (|x|) + ϕ(x, e)
− τ−1

MATIσe−στ/τMAT I ρ ◦ αW (|e|) .
(33)



Now the continuous-time arguments given in [1] or [11,
Lemma 2.1] can be used to assure that, for each pair of
strictly positive real numbers̃δ < ∆̃ there existsτMATI > 0
such that, for almost allξ in the set
{

(x, e, τ, κ) : δ̃ ≤
∣∣∣∣
[

x
e

]∣∣∣∣ ≤ ∆̃, τ ∈ [0, τMATI ] , κ ∈ Z≥0

}

we have

〈∇U(ξ), F (ξ)〉 ≤ −0.5αV (|x|)− 0.5αW (|e|) . (34)

The result follows using standard continuous-time arguments
like in the proof of Theorem 1.

VII. PROOF OFCLAIM 1 AND THAT THE BOUND IS

BETTER

A. A race between differential equations

In this section we establish the following fact:
Lemma 1:For eachλ ∈ (0, 1), the valueτ1 in (4) is less

than the valueτ2 in (5).
This lemma shows that Claim 1 in the proof of Theorem 1
holds whenτMATI satisfies the bound given by the right-
hand side of (1). Thus, the proof of Theorem 1 is complete
in this case. In the next subsection, we establish that the
bound (2) is equal to the valueτ2 in (5). This will establish
Claim 1 and finish the proof of Theorem 1 as it is stated. It
will also confirm that the bound onτMATI reported here is
larger than the bound reported in [7].

Proof of Lemma 1.Note thatτ2 = τ2+ + τ2− whereτ2+

andτ2− satisfy

φ̇2 = −2Lφ2 − γ(φ2
2 + 1), (35)

φ2(0) = 1, φ2(τ2+) = λ, φ2(−τ2−) = λ−1 .

Define τ1+ := τ1. Let φ1(·), respectivelyφ2(·), denote
the solution of (4), respectively (35). Sinceφ1(τ1+) =
φ2(τ2+) = λ andφ2(−τ2−) = λ−1, we have1 = dφi(τi+)

dλ =
dφ(τi+)

dτi+

dτi+
dλ and−λ−2 = dφ2(τ2−)

dλ = −dφ(τ2−)
dτ2−

dτ2−
dλ . These

equations yield

dτ1+

dλ
=

−1
Lλ + γ

,
dτ2+

dλ
=

−1
2Lλ + γ(λ2 + 1)

,

dτ2−
dλ

=
−1

λ2(2Lλ−1 + γ(λ−2 + 1))
=

−1
2Lλ + γ(λ2 + 1)

.

Using λ2 + 1 < 2, τ1+ = τ1, andτ2 = τ2+ + τ2− gives

dτ2

dλ
<

dτ1

dλ
. (36)

Since τ1 = τ2 = 0 when λ = 1, the condition (36)
establishes the lemma.

B. Proof of Claim 1

Claim 1 follows immediately from the following lemma.
Lemma 2:The right-hand side of (2) is equal to the value

τ2 in (5) (cf. (25)).
Proof.By definition we can writeτ2 = − ∫ λ

λ−1
dφ

γφ2+2Lφ+γ =

− 1
γ

∫ λ+ L
γ

λ−1+ L
γ

ds

s2−sgn(L−γ)(Lr
γ )2 , where s := φ + L

γ , r

is defined in (3) and sgn(·) is the sign function with

sgn(0) = 0. The first formula in (2), whenγ >

L, comes from using the fact that− 1
γ

∫ b

a
ds

(Lr/γ)2+s2 =

− 1
Lr

[
arctan

(
bγ
Lr

)
− arctan

(
aγ
Lr

)]
and that for allc2 ≥

c1 ≥ 0 we havearctan(c2) − arctan(c1) = arctan((c2 −
c1)/(1 + c1c2)). The second formula in (2), whenL = γ,
follows from the fact that− 1

γ

∫ b

a
ds
s2 = 1

γ

(
1
b − 1

a

)
. The third

formula in (2), whenγ < L follows from 1
γ

∫ b

a
ds

(Lr/γ)2−s2 =
1

Lr

[
arctanh

(
bγ
Lr

)
− arctanh

(
aγ
Lr

)]
. Then, the last formula

in (2) is obtained by using the identity arctanh(c2) −
arctanh(c1) = arctanh

(
c2−c1
1−c2c1

)
.

VIII. C ONCLUSIONS

We have provided a simple Lyapunov proof for certain
results that have appeared previously in the literature on the
stability of networked control systems. Along the way, we
have provided some modest improvements to the previous
results. We hope that the Lyapunov approach to proving
stability for networked control systems will lead to better
insight into the design of protocols for these systems and
will also inspire even sharper analysis tools.
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