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Abstract

We discuss how the choice of dither (excitation signal) affects the performance of
extremum seeking using a benchmark situation: a static scalar map; and a simple
scalar extremum seeking scheme. Our comparisons are based on the performance
of the system with different dithers in terms of three performance indicators: the
speed of convergence, domain of attraction and accuracy (i.e. the ultimate bound on
trajectories). Our analysis explicitly shows how the dither shape affects each of these
performance indicators. Our study suggests that the practitioners using extremum
seeking control should consider the dither shape as an important design parameter.
Computer simulations support our theoretical findings.

1 Introduction

Extremum seeking (ES) control is a paradigm whose goal is to find an extremum value
of an unknown nonlinear mapping. Although this method dates back to the early 1950’s
and 1960’s, the first rigorous local stability analysis for an ES scheme was recently proved
in (Krstić and Wang, 2000) and later extended to semi-global stability analysis in (Tan et
al., 2005; Tan et al., 2006a). This has spurred a renewed interest in this research area (Ariyur
and Krstić, 2003; Popović et al., 2003; Guay and Zhang, 2003; Guay et al., 2004; Peterson and
Stefanopoulou, 2004) that has lead to numerous practical implementations of the scheme.

In our case study we focus on the following nonlinear static map

y = h(x), (1)

where h(·) is not known, but it is known that h(·) has, for simplicity, a maximum h(x∗). An
ES mechanism will drive the output y(t) to a small neighborhood of h(x∗). In this paper,
for simplicity, we focus on the scalar case, i.e., both y and x are scalar, that is the simplest
version of the extremum seeking considered in (Tan et al., 2006a).

In comparing the performance of the system with various dithers (excitation signals), we
concentrate on three performance indicators: speed of convergence, domain of convergence
and accuracy (i.e. the ultimate bound on trajectories). Some of our analysis is done using an
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appropriate average system that approximates well the real closed loop behavior if certain
parameters are chosen sufficiently small.

First, it is shown that an auxiliary gradient system plays a crucial role in quantifying the
performance of the extremum seeker with different dithers. Indeed, it is shown that with
arbitrary dither shape it is possible to tune the parameters in the controller and the dither
amplitude to recover (with arbitrarily small error) the domain of attraction and the accuracy
of the auxiliary gradient system. On the other hand, the closed loop system convergence
speed depends on the convergence speed of the gradient system, as well as a scaling factor
that is a product of four numbers: the amplitude of the dither, the frequency of the dither, a
controller parameter and the power of the normalized dither (dither of the same shape with
unit amplitude and period 2π). This bound is tight and it explicitly states how the dither
shape affects the convergence speed. For instance, we can show that a square wave provides
twice as fast a convergence as a sine wave of the same amplitude and frequency, if appropriate
parameters are sufficiently small. The simulation results also show that the square-wave
dither works better than sinusoidal dither which is used typically in the literature (Ariyur
and Krstić, 2003). Hence, our results demonstrate that the dither shape is an important
degree of freedom in the design and tuning of extremum seeking controllers and its choice
should be given careful consideration.

Our results benefit from the scalar extremum seeking scheme that was introduced for
the first time in (Tan et al., 2006a). However, our main result improves upon results in
(Tan et al., 2006a) that were presented only for sinusoidal dither and that presented more
conservative estimates than the ones derived in this paper. Indeed, we use a different proof
technique from the one used in (Tan et al., 2006a) in order to provide tighter stability
estimates and to explicitly show how performance of the extremum seeking controller is
affected by the choice of dither.

This paper is organized as follows. In Section 2 we present the benchmark plant and
controller that we consider, as well as the standing assumptions. Main results is given in
Section 3 followed by discussions and examples in Section 4. Conclusions are presented in
Section 5.

2 A Benchmark Example

We denote the set of real numbers as R. Given a sufficiently smooth function h : R → R,
we denote its ith derivative as Dih(x). When i = 1 we write simply Dh(x) := D1(x).

We consider a static mapping h(·) with the first order extremum seeking controller (see
Figure 1). This control law is a simplified version of the schemes considered in (Krstić and
Wang, 2000) that was introduced in (Tan et al., 2006a). In particular, this is the simplest
possible variant of schemes considered in (Krstić and Wang, 2000) that can still illustrate
that the choice of dither affects the extremum seeking in several different aspects. The model
of the closed loop system in Figure 1 is given by:

ẋ = δ · ω · h(x + d(t)) · d(t), (2)

where h : R → R is sufficiently smooth. The signal d(·) is referred to as “dither” and δ > 0
and ω > 0 are parameters that the designer can choose.
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Figure 1: A peak seeking feedback scheme

We use the following assumptions:

Assumption 1 : There exists a maximum x∗ of h(·) such that

Dh(x∗) = 0; D2h(x∗) < 0 . (3)

Assumption 2 Dither signals d(·) are periodic functions of period T > 0 (and frequency
ω = 2π

T
) that satisfy:

∫ T

0
d(s)ds = 0;

1

T

∫ T

0
d2(s)ds > 0; max

s∈[0,T ]
|d(s)| = a;

where a > 0 is the amplitude of the dither.

The parameter ω in (2) is chosen to be the same as the frequency of the dither signal.
For comparison purposes, three special kinds of dither are used repeatedly in our ex-

amples: sine wave, square wave and triangle wave. The sine wave is defined in the usual
manner. The square wave and triangle wave of unit amplitude and period 2π are defined as
follows:

sq(t) :=

{
1, t ∈ [2πk, π(2k + 1))
−1, t ∈ [π(2k + 1), 2π(k + 1))

tri(t) :=





2
π
(t− 2πk), t ∈ [2πk, π(2k + 1

2
))

2
π
(−t− π(2k − 1)), t ∈ [π(2k + 1

2
), π(2k + 3

2
))

2
π
(t− π(2k + 2)), t ∈ [π(2k + 3

2
), 2π(k + 1))

Note that by definition, the signals sin(t), sq(t) and tri(t) are of unit amplitude and period
2π. We can generate similar signals of arbitrary amplitude a and frequency ω, e.g., a ·sq(ωt).
We will often use the “power” (average of the square of the signal) of the normalized dithers
(unit amplitude and period 2π):

Psq = 1
2π

∫ 2π
0 sq2(s)ds = 1; Psin = 1

2π

∫ 2π
0 sin2(s)ds = 1

2
; Ptri = 1

2π

∫ 2π
0 tri2(s)ds = 1

3
(4)
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In general, we use Pd to denote the power of dithers d(·) with amplitude equal to 1 and
period 2π. The power for dither d(·) with amplitude a 6= 1 is equal to a2Pd. We emphasize
that our results apply to arbitrary dithers satisfying Assumption 2.

Remark 1 Assumption 2 is needed in our analysis that is based on averaging of (2). We
note that most extremum seeking literature (see (Ariyur and Krstić, 2003)) uses dither signals
of the form d(t) = a sin(ωt) which obviously satisfy our Assumption 2.

Introducing the coordinate change x̃ = x− x∗, we can rewrite (2) as follows:

˙̃x = δ · ω · h(x̃ + x∗ + d(t)) · d(t) =: δωf(t, x̃, d). (5)

It was shown in (Tan et al., 2006a, Theorem 1) that under a stronger version of Assumption
1 (uniqueness of the maximum) and with the sinusoidal dither d(t) = a ·sin(ωt), where ω = 1
(that satisfies Assumption 2) we have that for any compact set D and any ν > 0 we can
chose the amplitude of the dither a > 0 and δ > 0 and find a class KL function β, which
depends on δ and d(·), such that the solutions of the closed loop system (5) satisfy:

|x̃(t0)| ∈ D =⇒ |x̃(t)| ≤ β (|x̃(t0)|, t− t0) + ν, (6)

for all t ≥ t0 ≥ 0.
Note that D, ν and β are performance indicators since they quantify different aspects of

the performance of the extremum seeking algorithm. We will show later that each of these
indicators is affected by our choice of dither d(·) and the parameter δ > 0. In particular, we
have that:

• Speed of convergence of the algorithm is captured by the function β. Obviously,
we would like convergence to be as fast as possible.

• Domain of convergence is quantified by the set D. In particular, we would like to
make the domain of convergence (attraction) as large as possible.

• Accuracy of the algorithm is quantified by the number ν > 0 since all trajectories
starting in the setD eventually end up in the ball Bν , where we have that |x(t)−x∗| ≤ ν.
Indeed, the smaller the number ν, the closer we eventually converge to the maximum
x∗ (hence, the accuracy of the algorithm is better).

It turns out that a direct analysis of the system (5) to estimate D, ν, β is hard but the system
can be analyzed via an appropriate auxiliary averaged system. We will carry out such an
analysis in the next section.

3 Main results

In this section, we present the main result (Theorem 1) that describes in detail how different
dithers affect the domain of attraction and speed of convergence, as well as the accuracy of
extremum seeking control. It is shown that the square wave produces the fastest conver-
gence among all signals with the same amplitude and frequency, if the amplitude a and the
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parameter δ in the controller are sufficiently small. Moreover, it is shown that in the limit
as the amplitude is reduced to zero, all dithers yield almost the same domain of attraction
and accuracy.

Consider the following auxiliary gradient system:

ζ̇ = Dh(ζ + x∗) . (7)

Because of Assumption 1, the system (7) has the property that x∗ is an asymptotically
stable equilibrium1. Let D denote the domain of attraction of x∗ for the system (7) and
note that since h(·) is assumed smooth, the set D is a neighborhood of x∗. In other words, a
consequence of Assumption 1 is that there exists β ∈ KL and a set D such that for all t ≥ 0
the solutions of (7) satisfy:

ζ0 ∈ D ⇒ |ζ(t)| ≤ β(|ζ0|, t) (8)

Using this auxiliary system, we can state our main result:

Theorem 1 Suppose that Assumption 1 holds and consider the closed loop system (2) with
an arbitrary dither d(·) for which Assumption 2 holds, where a > 0 is the dither amplitude.
Let D and β come from (8). Then, for any strict compact subset D̂ of D and any ν > 0,
there exists a∗ > 0 and δ∗ > 0 such that for any a ∈ (0, a∗], δ ∈ (0, δ∗] and any ω > 0 we
have that solutions of (2) satisfy:

x̃0 ∈ D̂ ⇒ |x̃(t)| ≤ β
(
|x̃0|, δωa2Pd(t− t0)

)
+ ν (9)

Sketch of proof of Theorem 1: Consider the system (2). First, let ω > 0 be arbitrary
frequency of the dither and introduce the change of time scale τ := ωt. Then, we can rewrite
(2) as follows:

dx̃

dτ
= δ · h

(
x̃ + x∗ + d

(
τ

ω

))
· d

(
τ

ω

)
,

where d( ·
ω
) has period 2π in time scale τ . We apply the Taylor series expansion for

h
(
x̃ + x∗ + d

(
τ
ω

))
around x̃ + x∗ and using averaging method in (Sanders and Verhulst,

1985; Tan et al., 2006a), we obtain the average system in the form:

dx̃

dτ
= δ · a2 · Pd ·Dh(x̃ + x∗). (10)

Using a transformation of coordinates given in (Tan et al., 2006a), we can show that the
actual system (2) can be regarded as the average system (10) that is additively perturbed with
the regular perturbations that can be reduced arbitrarily by reducing δ and a simultaneously.
Hence, we can show appropriate closeness of solutions on compact time intervals between
the actual and average systems. We can use the trajectory based proofs for stability via
averaging (Teel et al., 1999) to complete the proof.

1Moreover, all local maxima of h(·) are asymptotically stable equilibria of (7) and all local minima of h(·)
are unstable equilibria of (7).
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Remark 2 We emphasize that the auxiliary gradient system (7) plays a crucial role in
terms of achievable performance of the extremum seeking controller. Indeed, D and β are
independent of the choice of dither and Theorem 1 specifies how they affect the achievable
domain of attraction D̂ of the closed loop (2), as well as the speed of convergence via the
function β.

Remark 3 We now discuss Theorem 1 in more detail to explain how dither shape affects
the domain of attraction, accuracy and convergence speed of the closed loop system. We note
that the controller parameter (a, δ) needs to be tuned appropriately in order for Theorem 1
to hold.

Domain of attraction: It is shown that any dither satisfying Assumption 2 can yield a

domain of attraction D̂ that is an arbitrary strict subset of the domain of attraction of the
gradient system (7) if a and δ are sufficiently small. We emphasize that ω > 0 can be
arbitrary and a and δ do not depend on it.

Accuracy: The ultimate bound that is quantified by the number ν can be made arbitrarily
small by any dither satisfying Assumption 2 if a and δ are sufficiently small. Hence, in the
limit, all dithers perform equally well in terms of domain of attraction and accuracy.

Convergence speed: We emphasize that β in (9) is the same as β in (8) for any dither
d(·). The main difference in speed of convergence comes from the scaling factor within the
function β:

δ · ω · a2 · Pd , (11)

where δ is a controller parameter, a and ω are respectively the amplitude and frequency of
dither and Pd is the power of the normalized dither (with unit amplitude and period 2π).
Note also that ωδ is the integrator constant in Figure 1. Also, note that Theorem 1 holds for
sufficiently small a and δ that are independent of ω which is an arbitrary positive number.
Obviously, if the product (11) is larger than 1 then the closed loop system (2) converges faster
than the auxiliary gradient system (7). Similarly, if the product (11) is smaller than 1, the
system (2) converges slower than the gradient system (7).

The first observation is that for sufficiently small a and δ the bound in Theorem 1 holds for
any ω. Hence, for fixed a, δ and Pd we have that the larger the ω, the faster the convergence.
In other words, Theorem 1 shows that in our case study we can achieve arbitrarily fast
convergence of the extremum seeking closed loop by making ω sufficiently large. Simulations
in Example 1 verify our analysis. We also emphasize that this result is in general not possible
to prove for general dynamic plants. For instance, the results in (Tan et al., 2006a) that are
stated for general dynamical systems provide a similar bound as in (9) under the stronger
assumption that ω is sufficiently small.

Suppose now that a, δ and ω are fixed and we are only interested in how the shape of
dither affects the convergence. As we change dither, its (normalized) power Pd changes and
as we can see from (4) that the square wave will yield twice larger normalized power than the
sine wave and three times larger power than the triangle wave. Consequently, we can expect
twice faster convergence with the square wave than with the sine wave and three times faster
convergence than with the triangle wave. Simulation results in Example 2 that we present in
the sequel are consistent with the above analysis.
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Remark 4 A weaker version of Theorem 1 was proved in (Tan et al., 2006a) for the sine
wave dither only. Indeed, the results in (Tan et al., 2006a) do not consider arbitrary dither
and the domain of attraction and convergence estimates are not as sharp as in Theorem
1. For instance, the relationship of convergence rate and the domain of attraction to the
auxiliary system (7) was not shown in (Tan et al., 2006a) as this was impossible to do using
the Lyapunov based proofs used in this reference. On the other hand, using the trajectory
based proofs adopted in this paper, we can prove tight estimates as outlined in Theorem
1. Moreover, in (Tan et al., 2006a) it was not clear how the dither power Pd affects the
convergence rate of the average system. Note that the function β in (9) is the same for
any dither satisfying Assumption 2 and the only difference comes the parameters in (11) .
However, the values of a∗ and δ∗ are typically different for different dithers.

Remark 5 We note that one can state and prove a more general version of Theorem 1 that
applies to general dynamical plants and in this case h(·) is an appropriate reference-to-output
map. With extra assumptions on the plant dynamics, one can use singular perturbation theory
to prove this more general result (see for instance (Tan et al., 2006a) for a Lyapunov based
proof in the case of sine wave dither). However, in this case we will need to require that ω
is sufficiently small.

The following proposition is obvious and it states that the power of the normalized
square wave is larger than or equal to the power of any other normalized dither satisfying
Assumption 2. In other words, for fixed δ and a for which (9) holds, the square wave is
guaranteed to produce the fastest convergence over all dithers with the same amplitude and
frequency.

Proposition 1 Consider arbitrary d(·) satisfying Assumption 2. Then, we have that the
power of the normalized dither satisfies:

0 < Pd ≤ Psq = 1 .

4 Discussions and Examples

It has been shown in Theorem 1 that the convergence speed of the ES systems depends on
the choice the dither shape Pd, amplitude a and frequency ω as well as δ. It also is shown that

the domain of the attraction and accuracy of all dithers are almost the same as

{
a → 0
δ → 0

.

In this part, we use examples to illustrate various behaviors and simulations to confirm
our theoretical findings. Furthermore, we also provide examples which illustrate that for a
fixed non-zero amplitude different dithers do produce different domains of convergence and
accuracy. Our results should motivate the users of extremum seeking control to experiment
with different dithers in order to achieve the desired trade-off between convergence, domain
of attraction or accuracy.

The first example illustrates that increasing the frequency of dither while keeping a, δ
and Pd the same yields faster convergence.
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Example 1 Consider the quadratic mapping

h(x) = −(x + 4)2 (12)

where Dh(x̃ + x∗) = −2x̃. It is trivial to see that in this case D = R and β(s, t) = se−2t

(see Theorem 1). The dither is chosen to be d(t) = a sin(ωt). Hence, from (4) we have
Psin = 1/2. The initial condition is chosen as x0 = −2. When we fix a = 0.5 and δ = 0.1,
the output response with different frequencies is shown in Figure 2. It is clear that the larger
the ω is, the faster the convergence is.

0 10 20 30 40 50 60 70 80 90 100
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ω=1
ω=10

Figure 2: The output of the ES with different frequencies

Next, we will discuss the situation when h(·) is a quadratic mapping, where we assume
ω = 1. Consider the simplest possible case of quadratic maps:

h(x) = −x2 + a1x + a0 ,

we have that
Dh(x) = −2x + a1

and since x∗ = a1

2
, we can write with x̃ := x− x∗:

Dh(x̃ + x∗) = −2x̃ .

Hence, the auxiliary gradient system (7) takes the following form:

ζ̇ = −2ζ .

It is not hard to show that in this case for arbitrary dither d(·) satisfying Assumption 2 we
have that the average system is of the form:

˙̃x = −2a2Pdδx̃ . (13)

Hence, in this special case we have that the average system for any dither satisfying Assump-
tion 2 is globally exponentially stable. Indeed, for square wave, sine wave and triangular
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wave we have from (4) that the following holds for all x0 ∈ R, t ≥ 0, respectively:

sq : |x̃(t)| = exp
(
−2a2δt

)
|x̃0|

sin : |x̃(t)| = exp
(
−a2δt

)
|x̃0|

tri : |x̃(t)| = exp
(
−2

3
a2δt

)
|x̃0| .

The square wave produces the fastest speed of convergence for the average system among all
dithers with the same amplitude. The same can be concluded for the actual system using the
proof of Theorem 1. This suggests that the square-wave dither should be the prime candidate
to use in the ES system for fast convergence speed, although this dither is rarely considered
in the literature (Ariyur and Krstić, 2003). Indeed, all references that we are aware of use
a sinusoidal dither signal. The simulation results shown in Example 2 illustrates that the
convergence speed of ES with the square wave is fastest among all dithers with the same
amplitude.

Example 2 The simulation is done for the following system where ω = 1:

ẋ = δh(x + d(t))d(t)

where h(x) = −(x + 4)2. In the new coordinate, x̃ = x− x∗ = x + 4, we have

˙̃x = δh(x̃ + x∗ + d(t))d(t) = −δ(x̃ + d(t))2d(t).

The averaged system is given in (13). The simulation result is shown in Figure 3, where
a = 0.1 and δ = 0.5. Simulations show that the extremum seeking controller with the square
wave dither converges fastest.
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 square wave dither
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y
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y
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y
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Figure 3: The performance of the extremum seeking schemes of different excitation signal

Finally, we investigate that the domain of the attraction and accuracy of the ES when a is
not small enough. It should be noted that when using the averaging method in Theorem 1,
the higher order terms in d(t) do not appear in the averaged system (10). It indicates that
the trajectory of the averaged system (10) is close to the trajectory of the actual system
(2) only when both a and δ are sufficiently small. In order to investigate the performance
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of the ES with different dithers with arbitrary amplitude, we use the standard averaging
method (KHalil, 2002, Chpater 10 ) which averages the obtained time varying function over
the interval [0, T ].

We note that for sufficiently smooth (or analytic) maps h(·) we can use the Taylor series
expansion to obtain the following averaged system (by standard averaging) for a general
dither that

fd
av(x̃, a) = δ · 1

T

∫ T

0
f(τ, x̃, d(τ))dτ

= δ ·
(

N∑

i=1

cd
i ·D2i−1h(x̃ + x∗) + Rd

N(x̃ + x∗, a)

)
(14)

where f(·, ·, ·) is defined in (5), Rd
N is the reminder and cd

i is defined as follows

cd
i :=

1

(2i− 1)!T

∫ T

0
d2i(s)ds . (15)

These two averaging methods yield different approximation for the same function f(·, ·, ·).
When both a and δ are sufficiently small, these two methods would produce the same results.
However, the standard averaging method provides a better approximation when a is not small
enough.

In particular, for polynomials maps h(·) we have that there exists sufficiently large N
such that Dih = 0 for all i ≥ N and hence RN = 0. Similarly, for more general analytic
maps h(·) we can write the average system as an infinite sum involving derivatives of h.
Different dither yields different average system which is a weighted sum of the derivatives
of h(·). In particular, for a square wave, sine wave and triangle wave with amplitude a and
period 2π direct calculations yield:

csq
1 = a2, csq

2 =
a4

6
; csin

1 =
a2

2
, csin

2 =
a4

16
; ctri

1 =
a2

3
, ctri

2 =
a4

30
(16)

Obviously the choice of the dither does affect the performance of the ES system. Next we
discuss in more detail 4th order polynomials (quartic mappings), where we assume ω = 1.
For a 4th order polynomial, using a standard averaging method, we can write in general that:

fd
av(x̃, a) = cd

1Dh(x̃ + x∗) + cd
2D

3h(x̃ + x∗) , (17)

where cd
i , i = 1, 2 is defined in (15). Moreover, for the square wave, sine wave and triangle

wave these coefficients are given in (16).
Stability properties of the closed loop system (2) crucially depend on the properties of

the average system. Moreover, the above formulas specify how the average system depends
on different dither and they illustrate the flexibility that may be gained through the choice
of the dither signal. We emphasize that for any dither, the average system can be written
in the form (10) which indicates that for sufficiently small a and δ, the extremum seeking
controller operates in almost the same way as classical “gradient descent” methods.
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Example 3 In this example, we show that the square wave may yield inferior accuracy
compared to the sine wave and the triangle wave dithers with the same amplitude a, especially
for large values of a. We use signals d1(t) = asq(t), d2(t) = a sin(t) and d3(t) = atri(t) of
period 2π. Consider the following 4th order polynomial:

h(x) = −x4 − 16
3
x3 + 22x2 + 120x + 1 ,

that has a global maximum at x = 3, a local maximum at x = −5 and a local minimum at
x = −2. The plot of this function is given in Figure 4.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

−x4−16/3x3+22x2+120+1 

Figure 4: The plot of a 4th order polynomial.

Using (16) and (17), we obtain the following average systems with different dithers:

fd1
av (x, a) = a2(−4x3 − 16x2 + 44x + 120) + a4

6
(−24x− 32)

fd2
av (x, a) = a2

2
(−4x3 − 16x2 + 44x + 120) + a4

16
(−24x− 32)

fd3
av (x, a) = a2

3
(−4x3 − 16x2 + 44x + 120) + a4

30
(−24x− 32) .

Since for each fixed a > 0 we are dealing with scalar systems of the form:

˙̃x = fdi
av(x̃, a) ,

with i = 1, 2, 3, it is possible to precisely determine the domain of convergence and the
accuracy of the average systems with different dithers. Indeed, consider the following equation

fdi
av(x, a) = 0 ,

for different dithers. This equation defines a bifurcation diagram that explains how the equi-
libria of the averaged system changes as a is varied. Moreover, the bifurcation diagram
partitions the state space into regions on which fdi

av(x, a) is either positive or negative. In
Figure 5, we plotted the bifurcation diagrams for three different dithers with varying ampli-
tude. For instance, the dotted lines in Figure 5 represent the bifurcation diagram of fd1

av (x, a).
Moreover, the ”+” sign in Figure 5 indicates that in the area between the two curves we have
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that fd1
av (x, a) > 0 and the two signs ”−” indicate the areas where fd1

av (x, a) < 0. Hence,
with the aid of the bifurcation diagram we can analyze the dynamics of the averaged system
for each fixed a for any of the three dithers. It is obvious that for small a we have that the
system has attractive equilibria located in the neighborhood of x = 3 and x = −5 (respec-
tively the global and local maxima of h(·)) and an unstable equilibrium in the neighborhood
of x = −2 (the local maximum of h(·)). However, the bifurcation diagram indicates that for
a = 4 we have that all solutions of the average system with the square wave will converge to
a neighborhood of x = 1 whereas all solutions of the average system with the triangle wave
will converge to a neighborhood of x = 1.8. Hence, for this amplitude, the extremum seeking
controller with a triangle dither provides a better accuracy than the same controller with the
square wave dither. Simulation results also show that when a = 4, the better accuracy is
obtained for the ES with a triangle dither.

−5 −4 −3 −2 −1 0 1 2 3
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8
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x

a

sine
square wave
triangular

−x4−16/3x3+22x2+120x+1, x*=3, a local maximum at −5 

− 

− 

+ 

Figure 5: The bifurcation diagram for different dithers with the same amplitude.

Example 4 We revisit the system in Example 3 but in this case we consider dithers that
have the same powers, that is we use signals d1(t) = asq(t), d2(t) = a

√
2 sin(t) and d3(t) =

a
√

3tri(t) with period 2π. It is easy to see that the power of all three dithers is p = a2 for any
a. The reason for this comparison is that in this case we have that all three dithers yield the
same convergence speed for sufficiently small a (since in (17) we have cd1

1 = cd2
1 = cd3

1 = a2)
and we want to analyze the differences in accuracy and domain of attraction as we vary the
power p of the signals (see Figure 6). In this case, average systems for different dithers are
given by:

fd1
av (x, p) = p(−4x3 − 16x2 + 44x + 120) + p2

6
(−24x− 32)

fd2
av (x, p) = p(−4x3 − 16x2 + 44x + 120) + p2

4
(−24x− 32)

fd3
av (x, p) = p(−4x3 − 16x2 + 44x + 120) + 3p2

10
(−24x− 32) .

Using analysis similar to the one presented in Example 3, it can be seen from Figure 6 that
the accuracy of extremum seeking to the global maximum x = 3 is better with the square
wave dither than with the sine wave or the triangle wave that have the same power. This
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is opposite from the observations made in Example 3 for signals with the same amplitude.
Simulation results support our observations.
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−x4−16/3x3+22x2+120x+1, x*=3 , a local maximum at −5
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x 

Figure 6: The bifurcation diagram for different dithers with the same power.

Remark 6 If the mapping h(·) was known to the designer, it would be easy to verify which
dither performs best in terms of accuracy or domain of attraction by plotting the bifurcation
diagrams such as the ones given in Examples 3 and 4. Hence, it may seem that we have all
the tools needed to make appropriate dither selection in general. However, the underlying
assumption in extremum seeking control is that h(·) is unknown and, hence, the only way to
verify which dither performs better is through experimenting.

Remark 7 The bifurcation diagrams presented in Figure 5 can be used to develop another
extremum seeking scheme that achieves global extremum seeking in the presence of local ex-
trema. It was shown in (Tan et al., 2006b) under very general conditions that this strategy
yields global convergence under certain assumptions on the bifurcation diagram. In partic-
ular, it is required that there exists a solution `(a) to the equation fav(x, a) = 0, which is
continuous, it is unique for large a and such that `(0) = x∗. Note that all three bifurcation
diagrams in Figure 5 satisfy these conditions and, hence, global extremum seeking is possible
with the scheme from (Tan et al., 2006b). The idea is to initially choose a sufficiently large
amplitude of the excitation signal and then reduce it to zero sufficiently slowly. We note that
results in (Tan et al., 2006b) were derived for the sine wave dither only, whereas it is clear
from this paper that any other dither can be used instead.

5 Conclusions

We have presented results that illustrate how the choice of dither affects the performance of
an extremum seeking scheme. Our results demonstrate that the dither is an important design
parameter to be considered when tuning the extremum seeking controller. For instance, it is
shown that for small amplitudes the square wave provides the best convergence rate among all
dithers of the same amplitude and frequency. Our examples illustrate further the flexibility
that may be gained through dither design and simulations support our theoretical findings.
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