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Abstract: We study a predictive control formulation for discrete-time non-linear plant models
where controller output data is transmitted over an unreliable communication channel. The
channel is affected by random data-loss and does not provide acknowledgments of receipt. To
achieve robustness with respect to dropouts, at every sampling instant the controller transmits
packets of data. These contain possible control inputs for a finite number of future time instants,
and minimize a finite horizon cost function. At the plant actuator side, received packets are
buffered, providing the plant inputs. Within this context, we adopt a stochastic Lyapunov
function approach to establish stability results of this networked control system.
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1. INTRODUCTION

Motivated by both practical and also theoretical aspects,
over the last decade significant research has concentrated
on Networked Control Systems (NCSs), as documented,
e.g., in Baillieul and Antsaklis (2007); Matveev and Savkin
(2009) and the many references therein. In a NCS, plant
and controller communicate via a network which may be
shared with other applications. The sharing of a network
simplifies the cabling (especially if the network is wire-
less) and, thus, increases overall system reliability. How-
ever, since general purpose network platforms were not
originally designed for applications with critical timing
requirements, their use for closed-loop control presents
some serious challenges. The network itself is a dynamical
system that exhibits characteristics which traditionally
have not been taken into account in control system design.
In addition to being quantized, transmitted data may
be affected by time delays and data-dropouts. Thus, in
a NCS, links are not transparent, often constituting a
significant bottleneck in the achievable performance.

One important feature of modern communication proto-
cols, such as Ethernet, is that data is sent in large and
time-stamped packets. This alleviates quantization issues
and opens the possibility to conceive control algorithms
in which packets of data, rather than individual values,
are sent through the network. In particular, one can
formulate schemes where entire signal predictions stem-
ming from model predictive controllers are transmitted.
Through buffering and appropriate selection logic at the
receiver node, time delays and packet dropouts can be
? This research was supported under Australian Research Council’s
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compensated for; see, e.g., Tang and de Silva (2007); Liu
et al. (2006); Zhao et al. (2008); Pin and Parisini (2009);
Quevedo et al. (2007); Findeisen and Varutti (2009).

In the present work, we study such a packetized predictive
control method for discrete-time non-linear plant models.
The controller uses model predictive control principles,
where at each sampling instant a finite-horizon cost func-
tion is minimized. The resulting optimizing sequences are
then transmitted over an unreliable communication chan-
nel. This channel is affected by random data-loss and does
not provide acknowledgments of receipt. To be amenable
to practical situations where dropout-rates are unknown,
the control algorithm is designed without requiring knowl-
edge of the packet dropout distribution.

The main purpose of this work is to investigate stability
issues of the NCS described above. To be more specific,
we establish sufficient conditions for the optimal value
function to constitute a stochastic Lyapunov function
of the NCS at the successful transmission instants and
show how this property ensures stochastic stability of
the NCS. A distinguishing aspect of our approach, when
compared to existing literature, such as, e.g., Quevedo and
Nešić (2010); Xiong and Lam (2007), is that the stability
results presented in the present work apply to channels
where packet dropouts are independent and identically
distributed (i.i.d.), in which case the maximum number
of consecutive dropouts becomes unbounded.

The remainder of this manuscript is organized as follows:
In Section 2, we present the NCS architecture to be
studied. Section 3 describes the control law. Stochastic
stability results are established in Section 4. Section 5
draws conclusions.



2. PACKETIZED CONTROL OVER ERASURE
CHANNELS

We consider discrete-time nonlinear MIMO plant models
with state x(k) ∈ Rn and input u(k) ∈ U ⊆ Rp, described
via:

x(k + 1) = f(x(k), u(k)), k ∈ N0 , {0, 1, . . . } (1)
where f(0, 0) = 0 and where the initial state x(0) = x0 is
arbitrarily distributed.

2.1 Network effects

Our interest lies in clock-driven Ethernet-like networks
situated between controller output and plant input. Thus,
all data to be transmitted is sent in large time-stamped
packets. Due to transmission errors and congestion, the
network introduces packet-dropouts. This motivates us to
model the network as an erasure channel, which operates
at the same sampling rate as the plant model (1). More
precisely, we characterize transmission effects via the fol-
lowing discrete Bernoulli process {d(k)}k∈N0 :

d(k) ,

{
1 if packet-dropout occurs at instant k,
0 if packet-dropout does not occur at instant k.

Each variable d(k) is i.i.d. with distribution
Prob(d(k) = 1) = p, Prob(d(k) = 0) = 1− p, (2)

where p ∈ (0, 1) is the dropout-rate. In practice, p is
not known exactly. Accordingly, in the present work our
focus is on situations where the controller does not have
knowledge about p. (Of course, closed loop stability will
depend upon the dropout-rate, see Section 4.)

As foreshadowed in the introduction, at each time instant
k, the packetized predictive controller sends a control
packet, say u(k) to the plant input node. To achieve
good performance despite unreliable communication, u(k)
contains possible control inputs for a finite number of N
future time instants, i.e., we have

u(k) =


u0(k)
u1(k)

...
uN−1(k)

 ∈ UN . (3)

At the plant input side, the received packets are buffered,
providing the plant inputs, see Fig. 1.

In what follows, we will first describe the buffering proce-
dure. In Section 3 we present the control packet design.

2.2 Buffering

The buffering mechanism amounts to a parallel-in serial-
out shift register, which acts as a safeguard against
dropouts. For that purpose, the buffer state, denoted via
b(k) ∈ RpN , is overwritten whenever a valid (i.e., uncor-
rupted and undelayed) control packet arrives. Actuator
values are passed on to the plant sequentially until the
next valid control packet is received. More formally, we
have:

b(k) = d(k)Sb(k − 1) + (1− d(k))u(k),
u(k) = eT

1 b(k)
(4)

u(k)
ChannelController Buffer Plant

d(k)

u(k) x(k)

Fig. 1. Closed-loop control with an erasure channel

where the initial buffer state b(0) = 0 and

S ,


0p Ip 0p . . . 0p

...
. . . . . . . . .

...
0p . . . 0p Ip 0p

0p . . . . . . 0p Ip
0p . . . . . . . . . . 0p

 ∈ RpN×pN ,

eT
1 , [Ip 0p . . . 0p] ∈ Rp×pN ,

(5)

where Ip is the p×p identity matrix and where 0p , 0 · Ip;
see, e.g., Quevedo and Nešić (2010).
Remark 1. (Holding the control input). The choice of S
in (5) corresponds to setting the buffer state to zero if no
data is received over N consecutive instants. Alternatively,
if one wished to hold the latest value, one could set the
“last” element of S equal to Ip. �

3. PACKETIZED PREDICTIVE CONTROL

The control packets u(k) in (3) are formed by adapting
the ideas underpinning model predictive controllers. More
precisely, at each time instant k and for a given plant state
x(k), the following cost function is minimized:

J(u′, x(k)) , F (x′(N)) +
N−1∑
`=0

L(x′(`), u′(`)). (6)

The cost function in (6) examines predictions of the
nominal system (1) over a finite horizon of length N ,
which is taken equal to the buffer size. The predicted state
trajectories are generated by the model:

x′(`+ 1) = f(x′(`), u′(`)), ` ∈ {0, 1, . . . , N − 1}
starting from x′(0) = x(k) and where the entries in

u′ =
[
(u′(0))T . . . (u′(N − 1))T

]T ∈ UN

are the associated plant inputs. Predicted plant states and
inputs are penalized via the per-stage weighting function
L(·, ·) and the terminal weighting F (·). These design
variables allow one to trade-off control performance versus
control effort. As in situations without dropouts, see, e.g.,
Mayne et al. (2000), the choices made for L(·, ·), F (·) and
N influence closed loop stability. This issue will be further
examined in Section 4.

The control packet u(k), see (3), is set equal to the
constrained optimizer,

u(k) , arg min
u ′∈UN

J(u′, x(k)) (7)

and is sent through the network to the buffer.

Following the receding horizon optimization idea, at the
next sampling step and given x(k+1), the horizon is shifted
by one and another optimization is carried out, providing

u(k + 1) = arg min
u ′∈UN

J(u′, x(k + 1)),



sequence, which is transmitted to the buffer. This proce-
dure is repeated ad infinitum.

Note that u(k) in (7) contains possible plant input values
for instants {k, . . . , k + N − 1}. If u(k) is received at
time k, then these values are written into the buffer and
implemented sequentially until some future (valid) control
packet arrives.

In the NCS architecture under study, the plant input de-
sign is done dynamically such as to optimize performance.
It is important to note that whilst u(k) is found by evaluat-
ing open-loop predictions (and not closed-loop policies, see
also Quevedo et al. (2008)), the resultant control policy is a
closed-loop one. Indeed, the loop is closed at all successful
transmission instants, i.e., at all instants where d(k) = 0.

Since the plant model and cost function adopted here
are time-invariant, the optimization in (7) gives rise to
a time-invariant mapping, say κN : Rn → UN , which
characterizes the sequence u(k) via:

u(k) = κN (x(k)), ∀k ∈ N0. (8)
If we now introduce the augmented state

θ(k) ,

[
x(k)

b(k − 1)

]
∈ Rn+pN ,

then expressions (1), (4) and (8) allow us to describe the
NCS via:

θ(k + 1) = Fd(k)(θ(k)), k ∈ N0,

where

F0(θ(k)) =
[
f(x(k), eT

1 κN (x(k)))
κN (x(k))

]
,

F1(θ(k)) =
[
f(x(k), eT

1 Sb(k − 1))
Sb(k − 1)

]
.

(9)

We see that the NCS which results from using packetized
predictive control over an erasure channels amounts to a
jump non-linear system where the jump variable is i.i.d.
The linear case has been extensively studied within the
context of Markov Jump Linear Systems; see, e.g., Ji
et al. (1991). To treat the non-linear case (9), we will use
an alternative model, which is presented in the following
section.

4. STABILITY OF THE NCS

Various stability notions for stochastic systems have been
studied in the literature; see, e.g., Kushner (1971); Ji et al.
(1991). In the present work, we will adopt the following
definitions:
Definition 2. (Stochastic Stability). For system (1), the
equilibrium point x = 0

(1) is stochastically stable, if for every initial state x0: 1

Ex0

{ ∞∑
k=0

|x(k)|

}
<∞,

(2) is mean square stable, if for every initial state x0:
lim

k→∞
Ex0 |x(k)| = 0.

(Clearly, stochastic stability implies mean-square stabil-
ity.) �

1 Here and in the sequel, we denote expectation given y via Ey(·).

4.1 The NCS at successful transmission instants

The approach taken in the present work is based upon
Quevedo et al. (2007), where the instants of successful
transmission are examined to conclude about stability
properties of the system at all instants k ∈ N0. 2 For that
purpose, we denote the time instants where there are no
packet-dropouts (d(k) = 0) via

K = {ki}i∈N0 ⊆ N0, ki+1 > ki, ∀i ∈ N0. (10)
and also define:

∆i , ki+1 − ki, i ∈ N0.

Note that ∆i ≥ 1, with equality if and only if no dropouts
occur between instants ki and ki+1. Furthermore, it follows
directly from (2) and (10), that ∆i is i.i.d. with geometric
distribution:

Prob(∆i = j) = (1− p)pj−1, ∀j ∈ {1, 2, . . . }. (11)

For our subsequent analysis, it is convenient to introduce
the mappings:

f̄ j(x(k)) ,

{
x(k), if j = 0,
f(f̄ j−1(x(k)), uj−1(k)), if j ∈ {1, . . . , N},

(12)
see (7) and (3), and:

f j
ol(ξ) ,

{
ξ, if j = 0,
f(f j−1

ol (ξ), 0), if j ∈ {1, 2, . . . },
where ξ ∈ Rn.

Given the buffering mechanism, see (4), and in terms of
the above definitions, it is easy to see that the NCS at the
successful transmission instants ki ∈ K is characterized
via:

x(ki+1) =
{
f̄∆i(x(ki)), if ∆i ≤ N,

f∆i−N
ol (f̄N (x(ki))) if ∆i ≥ N.

(13)

Thus, {x(ki)}ki∈K is a Markov chain. 3

Remark 3. (Relationship to previous works). A key differ-
ence between the current situation and that studied in
Quevedo et al. (2007) and in Quevedo and Nešić (2010) is
that the results in the latter works require that ∆i ≤ N , for
all i ∈ N0. In the present work, we remove this assumption
by allowing the maximum number of consecutive packet
dropouts to be unbounded, see (11). For that purpose, we
extend the approach of Quevedo et al. (2010) to encompass
non-linear plant models. �

4.2 Assumptions

For ease of exposition (and to keep the presentation
reasonably brief), in the sequel, we will assume that the
first successful transmission instant occurs at k = 0, i.e, we
have k0 = 0. We will furthermore assume that the plant
and cost function satisfy the following assumptions:
Assumption 4. (Tuning Parameters). The terms F (·) and
L(·, ·) in (6) are chosen such that:

F (x) ≥ 0, ∀x ∈ Rn, F (0) = 0,
L(0, 0) = 0, L(x, u) ≥ α|x|, ∀x ∈ Rn, ∀u ∈ U,

where α > 0 and | · | denotes the Euclidean norm.
2 This idea is related to methods used to study randomly sampled
systems; see, e.g., Kushner and Tobias (1969); Xie and Xie (2009).
3 {x(k)}k∈N0 will in general not be a Markov chain.



There exists a terminal control law κf : Rn → U such that:
F (f(ξ, κf (ξ)))− F (ξ) + L(ξ, κf (ξ)) ≤ 0, ∀ξ ∈ Rn. (14)

Assumption 5. (Bound on p). There exists 1 ≤ γ < 1/p,
such that:

F (f(x, 0)) ≤ γF (x), ∀x ∈ Rn. (15)

Assumption 4 (and variations thereof) has been widely
used for establishing stability of predictive control loops
(without dropouts); see, e.g., Mayne et al. (2000); Rai-
mondo et al. (2009).

Assumption 5 amounts to an upper bound of the dropout
probability for a given plant model, or, conversely, to an
upper bound of the rate of growth of f(x, 0) for a given p.
Interestingly, (15) is an extension of a necessary condition
for stability when the plant is linear; see Ishii (2009);
Gupta et al. (2009) and the references therein.

Motivated by our analysis in Quevedo et al. (2007), in the
remainder of this section we will establish stability of the
NCS via study of the optimal costs V (x(ki)), where:

V (x(k)) , J(u(k), x(k)), k ∈ N0,

Before proceeding, we note that:
Lemma 6. Suppose that Assumption 4 holds. Then

L(x(k), u0(k)) ≤ V (x(k)) ≤ F (x(k))
for all x(k) ∈ Rn.

Proof. By (6) and (12), we have

V (x(k)) = F (f̄N (x(k))) +
N−1∑
`=0

L(f̄ `(x(k)), u`(k)), (16)

so that

V (x(k)) = F (x(k)) +
N−1∑
`=0

(
L(f̄ `(x(k)), u`(k))

− F (f̄ `(x(k))) + F (f̄ `+1(x(k)))
)
.

Since V (x(k)) is optimal, (14) allows us to conclude that
V (x(k)) ≤ F (x(k)). The other inequality follows directly
from (16). �

4.3 Main Results

Our first result establishes that the parameters of the cost
function in (6) can be chosen to ensure monotonicity of
the expected value of the optimal cost at the successful
transmission instants ki ∈ K. This property is then used,
in Theorem 8, for characterizing sufficient conditions for
stochastic stability and mean-square stability of the closed
loop at all time instants k ∈ N0.
Lemma 7. (Monotonicity of V (x(ki))). Suppose that As-
sumptions 4 and 5 hold and define, for all ki ∈ K:

φ(x(ki)) , L(x(ki), u0(ki))− pN

(
γ − 1
1− pγ

)
F (f̄N (x(ki))).

We then have that:
Ex(k0)V (x(k1))− V (x(k0)) ≤ −φ(x(k0)), (17)

where Ex(k0)V (x(k1)) denotes the conditional expectation
of V (x(k1)) given x(k0).

Proof. See Appendix A. �

Theorem 8. (Stability). Suppose that Assumptions 4 and 5
hold, that F (x(k0)) <∞, and that there exists ε > 0 such
that

φ(x(ki)) ≥ εF (x(ki)), ∀ki ∈ K. (18)
Then the NCS described by (1)–(7) is stochastically stable
and mean-square stable.

Proof. See Appendix B. �

We note that Theorem 8 establishes stability of the NCS
at all time instants k ∈ N0. The result suggests that one
incorporate (18) as an additional constraint in the mini-
mization of the cost function. Alternatively, the following
corollary shows how to design the cost function parameters
in (6) such that the NCS is stochastically stable (without
requiring additional constraints in the optimization):
Corollary 9. Suppose that Assumptions 4 and 5 hold, that
F (x(k0)) <∞, and that

F (x(ki)) ≤
(

1 +
1− pγ

pN (γ − 1)

)
L(x(ki), u0(ki)), (19)

for all ki ∈ K. Then the NCS is stochastically stable and
mean-square stable.

Proof. If (19) holds, then

F (x(ki)) ≤
(

1− pγ + pN (γ − 1)
ε(1− pγ) + pN (γ − 1)

)
L(x(ki), u0(ki)),

for all ki ∈ K and all ε > 0. On the other hand, Lemma 6
implies that

F (f̄N (x(ki))) ≤ F (x(ki))− L(x(ki), u0(ki))

−
N−1∑
`=1

(
L(f̄ `(x(ki)), u`(ki)) ≤ F (x(ki))−L(x(ki), u0(ki)).

Stability of the NCS now follows from Theorem 8. �

Corollary 9 allows us to conclude that the NCS will be
stable if F (·) is chosen small enough, when compared to
L(·, ·). To further elucidate this result, we note that

ψ(N) , 1 +
1− pγ

pN (γ − 1)
,

is monotonically increasing, with
lim

N→∞
ψ(N) = ∞.

Thus, choosing larger horizons N in (6) is beneficial for
fulfilling (19) and hence guaranteeing stochastic stability.
Moreover, for any given weighting functions F (·) and
L(·, ·), the closed loop will be stochastically stable, if N
is chosen large enough.
Remark 10. It is worth emphasizing that (14) is a global
condition. It would be convenient to replace it by a local
condition, which needs to hold only in some bounded set
Xf , see also, e.g., Cannon et al. (2003). To prove mono-
tonicity of {V (x(ki))}ki∈K by proceeding as in Lemma 7,
one would then need that

f̄N+`(x(ki)) ∈ Xf , ∀` ≥ 0, ∀ki ∈ K. (20)
Unfortunately, since the maximum number of consecutive
dropouts is unbounded, for open-loop unstable plants, (20)
can, in general, not be satisfied if Xf is bounded. We
conclude that the issue of formulating local conditions
certainly deserves further study. �



5. CONCLUSIONS

This work has studied a NCS architecture where a pack-
etized predictive controller uses an unreliable network af-
fected by packet-dropouts to control a nonlinear plant. It
has been shown that, provided that the plant and network
satisfy suitable conditions, stochastic stability can be en-
sured by appropriate choice of tuning parameters.

Future work could include the study of more general
situations, including where the plant is affected by random
disturbances, where dropout distributions do not satisfy
the model (2), and where the controller does not have
direct access to the plant state.

Appendix A. PROOF OF LEMMA 7

For notational convenience, throughout this proof, we will
write x instead of x(k0), u` for u`(k0), and ∆ for ∆1. By
the law of total expectation and (11), we have that

ExV (x(k1)) = (1− p)
∞∑

i=1

pi−1Ex{V (x(k1)) |∆ = i}

= (1− p)
N∑

i=1

pi−1Ex{V (x(k1)) |∆ = i}

+ (1− p)
∞∑

i=N+1

pi−1Ex{V (x(k1)) |∆ = i}.

(A.1)
In what follows, we will separately bound the two sums in
the last expression.

(1) For ∆ ≤ N , and since Assumption 4 holds, we can
adapt (Quevedo and Nešić, 2010, Lemma 1). More
precisely, we consider the sequence

u] =
{
ui, ui+1, . . . , uN−1, u

]
N , u

]
N+1 . . . , u

]
N+i−1

}
,

whose first N − i elements are taken from u(k0). The
remaining i elements of u] are provided by:
u]

N+j = κf (x]
N+j) ∈ U, j ∈ {0, 1, . . . , i− 1} (A.2)

where κf (·) is such that (14) holds and where:

x]
j+1 = f(x]

j , u
]
j), j ∈ {N,N + 1, . . . , N + i− 1}

with x]
N = f̄N (x), see (12).

It follows from (6) that the associated cost satisfies:

J(u], f̄ i(x)) = F (x]
N+i) +

N−1∑
`=i

L(f̄ `(x), u`)

+
N+i−1∑

`=N

L(x]
`, u

]
`)

= V (x)−
i−1∑
`=0

L(f̄ `(x), u`) + F (x]
N+i)

− F (f̄N (x)) +
N+i−1∑

`=N

L(x]
`, u

]
`)

= V (x)−
i−1∑
`=0

L(f̄ `(x), u`)

+
N+i−1∑

`=N

(
F (x]

`+1)− F (x]
`) + L(x]

`, u
]
`)

)
.

Since, due to optimality, it holds that
V (f̄ i(x)) ≤ J(u], f̄ i(x)),

we can use (14) to obtain:

Ex{V (x(k1)) |∆ = i ≤ N}

≤ V (x)−
i−1∑
`=0

L(f̄ `(x), u`). (A.3)

For the cases ∆ = N , we consider the sequence

u] =
{
u]

N , u
]
N+1 . . . , u

]
2N−1

}
,

where now all N elements of u] are as in (A.2).
By using the definition

∑N−1
`=N = 0, expression (A.3)

follows as in the case i ≤ N − 1 studied above.
(2) To study the events where ∆ > N , we recall (13) and

Lemma 6, which give:

Ex{V (x(k1)) |∆ = i > N} ≤ F (f i−N
ol (f̄N (x))).

(A.4)

Substitution of (A.4) and (A.3) into (A.1) and use of (16)
and (15) provide that:

ExV (x(k1))− V (x) ≤ −(1− p)
∞∑

i=1

pi−1

min(i,N)−1∑
`=0

L(f̄ `(x), u`)

+ (1− p)
∞∑

i=N+1

pi−1
(
F (f i−N

ol (f̄N (x)))− F (f̄N (x)))
)

≤ −L(x, u0)− pN
N−1∑
`=1

L(f̄ `(x), u`)

+ (1− p)pN
∞∑

j=0

pj
(
F (f j+1

ol (f̄N (x)))− F (f̄N (x))
)

≤ −L(x, u0(0))− pN
N−1∑
`=1

L(f̄ `(x), u`)

− pNF (f̄N (x)) + (1− p)pNγ

∞∑
j=0

(pγ)jF (f̄N (x)).

By Assumption 5, we have that |pγ| < 1. Hence,∑∞
j=0(pγ)

j = (1− pγ)−1, proving (17). �

Appendix B. PROOF OF THEOREM 8

Throughout this proof we will denote x(k0) by x, ∆1 by
∆, and f̄N (x(k0)) by xN . Lemma 7 gives that V (x(ki)) is
a stochastic Lyapunov function for the closed loop at the
time instants ki ∈ K. In fact, Lemma 6 and Equation (18)
ensure that there exists ε > 0 such that

φ(x(ki)) ≥ εV (x(ki)), ∀ki ∈ K.
Thus, (17) provides:

ExV (x(k1))− V (x) ≤ −εV (x).
Since {x(ki)}ki∈K is a Markov chain, Theorem 2 in (Kush-
ner, 1971, Ch. 8.4.2) then allows us to conclude that ε ≤ 1
and that at instants ki ∈ K we have exponential stability:

ExV (x(ki)) ≤ (1− ε)iV (x), ∀i ≥ 1. (B.1)

We next examine instants k /∈ K, k > k0. For that
purpose, we proceed as in (A.1) and condition upon ∆
to obtain:



Ex

k1−1∑
`=k0

|x(`)| ≤ (1− p)
∞∑

i=1

pi−1Ex

{
k0+N−1∑

`=k0

|x(`)|
∣∣∣ ∆ ≥ N

}

+ (1− p)
∞∑

i=N+1

pi−1Ex

{
k1−1∑

`=k0+N

|x(`)|
∣∣∣ ∆ = i

}

= Ex

N−1∑
`=0

|f̄ `(x)|+ (1− p)pN
∞∑

`=0

p`Ex

∑̀
j=0

∣∣f j
ol(xN )

∣∣
≤ Ex

N−1∑
`=0

|f̄ `(x)|+ (1− p)pN

α

∞∑
`=0

p`Ex

∑̀
j=0

F (f j
ol(xN ))

≤ Ex


N−1∑
`=0

|f̄ `(x)|+ (1− p)pN

α

∞∑
`=0

p`
∑̀
j=0

γjF (xN )


= Ex

{
N−1∑
`=0

|f̄ `(x)|+ pN

α(1− pγ)
F (xN )

}
where we have used (15), Assumption 4 and Lemma 6.
Assumption 4 furthermore ensures that there exists a
constant 0 < β <∞, such that

Ex

k1−1∑
`=k0

|x(`)| ≤ βExV (x).

In a similar manner, it can be shown that

Ex(ki)


ki+1−1∑
`=ki

|x(`)|

 ≤ β Ex(ki)

{
V (x(ki))

}
, ∀ki ∈ K,

so that (B.1) gives:

Ex(k0)


ki+1−1∑
`=ki

|x(`)|

 ≤ β (1− ε)iV (x(k0)), ∀ki ∈ K.

Since {x(ki)}ki∈K is a Markov chain, we obtain:

Ex(k0)


km+1−1∑

`=k0

|x(`)|

 ≤ βEx(k0)

{
m∑

i=0

(1− ε)iV (x(k0))

}

= β
1− (1− ε)m

ε
V (x(k0))

If we now let m→∞, and use Lemma 6, then:

Ex(k0)

{ ∞∑
`=k0

|x(`)|

}
≤ β

ε
V (x(k0)) ≤

β

ε
F (x(k0)) <∞,

thus, proving the result. �
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Packetized predictive control of stochastic systems over
bit-rate limited channels with packet loss. IEEE Trans.
Automat. Contr. Submitted.

Quevedo, D.E., Silva, E.I., and Goodwin, G.C. (2007).
Packetized predictive control over erasure channels. In
Proc. Amer. Contr. Conf. New York, N.Y.

Quevedo, D.E., Silva, E.I., and Goodwin, G.C. (2008).
Control over unreliable networks affected by packet
erasures and variable transmission delays. IEEE J.
Select. Areas Commun., 26(4), 672–685.

Raimondo, D.M., Limón, D., Lazar, M., Magni, L., and
Camacho, E.F. (2009). Min-max model predictive con-
trol of nonlinear systems: A unifying overview on stabil-
ity. European J. Contr., 15(1), 5–21.

Tang, P.L. and de Silva, C.W. (2007). Stability validation
of a constrained model predictive networked control
system with future input buffering. Int. J. Contr.,
80(12), 1954–1970.

Xie, L. and Xie, L. (2009). Stability analysis of networked
sampled-data linear systems with Markovian packet
losses. IEEE Trans. Automat. Contr., 54(6), 1375–1381.

Xiong, J. and Lam, J. (2007). Stabilization of linear
systems over networks with bounded packet loss. Auto-
matica, 43, 80–87.

Zhao, Y.B., Liu, G.P., and Rees, D. (2008). Improved pre-
dictive control approach to networked control systems.
IET Control Theory Appl., 2(8), 675–681.


