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We design a nonlinear stabilizing control law for a four degree of freedom spherical inverted pendulum. The pendulum is a slim cylindrical
beam attached to a horizontal plane via a universal joint; the joint is free to move in the plane under the influence of a planar force.
The upright position is an unstable equilibrium of the uncontrolled system because of gravity. The objective is to design a controller so
that it stabilizes the upright position starting from any position in the upper hemisphere with arbitrary velocity. We achieve this by first
transforming the original system to an appropriate upper triangular form and then designing a controller which incorporates a high gain
design with the method of nonlinear forwarding. The control law is evaluated through computer simulations.
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1 Introduction

The spherical inverted pendulum is a slim cylindrical beam attached to a horizontal plane via a universal
joint (see Figure 1). The universal joint is free to move in the plane, under the influence of a planar force
– the control signal. Because of the gravity force, the downward and upward positions are respectively
the stable equilibrium and the unstable equilibrium of the uncontrolled system. The control objective
considered here is to use the planar force to drive the inverted pendulum in such a way that the upright
position is asymptotically stable and attractive from any starting position in the upper hemisphere with
arbitrary initial velocities. Moreover, the pendulum’s universal joint has to be returned to a given point
on the plane and remain there. We do not consider the problem of swing up of the pendulum and rather
assume that initial conditions are located in the upper hemisphere.

The spherical inverted pendulum is commonly found in control laboratories. Its model resembles several
other systems found in robotics and aerospace engineering. For instance, the spherical inverted pendulum
is an abstraction for a vector thrust controlled body hovering at a given altitude.

The control of a spherical inverted pendulum is considered in Albouy and Praly (2000); Yang et al.
(2000); Chung et al. (2000); Bloch et al. (2000, 2001); Angeli (2001a). In Albouy and Praly (2000), a
swing-up strategy is proposed based on passivity. Stabilizing the pendulum locally around an operating
point is discussed in Yang et al. (2000); Chung et al. (2000), where the pendulum is analyzed under
the assumption of small deviations from the vertical upright position. Two continuous controllers in the
literature attempt to achieve nonlocal stabilization of the pendulum Bloch et al. (2000, 2001); Angeli
(2001a). In Bloch et al. (2000, 2001), the authors use the controlled Lagrangian framework to derive a
controller to regulate the angles for a spherical pendulum. In Angeli (2001a), a control idea is proposed
for the pendulum based on the regulation of the velocity of the nutation angle and then it is pointed out
that the problem of controlling the spherical inverted pendulum maybe reduced to the problem of a planar
inverted pendulum allowing the results for the planar inverted pendulum in Angeli (2001b) and Teel (1996)
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Figure 1. The spherical inverted pendulum

to be applied. However, to the best of our knowledge, no complete solution for the stabilization/regulation
of all four degrees of freedom of a spherical inverted pendulum has appeared in the literature.

In this paper, we develop a nonlinear controller that stabilizes the upright position of the pendulum
such that the upper hemisphere is its domain of attraction. The controller design consists of several steps.
In the first step, we take a state transformation and a control transformation to convert the system to a
globally defined system in the upper triangular form. Next, we design a controller for a subsystem that
will be a starting point in a forwarding controller design. Finally, we use the forwarding method proposed
in Teel (1996) to construct a controller for the overall system. Our design relies on results and ideas from
Teel (1996) and Angeli (2001a).

The full model of the spherical pendulum is highly nonlinear. Since the self-spin around the symmetry
axis of the slim cylindrical beam is ignored and the universal joint of the pendulum is restricted by the
horizontal plane, the spherical pendulum has four degrees of freedom. We work with the position of the
universal joint in the plane (x, y) and the pitch and roll angles (δ, ε) of the beam (see Figure 1). The
proposed controller brings the pendulum from any initial condition in the upper hemisphere to the upright
position. The set of coordinates is suggested in Olfati-Saber (2001) for a simplified spherical inverted
pendulum on the cart where the mass of the pendulum concentrates on a bob. We consider here a slightly
more general case–a slim cylindrical beam with the uniform mass density where the rotational kinetic
energy about the centre of mass is taken into account1. A low and high gain controller based on the same
idea is also designed for an alternative set of coordinates in the conference version of this paper Liu et al.
(2005).

The paper is organized as follows. We recall some results from nonlinear control theory in Section II.
In Section III, we derive the model in a form that will allow us to use the forwarding method. Then, we
complete the control design in Section IV and present some simulations in Section V. Final observations
are given in Section VI.

1The rotational kinetic energy about the symmetry axis of the slim cylindrical beam is ignored considering that the radius of the slim
beam is much less than its length.
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2 Preliminaries

2.1 Notations

Class K function: a continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0.

Class K∞ function: If a = ∞ and limr→∞ α(r) = ∞, the function is said to belong to class K∞.
Class KL function: a continuous function β(s, t) : [0, a)× [0,∞) → [0,∞) is said to belong to class KL

if, for each fixed t, the function β belongs to class K and, for each fixed s, the function β is decreasing and
lims→∞ β(s, 0) = 0.

For a piecewise-continuous function u : [0,∞) → Rm, define ‖u(·)‖a = lim supt→∞{max1≤i≤m |ui(t)|}.
The quantity thus introduced is referred to as the asymptotic “norm” of u(·).

Asymptotic gain Teel (1996); Isidori (1999): System ẋ = f(x, u), y = h(x, u) is said to satisfy an
asymptotic (input-output) bound, with restriction X on x(0) and restriction U on u(·), if there exists
a class K function γu(·), called the gain function, such that, for any x(0) ∈ X and for any piecewise-
continuous input u(·) satisfying ‖u(·)‖a < U , the response x(t) for the initial state x(0) exists for all t ≥ 0
and is such that ‖y(·)‖a ≤ γu(‖u(·)‖a).

For a vector x ∈ Rn, ‖x‖ = (|x1|2 + . . . + |xn|2)1/2 denotes the Euclidean norm. Let u(t) : [0,∞) → Rm

be any piecewise continuous bounded function. The set of all such functions, endowed with the supremum
norm ‖u(·)‖∞ = supt≥0 ‖u(t)‖, is denoted by Lm∞.

We use (x1, x2)
4
= (xT

1 , xT
2 )T for convenience. A saturation function is σ(s)

4
=

{
sgn(s), |s| > 1

s, |s| ≤ 1 where

sgn is the sign function. C− denotes the left hand side of the complex plane. I denotes the identity matrix.

2.2 Input-output Feedback Linearization of MIMO System

We recall the method of input-output feedback linearization for square MIMO systems (Slotine and Li,
1991, Ch.6). Consider the system

ẋ = f(x) + g(x)u, y = h(x), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rm the system output, f , h and gi are
smooth vector fields. Assume that ri is the smallest integer such that at least one of the inputs appears in
driyi

dtri
for the output yi. This yields




dr1y1

dtr1

...
drmym

dtrm


 =



Lr1

f h1(x)
...

Lrm

f hm(x)


 +




∑m
j=1 Lgj

Lr1−1
f hj(x)uj

...∑m
j=1 Lgj

Lrm−1
f hj(x)uj




4
= Lr

fh(x) + E(x)u, (2)

where Lgj
Lri−1

f hj(x) 6= 0, i = 1, . . . , m for at least one j, in a neighborhood χi of the point x0. Then, the
system (1) is said to have a vector relative degree (r1, . . . , rm) at x0. Define χ as the intersection of the χi

and assume E(x) is invertible over the region χ. Then, the input transformation

u = E−1(x)(v − Lr
fh(x)), (3)

yields m equations of the simple form

driyi

dtri
= vi , (4)
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that is, the system is input-output linearized.

2.3 ISS and ISS-Lyapunov Function

We review a key nonlinear analysis tool, input-to-state stability (ISS) and related results discussed by
Sontag and coworkers in Sontag (1989, 1990); Sontag and Wang (1995). See also the monograph (Isidori,
1999, Chapter 10).

ISS : The system

ẋ = f(x, u) (5)

is said to be ISS if there exist a class KL function β(·, ·) and a class K function γ(·), such that for any
input u(·) ∈ Lm∞ and any x(0) ∈ Rn, the response x(t) satisfies ‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖u(·)‖∞).

ISS-Lyapunov function: A C1 function V is called an ISS-Lyapunov funtion for system (5) if there exist
class K∞ functions a(·), a(·), a(·) and a class K function χ(·) such that

a(‖x‖) ≤ V (x) ≤ a(‖x‖) for all x ∈ Rn (6)

and

‖x‖ ≥ χ(‖u‖) ⇒ ∂V

∂x
f(x, u) ≤ −a(‖x‖) for all x ∈ Rn. (7)

Theorem 2.1 Sontag and Wang (1995) System (5) is input-to-state stable if and only if there exists an
ISS-Lyapunov function.

2.4 Nested Saturation Design to Forwarding Systems

The next result is a key design tool in forwarding.

Theorem 2.2 Teel (1996)(Isidori, 1999, Lemma 14.3.5) Consider the system

ż = Az + gi(ξi, u), ξ̇i = fi(ξi, u) (8)

in which z ∈ Rn, ξi ∈ Rp, u ∈ Rm, gi(ξi, u) and fi(ξi, u) are locally Lipschitz, differentiable at (ξi, u) =
(0, 0), and gi(0, 0) = 0, fi(0, 0) = 0. Assume that:

(i) there exists a symmetric matrix P > 0 such that PA + AT P ≤ 0,
(ii) the linear approximation of the system at the equilibrium (zi, ξi, u) = (0, 0, 0) is stabilizable.

There exists a function αi : Rv × Rm → Rm (i.e., (ξi, v) 7→ αi(ξi, v)), with αi(0, 0) = 0, which is locally
Lipschitz, differentiable at (ξi, v) = (0, 0), with the following properties:

(iiia) the matrix
[

∂αi(ξi,v)
∂v

]
(0,0)

is nonsingular,

(iiib) the matrix
[

∂fi(ξi,αi(ξi,v))
∂ξi

]
(0,0)

has all eigenvalues in C−,

(iiic) the system ξ̇i = fi(ξi, αi(ξi, v)), y = ξi satisfies an asymptotic (input v to output y ) bound , with
restriction Xi on ξ◦i , restriction V > 0 on v(·), with linear gain function.

Let ξi+1 = (z, ξi), ṽ = n + p, fi+1(ξi+1, u) =
(

Az + gi(ξi, u)
fi(ξi, u)

)
, Fi+1 =

[
∂fi+1(ξi+1,αi(ξi,v))

∂ξi+1

]
(0,0), Gi+1 =

[
∂fi+1(ξi+1,αi(ξi,v))

∂v

]
(0,0).

Then, the pair (Fi+1, Gi+1) is stabilisable.
Let σ(·) be any Rm -valued saturation function. Pick a ṽ×m matrix Ki+1 such that (Fi+1 + Gi+1Ki+1)

has all eigenvalues in C− and, for some δ′ > 0, system ẋ = Fi+1x+Gi+1σ(Ki+1x+ v)+w, y = x satisfies
an asymptotic (input (v,w) to output y) bound, with no restriction on x◦ and restriction δ′ on v(·) and
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w(·), with linear gain functions γv(·) and γw(·). Pick two m × m matrices Γ and Ω such that Γ + Ω is

nonsingular. Consider the function
αi+1 : Rṽ ×Rm → Rm

(ξi+1, v) 7→ αi

(
ξi, λσ

(
Ki+1ξi+1+Γv

λ

)
+ Ωv

)
.

Then, there exist numbers λ > 0 and Ṽ > 0 such that
(a) the matrix

[
∂αi+1(ξi+1,v)

∂v

]
(0,0)

is nonsingular,

(b) the matrix
[

∂fi+1(ξi+1,αi+1(ξi+1,v))
∂ξi+1

]
(0,0)

has all eigenvalues in C−,

(c) the system ξ̇i+1 = fi+1(ξi+1, αi+1(ξi+1, v)), y = ξi+1 satisfies an asymptotic (input v - output y)
bound, with restriction Xi+1 = Rn ×Xi on ξ◦i+1, restriction Ṽ > 0 on v(·), with linear gain function.

This result can be repeatedly used to globally asymptotically stabilize a system in the so called forwarding
form.

3 The Dynamic Model

In this section we derive a model for the spherical inverted pendulum using coordinates: the position of
the universal joint in the plane (x, y), the pitch angle δ and the roll angle ε coordinates as indicated in
Figure 1 where the pitch angle δ is the rotation around y-axis and the roll angle ε is the rotation around
the body fixed frame x′-axis. Let q

4
= (x, y, δ, ε).

The kinetic energy and potential energy of the pendulum are calculated next. Two vectors are defined
to indicate the positions of the pivot o and the center of mass c respectively

Po = (x, y, 0) , Pc = (x− L sin δ, y + L cos δ sin ε, L cos δ cos ε).

Their time derivative gives the velocity vectors

Ṗo = (ẋ, ẏ, 0) , Ṗc = (ẋ− Lδ̇ cos δ, ẏ + Lε̇ cos ε cos δ − Lδ̇ sin ε sin δ,−Lε̇ sin ε cos δ − Lδ̇ cos ε sin δ).

The angular velocity ω of the inverted pendulum in the body fixed frame (x′, y′, z′) with the origin at the
centre of mass c can be expressed as 1

ω = (ω1, ω2, ω3) = (ε̇, δ̇ cos ε,−δ̇ sin ε), (9)

and the principal moment of inertia tensor with respect to the body fixed frame is

I =




I1 0 0
0 I2 0
0 0 I3


 =




L2m
3 + R2m

4 0 0
0 L2m

3 + R2m
4 0

0 0 R2m
2


 . (10)

The kinetic energy of the pendulum consists of two terms: translational kinetic energy and rotational
kinetic energy with respect to the center of mass

T =
1
2
m〈Ṗc, Ṗc〉+

1
2
ωIωT

=
1
2
(ẋ, ẏ, δ̇, ε̇)D(q)(ẋ, ẏ, δ̇, ε̇)T , (11)

1This is obtained by taking the Euler angle transformation 2− 1− 3: pitch δ, roll ε and yaw angle γ where γ ≡ 0 and its rate γ̇ ≡ 0 is
assumed (i.e., self-spin about z′ axis is ignored).
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where D(q) is the inertia tensor (see Appendix A). The potential energy of the system is

V = mgL cos ε cos δ . (12)

The Lagrangian is,

L 4
=

1
2
(ẋ, ẏ, δ̇, ε̇)D(q)(ẋ, ẏ, δ̇, ε̇)T −mgL cos δ cos ε . (13)

The Euler-Lagrange’s equations of motion are (Hand, 1998, Page 19)

d

dt

(
∂L

∂{q̇i}
)
− ∂L

∂{qi} = {Qi}, i = 1, . . . , n, (14)

which can be written as

D(q) · {q̈i}+ C(q, q̇) · {q̇i}+ G(q) = {Qi}, (15)

where D(q), C(q, q̇), G(q) and {Qi} are given in Appendix A.
By multiplying both sides of the equation (15) by the inverse of the inertial matrix D−1, we rewrite

equations of dynamics

{q̈i} = D−1(q) · ({Qi} −C(q, q̇) · {q̇i} −G(q)) . (16)

(16) is explicitly written out in Appendix B.

Table 1. Nomenclature for the spherical inverted pendulum

Name Symbol Unit Simulation
Value

Generalized Coord. (x, y, δ, ε) m or rad -
Shape Variables (δ, ε) rad -
External Variables (x,y) m -
The Length 2× L m 0.6
The Radius R m 0.02
The Mass m kg 0.35
Gravity g m/s2 9.8
Actuation Forces Fx, Fy N -
Viscous Fric. Coef. Cx,y N · s/m 1× 10−3

Viscous Fric. Coef. Cδ,Cε N · s/rad 1× 10−3

We identify an upper triangular structure for the dynamics of the pendulum (16) that is suitable for
controller design based on the forwarding tool–nested saturating design. To see that the system is indeed
in the upper triangular structure, let ξ̃1

4
= (ε, ε̇, δ, δ̇), z̃1

4
= ẏ, z̃2

4
= ẋ, z̃3

4
= y, and z̃4

4
= x be the states and

F
4
= (Fx, Fy) be the input. We write the dynamics (16) in a forwarding form :

˙̃zi = Aiz̃i + gi(ξ̃i, F ), ˙̃
ξi = fi(ξ̃i, F ), (17)

where i = 1, . . . , 4, Ai = 0, g3(ξ̃1, F ) = z̃1, g4(ξ̃4, F )= z̃2 and the explicit expression of g1(ξ̃1, F ),
g2(ξ̃3, F ), f1(ξ̃1, F ) are obtained from the right hand side of enquations in Appendix B such that
g1(ξ̃1, F ) = RHS of ÿ, g2(ξ̃3, F ) = RHS of ẍ, f1(ξ̃1, F ) = (RHS of δ̈, RHS of ε̈).

Loosely speaking, system (17) is the upper-triangular structure by considering ξ̃1 as the first lower
subsystem. Strictly speaking, the system must satisfy additional assumptions. For the nested saturating
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design proposed in Teel (1996), the lower subsystem ˙̃
ξi must satisfy the asymptotic input to output stable

condition. For the Lyapunov based design Mazenc and Praly (1996), the lower subsystem ˙̃
ξi must the

globally asymptotic stable condition. To satisfy these assumptions, one must carry out some preliminary
design to the model (17). This task is somewhat complicated because the model has singular points at
δ = π/2± kπ and/or ε = π/2± kπ (referring to Appendix B at the radius R = 0) and subsystem ξ̃1 is not
in any particular form. The singularity has physical meaning that when the pendulum is in the horizontal
plane, the control signal cannot overcome the gravitational force acting on the pendulum which then will
fall. Although we can not apply forwarding immediately, we follow and improve on Liu et al. (2005) to
recast our problem in such a way that forwarding becomes a feasible approach.

4 Nonlinear Control Design

4.1 Overview of the Design Procedure

The forwarding controller for the planar pendulum proposed in Angeli (2001b); Teel (1996) can be extended
to the spherical inverted pendulum as has been suggested in Angeli (2001a). Here we formulate a full
forwarding controller for the spherical inverted pendulum as is illustrated in the conference version of this
paper Liu et al. (2005).

Define U
4
= {(x, ẋ, y, ẏ, δ, δ̇, ε, ε̇) ∈ R8| − π

2 < δ < π
2 ,−π

2 < ε < π
2 } to denote the upper hemisphere of the

pendulum. For simplicity of the design, we let the radius of the pendulum R = 0 and the exogenous input
vf = 0, that is, in the design, we consider the generalized control force1

{Q} =
(
Fx, Fy, 0, 0

)
. (18)

The control design proceeds by first simplifying the dynamics using partial state feedback linearization.
Next, we map the upper hemisphere U into R8, to eliminate the problem in the x− y plane. The system
is ready for the forwarding design. Moreover, this has the added advantage of minimizing the number of
forwarding steps that need to be carried out, which assists the transient performance of the controller.

4.2 Design Step 1

We recall that the nominal dynamics (16) with R = 0 and vf = 0 can be written in the form (1) as follows




ẍ
ÿ

δ̈
ε̈


 =




gx1(δ, ε) gx2(δ, ε)
gy1(δ, ε) gy2(δ, ε)
gδ1(δ, ε) gδ2(δ, ε)
gε1(δ, ε) gε2(δ, ε)




(
Fx

Fy

)
+




fx(δ, δ̇, ε, ε̇)
fy(δ, δ̇, ε, ε̇)
fδ(δ, δ̇, ε, ε̇)
fε(δ, δ̇, ε, ε̇)




4
=

(
H11(δ, ε)
H21(δ, ε)

)
F +

(
H12(δ, δ̇, ε, ε̇)
H22(δ, δ̇, ε, ε̇)

)
, (19)

where H21(δ, ε) are invertible on U and H11(δ, ε), H21(δ, ε), H12(δ, δ̇, ε, ε̇), H22(δ, δ̇, ε, ε̇) are explicitly given
in Appendix C.

The following result converts the nominal system (19) to a globally defined upper triangular structure.

Lemma 4.1 Consider the dynamics (19). There exists a map T : U → R8 such that using the state
transformation

(z, ξ1) = T (q, q̇) , (20)

1But, R and vf are not zero for the nonlinear dynamics of the pendulum in the simulations such that the robustness of the proposed
controller will be tested.
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where z ∈ R4, ξ1 ∈ R4 and a feedback transformation

F = H−1
21 (δ, ε) ·

(
H−1

31 (δ, ε) · (u−H32(δ, δ̇, ε, ε̇))−H22(δ, δ̇, ε, ε̇)
)

, (21)

where u is the new control and

H31(δ, ε)
4
=

(
1 + tan2(δ) 0

0 1 + tan2(ε)

)
,

H32(δ, δ̇, ε, ε̇)
4
=

(
2δ̇2 tan(δ)(1 + tan2(δ))
2ε̇2 tan(ε)(1 + tan2(ε))

)
,

system (16) is transformed to an appropriate upper triangular form in R8,

żi = Aizi + gi(ξi, u)

ξ̇i = fi(ξi, u) for i = 1, 2, 3, 4 (22)

where Ai = 0, z
4
= (z1, z2, z3, z4), ξ1

4
= (ξ11, ξ12, ξ13, ξ14), ξj+1

4
= (ξj , zj) for j = 1, 2, 3, 4, g4(ξ4, u)

4
= z2,

g3(ξ3, u)
4
= z1,

(
g2(ξ1, u)
g1(ξ1, u)

)
4
= H11(T−1(z, ξ1)) ·

(
H−1

21 (T−1(z, ξ1)) ·
(
H−1

31 (T−1(z, ξ1)) · (u−H32(T−1(z, ξ1)))

−H22(T−1(z, ξ1))
))

+ H12(T−1(z, ξ1)),

with the mapping Hij(q, q̇) → Hij(T−1(z, ξ1)), and subsystem ξ̇1 = f1(ξi, u) is defined as follows(
ξ̇14 , ξ̇13 , ξ̇12 , ξ̇11

)
=

(
ξ13 , u1 , ξ11 , u2

)
.

Proof First, we use partial feedback linearization to better see how the angle acceleration (δ̈, ε̈) can be
controlled.

We consider a partial input-output feedback linearization. Let the output vector be (x, y, δ, ε). We have




ẍ
ÿ

δ̈
ε̈


 =

(
H11(δ, ε)
H21(δ, ε)

)
F +

(
H12(δ, δ̇, ε, ε̇)
H22(δ, δ̇, ε, ε̇)

)
, (23)

which implies that system (19) has a vector relative degree (2, 2, 2, 2).
(

H11(δ, ε)
H21(δ, ε)

)
is not square because

of the underactuated system (19), i.e., F ∈ R2, q ∈ R4. We may achieve partial feedback linearization, for
example,

F = H−1
21 (δ, ε)(ν −H22(δ, ε)) , (24)

where ν = (ν1, ν2) is a new input vector. This leads us to




ẍ
ÿ

δ̈
ε̈


 =

(
H11(δ, ε) ·H−1

21 (δ, ε)(ν −H22(δ, δ̇, ε, ε̇)) + H12(δ, δ̇, ε, ε̇)
ν

)
. (25)
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Next, introduce variables:

(z4, z3, z2, z1, ξ14, ξ13, ξ12, ξ11) = (x, y, ẋ, ẏ, tan(δ), (1 + tan2(δ))δ̇, tan(ε), (1 + tan2(ε))ε̇) ,

and a change of control input

u =
(

1 + tan2(δ) 0
0 1 + tan2(ε)

)
ν +

(
2δ̇2 tan(δ)(1 + tan2(δ))
2ε̇2 tan(ε)(1 + tan2(ε))

)

4
= H31(δ, ε)ν + H32(δ, δ̇, ε, ε̇) . (26)

Clearly, H31(δ, ε) is invertible for (δ, ε) ∈ (−π
2 , π

2

)
and u = (u1, u2) is a new input vector. ¤

Remark 1 Notice that system (25) does not modify the upper triangular structure (17). Actually, the
forwarding design in Liu et al. (2005) is carried out by taking advantage of the upper triangular structure
(25), where the stability for linear subsystem ξ̃1 = (δ, δ̇, ε, ε̇) is established by LaSalle’s invariance principle
which is regarded as an extension of the design for planar inverted pendulum in Teel (1996). Instead, we
formulate the controller here based on system (22), which is defined globally, such that some improvements
are expected. In particular, it enables us to use an ISS-Lyapunov function to obtain asymptotic gains.

Remark 2 Obviously, one can proceed directly using the standard forwarding design tools by either Lya-
punov based design or nested saturating design to the upper triangular form (22). However the blind
application of the standard Lyapunov forwarding designs runs into difficulty. Indeed, the requirement to
solve recursively some rather general and highly nonlinear PDE is less than attractive.

Remark 3 The straightforward application of nested saturating design leads to excessively poor transient
behaviour. To alleviate this, we use a high gain design to regulate the angle related variables and use the
forwarding design only for the remaining variables. This provides a reasonable compromise between speed
of convergence and robustness as will be illustrated in Section 5.

4.3 Design Step 2

We develop a controller for the subsystem with the states ξ1 (the modified shape variables). The dynamics
are governed by two independent pairs of double integrators. We may assign a linear control law as follows

u =
(−κ2k4ξ14 − κk3ξ13

−κ2k2ξ12 − κk1ξ11

)
+

(
vx
1

vy
1

)

4
= fu + v1 , (27)

where v1 = (vx
1 , vy

1) is a new input vector and ki > 0, for i = 1, 2, 3, 4, κ > 0 are design parameters.
In what follows, we show that the closed loop system ξ1 with the control function (27) satisfies asymptotic

(input v1 to output y = ξ1) gains by choosing appropriate parameters. The result enables us to apply the
forwarding tool for the rest.

To this end, and without loss of generality, we study the linear system

ẋ = Ax + ∆ , (28)

where A =
(

0 1
−κ2L1 −κL2

)
and input ∆ ∈ R2. The eigenvalues of A are λ1,2 = −κa1,2 where a1 =

L2+
√

L2
2−4L1

2 and a2 = L2−
√

L2
2−4L1

2 . If we let L2
2 > 4L1, we have a1 > a2 > 0. The next result shows that

system (28) is asymptotic input to output stable with input ∆. Moreover, the parameter κ can be used to
tune the asymptotic gains.
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Lemma 4.2 Consider system (28). Assume that the following conditions L2
2 − 4L1 > 0, ‖∆1‖a ≤ ∆1,M

and ‖∆2‖a ≤ ∆2,M hold for positive numbers L1, L2, ∆1,M and ∆2,M . Then, for some class K functions
γ11, γ12, γ21 and γ22, system (28) satisfies an asymptotic input to output bound, without restriction on
initial states, with restriction on exogenous inputs ∆1 and ∆2, and with linear asymptotic gains

‖x1‖a ≤ max{γ11(‖∆1‖a), γ12(‖∆2‖a)}
‖x2‖a ≤ max{γ21(‖∆1‖a), γ22(‖∆2‖a)} (29)

where for some % ∈ (0, 1),





γ11(r) = 1
1−%

∣∣∣∣
4(L2+

√
L2

2−4L1)

κ(L2−
√

L2
2−4L1)

√
L2

2−4L1

∣∣∣∣ r

γ12(r) = 1
1−%

∣∣∣∣ 8

κ2(L2−
√

L2
2−4L1)

√
L2

2−4L1

∣∣∣∣ r

γ21(r) = 1
1−%

∣∣∣∣
2(L2+

√
L2

2−4L1)√
L2

2−4L1

∣∣∣∣ r

γ22(r) = 1
1−%

∣∣∣∣ 4

κ
√

L2
2−4L1

∣∣∣∣ r

(30)

Proof Consider x = Py with P =
(

1 1
−κa1 −κa2

)
. System (28) transforms to

ẏ = P−1(APy + ∆)
4
= By + ∆̄ (31)

where B =
(−κa1 0

0 −κa2

)
and ∆̄ =

( −a2
a1−a2

∆1 + −1
κ(a1−a2)

∆2
a1

a1−a2
∆1 + 1

κ(a1−a2)
∆2

)
. System (31) is considered as two decoupled

subsystems with the external inputs ∆̄.
Let the Lyapunov candidate V1 = 1

2y2
1 and V2 = 1

2y2
2 for subsystems ẏ1 and ẏ2 respectively. Next, we

make V1 and V2 ISS-Lyapunov functions to obtain the ISS gains for system (31). Then, we summarize the
asymptotic gains for system (31) from the ISS gains. Choose class K∞ functions α(r) = 1

2r2 and α = 1
2r2

such that α(|y1|) = V1 = α(|y1|), α(|y2|) = V2 = α(|y2|).
The time derivative of V1 along the trajectory of system (31) is given by

∂V1

∂y1
(By + ∆̄) ≤ −

(
κa1 − ∆̄1

|y1|
)

y2
1 (y1 6= 0)

4
= −α0y

2
1. (32)

To make the right hand side of the inequality (32) negative definite, we require α0 > 0, which is guaranteed
by

|y1| ≥ 1
(1− %)κa1

∣∣∆̄1

∣∣ (33)

for some % ∈ (0, 1), where ∆̄1 = − a2∆1
a1−a2

− ∆2
κ(a1−a2)

. Let α1(r)
4
= α0r

2 be a class K∞ function. Because
α(r) and α(r) are also class K∞ functions, by definition, V1 is an ISS-Lyapunov function. According to
Theorem 2.1, the subsystem y1 is ISS. Then, there exists a class KL function β(r, t) and a class K function

γ̄(r)
4
= α−1 ◦ α ◦ 1

(1−%)κa1
r = 1

(1−%)κa1
r such that ‖y1(t)‖ ≤ max{β(‖x(0)‖, t), γ̄(‖∆̄1‖∞)} (see (Isidori,
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1999, page 21)). As t → ∞, the class KL function β(‖x(0)‖, t) → 0 and we obtain an asymptotic gain
‖y1(t)‖a ≤ γ̄(‖∆̄1‖a). Then, we conclude an asymptotic gain for y1 as follows

‖y1‖a ≤ max{γ̄11(‖∆1‖a), γ̄12(‖∆2‖a)} (34)

where γ̄11(r)
4
= 1

1−%

∣∣∣ 2a2
κa1(a1−a2)

∣∣∣ r, γ̄12(r)
4
= 1

1−%

∣∣∣ 2
κ2a1(a1−a2)

∣∣∣ r.
Similarly, we take the time derivative of V2 along the trajectory of system (31) and obtain an asymptotic

gain for y2 as follows

‖y2‖a ≤ max{γ̄21(‖∆1‖a), γ̄22(‖∆2‖a)} (35)

where we define γ̄21(r)
4
= 1

1−%

∣∣∣ 2a1
κa2(a1−a2)

∣∣∣ r, γ̄22(r)
4
= 1

1−%

∣∣∣ 2
κ2a2(a1−a2)

∣∣∣ r.
Next, we cast the asymptotic gains for y into the asymptotic gains for x. It is easy to check that the in-

equality ‖x1‖a = ‖y1‖a+‖y2‖a ≤ max{γ∗11(‖∆1‖a), γ∗12(‖∆2‖a)} with γ∗11(r)
4
= 2γ̄21(r) and γ∗21(r)

4
= 2γ̄22(r)

is satisfied because by condition a1 > a2 > 0, γ̄21(r) > γ̄11(r) and γ̄22(r) > γ̄12(r) hold. Furthermore, we

have ‖x2‖a = κa1‖y1‖a+κa2‖y2‖a ≤ max{γ∗21(‖∆1‖a), γ∗22(‖∆2‖a)} where we define γ∗21(r)
4
= 1

1−%

∣∣∣ 4a1
a1−a2

∣∣∣ r,

γ∗22(r)
4
= 1

1−%

∣∣∣ 4
κ(a1−a2)

∣∣∣ r. Substituting the functions of a1 and a2 to class K functions γ∗11(r), γ∗12(r), γ∗21(r)
and γ∗22(r) gives the asymptotic gains for ‖x1‖a and ‖x2‖a. ¤

Remark 4 Lemma (4.2) not only parameterizes the asymptotic gains from inputs to states but also shows
that κ can be used as a key parameter to tune the gains γ11, γ12, γ22. In our case, we have ∆1 = 0 and
hence γ21(‖∆1‖a) = 0 because the exogenous inputs only appear at the dynamics δ̈ (or ε̈). Furthermore,
we let ∆2 = vy

1 (or ∆2 = vx
1 ) in subsystem ξ1 for the purpose of recursive forwarding design. Therefore,

we only need gains γ12, γ22 which are tunable by κ.

4.4 Design Steps 3-6

By applying Theorem 2.2 repeatedly, we can obtain a nested saturating controller for each augmented
system ξi+1, i = 1, . . . , 4 of (22).

The design task is to design a saturation function for vi, i = 1, . . . , 4 such that αi(ξi, vi), i = 1, . . . , 4

with the external input vi
4
=(vx

i , vy
i ), i = 1, . . . , 4 ensures that the augmented system

fi+1(ξi+1, αi(·, ·)) =
(

Aizi + gi(ξi, αi(·, ·))
fi(ξi, αi(·, ·))

)
, (36)

satisfies an asymptotic input-output bound.
In each step of the recursive design, we must make sure that all conditions in Theorem 2.2 hold. Assump-

tion (i) holds as Ai = 0, i = 1, . . . , 4. Notice that the linear approximation of each augmented system at
the equilibrium (zi, ξi, vi) = (0, 0, 0), i = 1, . . . , 4 is stabilizable. Thus, Assumption (ii) holds. Assumptions
(iiia-c) are automatically satisfied because they are the results of the previous design step. In summary,
all conditions are satisfied.

Now, we can apply the Theorem 2.2 to design a complete control law for the pendulum. Noting that
(Fi+1,Gi+1), i = 1, . . . , 4 is stabilizable, we employ a LQR design for all recursive design steps and obtain
the optimal gain matrices Ki+1, i = 1, . . . , 4 such that the controller vi = Ki+1ξi+1 minimizes the cost
function

J(ξi+1, vi) =
∫ ∞

0
(ξT

i+1Qξi+1 + vT
i Rvi)dt, (37)
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where Q and R are weight matrices. All eigenvalues of (Fi+1 + Gi+1Ki+1) are in C−.
Let Ωi = 0, i = 2, . . . , 5. Finally, a nested saturating controller for the transformed upper triangular

system (22) is obtained

u
4
= fu + σi+1 , (38)

for i = 1, . . . , 4, where σi+1
4
= λi+1σ

(
1

λi+1
(Ki+1ξi+1 + Γi+1vi+1)

)
, vi+1 = σi+2. To make the controller

simple, we set Γi = I, i = 2, . . . , 5. λi, i = 2, . . . , 5, are adjustable parameters in the proposed controller.
With κ = 1, k2 = k4 = 100(N/rad), k1 = k3 = 20(N/rad · s), we may obtain Ki, for i = 2, 3, 4, 5. Explicit
expression are given in Appendix D.

The control law for the original dynamics (16) is given by substituting the function (38) with the mapping
to the original coordinates (q, q̇) into the control function (21),

F = H−1
21 (δ, ε) ·

(
−H22(δ, δ̇, ε, ε̇) + H−1

31 (δ, ε) ·
(
−H32(δ, δ̇, ε, ε̇) +

(
−κ2k4 tan(δ)− κk3(1 + tan2(δ))δ̇
−κ2k2 tan(ε)− κk1(1 + tan2(ε))ε̇)

)

+λ2σ

(
1
λ2

(
K2ξ2 + λ3σ

(
1
λ3

(
K3ξ3 + λ4σ

(
1
λ4

(
K4ξ4 + λ5σ

(
1
λ5

(K5ξ5)
)))))))))

, (39)

where Hij for i = 2, 3, j = 1, 2 are functions of (δ, δ̇, ε, ε̇) (referring to Appendix C and the proof in Lemma

4.1), ξ2
4
= (ẏ, tan(δ), (1 + tan2(δ))δ̇, tan(ε), (1 + tan2(ε))ε̇), ξ3

4
= (ẋ, ẏ, tan(δ), (1 + tan2(δ))δ̇, tan(ε), (1 +

tan2(ε))ε̇), ξ4
4
= (y, ẋ, ẏ, tan(δ), (1 + tan2(δ))δ̇, tan(ε), (1 + tan2(ε))ε̇), ξ5

4
= (x, y, ẋ, ẏ, tan(δ), (1 +

tan2(δ))δ̇, tan(ε), (1 + tan2(ε))ε̇).
The designed controller yields:

Theorem 4.3 Consider the dynamics (19) for the spherical inverted pendulum. Assume that all conditions
in Lemma 4.1 and Lemma 4.2 are satisfied. The control function F is defined in (39). Then, the trajectories
of the closed loop system (19) converge to the origin as t →∞ for all trajectories starting in the set U .

Proof The result follows from the construction of the control law (39). ¤

Remark 5 Notice structure of the control law (39), it consists of two different actions: (i) a high gain
action to compensate the angular deviations (the non-saturated part in (39)); (ii) a low gain action to
compensate the position errors (the saturated part in (39)).

Remark 6 One could have designed the entire controller using the forwarding principle. This would have
lead to a very conservative design with an unnatural time-scale separation between angular variables. in
our design, this has been avoided by designing first a high gain feedback loop to regulate the angular
variables (Design Step 2 ). This first control step has the added advantage of yielding an ISS property from
disturbances to angular variables (see proof of Lemma 4.2). This is more than what is required in Theorem
2.2 to enable nested saturation design to proceed with Design Step 3-6. Indeed, Theorem 2.2 only require
asymptotic gain (29), which is trivially satisfied by ISS. The control design (Step 2-6 ) yields, according
to Theorem 2.2, a closed loop where the upright equilibrium is stable and the closed loop has asymptotic
gain from any sufficiently small disturbances to the state.

Remark 7 The proposed controller yields a robust closed loop system in that the controlled system satisfies
an asymptotic input-to-state bound for sufficiently small exogenous disturbances, (v5(·) limited by δ′ > 0).
By tuning the asymptotic gains (see Lemma 4.2) it may be possible to achieve a large δ′. The precise
characterization of the robustness properties is however difficult. In order to gain insight into the robustness
properties of the controlled system we use a simulation study in the next section.
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Figure 2. Exogenous disturbances

5 Advanced Simulation Studies

The controlled system behaviour is evaluated through computer simulation. The nonlinear model, used
as the plant, takes into account the full three dimensional structure of the slim beam (R = 0.02 (m) and
2L = 0.6 (m)) as well as some exogenous forces (e.g., viscous friction, input noises) both of which have
been neglected in the design.

Let λ2 = 5, λ3 = 4.5, λ4 = 3, λ5 = 2.5, v5(·) = 0, for our design.
Let the exogenous inputs be as follows,

vf =
(
(−Cx + ∆11)ẋ + ∆12 , (−Cy + ∆21)ẏ + ∆22 , (−Cδ + ∆31)δ̇ , (−Cε + ∆41)δ̇

)
(40)

where ∆ij
4
=

∑M
k=1 ak,ij sin(ωk,ijt + ϕk,ij) for i = 1, 2, 3, 4 and j = 1, 2 with real number ak,ij , ωk,ij ,

ϕk,ij , k = 1, . . . , M are the external disturbances. The root mean square value–RMS of the exogenous
disturbances ∆ij for i = 1, 2, 3, 4 and j = 1, 2 is given by

RMS∆ij

4
=

√
lim

T→∞
1
T

∫ T

0
∆2

ij(t)dt (41)

=

√√√√1
2

M∑

k=1

a2
k,ij

The exogenous disturbances (40) together with the proposed control function (39) serve as the generalized
input {Q} to the plant

{Q} =
(
Fx, Fy, 0, 0

)
+ vf . (42)

In the sequel we omit to mention the units for brevity sake. We use for (x, ẋ, y, ẏ, δ, δ̇, ε, ε̇) the units
(m, m/s, m, m/s, rad, rad/s, rad, rad/s) respectively. All forces are measured in N (Newtons). Time is
measured in s (second). In Figures 6, 7, 8, 9, we use degrees instead of radians to measure the angles.
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Figure 3. Simulation Results for Case 1

5.1 Some Individual Responses

Let RMS for ∆i1 with i = 1, 2 be 0.01 (N · s/m). Let RMS for ∆i1 with i = 3, 4 be 0.01 (N · s/rad). Let
RMS for ∆i2 with i = 1, 2 be 0.02 (N). Figure 2 shows the signals ∆ij for i = 1, 2, 3, 4 and j = 1, 2, the
exogenous disturbances, which are used in simulations.

Case 1 : The initial state is: (x(0), ẋ(0), y(0), ẏ(0), δ(0), δ̇(0)ε(0), ε̇(0)) =
(1 , 1 , 1 , 1 , 0.087 , 0.5 , 0.087 , 0.5). The simulation results are shown in Figure 3, which show the
transient as well as steady state response for each state variable. Observe the fast regulation of the angular
variables compared to the much slower response of the position (x, ẋ, y, ẏ) variables.

Case 2 : Let the initial state be: (x(0), ẋ(0), y(0), ẏ(0), δ(0), δ̇(0)ε(0), ε̇(0)) =
(20 , 5 , 20 , 5 , 0.384 , 0.5 , 0.524 , 0.5), where small angular deviation with large initial angular veloc-
ity is given. The simulation results are shown in Figure 4.

Case 3 : The initial state is given by (x(0), ẋ(0), y(0), ẏ(0), δ(0), δ̇(0)ε(0), ε̇(0)) =
(1000 , 10 , 1000 , 10 , 0.524 , 5 , 1.222 , 5). The simulation results are presented in Figure 5. Notice
how slow the states (x, y) converge towards the origin in Figure 5.

The angular variables are tightly regulated, where the design uses high gain feedback. The translational
variables are more slowly regulated. The control law uses low gain feedback for these variables.
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Figure 4. Simulation Results for Case 2

5.2 Control Force Response

Clearly, angular deviations are key as far as the total control force that is required to maintain pos-
ture control. To illustrate this point, a series of simulations are performed with initial conditions
(x(0), ẋ(0), y(0), ẏ(0), δ(0), δ̇(0), ε(0), ε̇(0)) = (0 , 0 , 0 , 0 , δ(0) , 0 , ε(0) , 0), where δ(0) ∈ {0◦, 3◦, . . . , 45◦} and
ε(0) ∈ {0◦, 3◦, . . . , 45◦}.

From these simulations, we extract a relationship between (δ, ε) and ‖F‖∞ 4
= supt>0 ‖F (t)‖ with

‖F (t)‖ =
√

(Fx(t))2 + (Fy(t))2.
Figure 6 shows that ‖F‖∞ against the initial deviation angles (δ, ε). As is to be expected, ‖F‖∞ grows

with the initial conditions of angles.
t1 is defined as the first instant of time such that

√
δ2(t) + ε2(t) ≤ 0.07(rad) ( or 4◦) for all t > t1.

t2 is defined as the time it taken to regulate well
√

x2(t) + . . . + ε̇2(t) ≤ 0.15 for all t > t2 ≥ t1.
The angle variables are regulated fast as shown in Figure 7 even for large initial conditions of angles (δ, ε)

where the slight fluctuation is due to disturbances. In this transient, translational dynamics are essentially
not regulated. Therefore, an overshoot results in the x − y plane. As seen in Figure 9, the overshoot in
(x, y) becomes the more serious the larger the initial angles are. This leads to an increase in the time
required to regulate to the origin (see Figure 8).

From the simulation results in Figures 3, 4, 5, one can observe that the closed loop system is robust
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to small disturbances. To quantify the robustness through simulations, we consider the system under
increasing magnitude exogenous disturbances ∆i2 for i = 1, 2 and compute the root mean square value of
the position and angular responses. We define RMS for the position as

RMSxy
4
=

√
1
T0

∫ T0

0
x2(t)dt +

1
T0

∫ T0

0
y2(t)dt (43)

and RMS for the angles

RMSδε
4
=

√
1
T0

∫ T0

0
δ2(t)dt +

1
T0

∫ T0

0
ε2(t)dt. (44)

Figure 10 shows respectively the root mean square value of (x, y) response and the root mean square
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Figure 10. The impact of exogenous noises upon the performance

value of (δ, ε) response against the root mean square value of exogenous disturbance ∆12 (or ∆22). When
the disturbance intensity becomes too large, the trajectories of x and y wander off, but the trajectories of δ
and ε remain tightly controlled around the upright position. Notice, as is to be expected, that the effect of
the initial condition on the root mean square values is marginal due to the time averaging effect, and the
fact that this effect is transitional only. The only reason why we see a dependence on the initial condition is
because the root mean square value has been computed over a finite time window t ∈ [0, T0] = [0, 400](s).
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5.3 Summary of Simulation Studies

We summarize the simulations with the following observations
1) the controller is reasonably robust with respect to unmodelled forces (see Figure 10);
2) the controller confirms the theory that the upright position has a large domain of attraction as shown
in Figure 5 (see also Figure 10);
3) the overshoot problem becomes prominent when large initial conditions are given (see Figure 5);
4) the performance presents multi-scale separation in all cases;
5) there is no apparent time scale separation between x and y coordinates (respectively, ẋ and ẏ) because
the pendulum can be decoupled into two projections in x−z plane and y−z plane locally about the upper
equilibrium.
6) the regulation of the angle variables is relatively fast (errors coupled via high gain control force).

6 Conclusion

We identified an appropriate upper triangular structure for the dynamics of the spherical inverted pen-
dulum through appropriate coordinate and control transformations. The upper triangular structure we
identified, allows us to design a controller using the forwarding methodology. The controller has a high
and low gain structure. The errors in the angles are heavily penalized whilst the position errors are weakly
penalized. The controller yields a large domain of attraction. Our simulation study confirms the theory
and indicates that the controller enjoys a healthy level of robustness with respect to both unmodelled
forces as well as unmodelled dynamics.
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Appendix A: Entries of Equations (15)

The entries in the equations of dynamics (15) are listed as follows 1 the inertial matrix is

D(q) = m




1 0 −Lc(δ) 0
0 1 −Ls(δ)s(ε) Lc(ε)c(δ)

−Lc(δ) −Ls(δ)s(ε) L2(1 + 1/3c(ε)2) + 1/4R2(1 + s2(ε)) 0
0 Lc(ε)c(δ) 0 L2(1/3 + (c(δ))2) + 1/4R2




the Coriolis and centrifugal matrix is

C(q, q̇) =



0 0 mLδ̇s(δ) 0
0 0 −mL(δ̇s(ε)c(δ) + ε̇c(ε)s(δ)) −mL(ε̇s(ε)c(δ) + δ̇c(ε)s(δ))
0 0 (−1/3mL2 + 1/4mR2)ε̇c(ε)s(ε) (−1/3mL2 + 1/4mR2)δ̇c(ε)s(ε) + mL2ε̇c(δ)s(δ)
0 0 (1/3mL2 − 1/4mR2)δ̇c(ε)s(ε)−mL2ε̇c(δ)s(δ) −mL2δ̇c(δ)s(δ)




1To shorten the expression, sin(·) is expressed as s(·) and cos(·) is expressed as c(·).
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the gravitational term is G(q) =
(
0 , 0 ,−mgLs(δ)c(ε) , −mgLc(δ)s(ε)

)
and the generalized forces are

Fi =
(
Fx + vf1 , Fy + vf2 , vf3 , vf4

)
with exogenous input vf =

(
vf1 , vf2 , vf3 , vf4

)
.

[Ḋ(q)− 2C(q, q̇)] is skew-symmetric as

[Ḋ(q)− 2C(q, q̇)] =




0 0 −mLδ̇s(δ)
0 0 mL(δ̇s(ε)c(δ) + ε̇c(ε)s(δ))

mLδ̇s(δ) −mL(δ̇s(ε)c(δ) + ε̇c(ε)s(δ)) (1/3mL2 − 1/4mR2)ε̇c(ε)s(ε)
0 −mL(ε̇s(ε)c(δ) + δ̇c(ε)s(δ)) (1/4mR2 − 1/3mL2)δ̇c(ε)s(ε) + mL2ε̇c(δ)s(δ)

0
mL(ε̇s(ε)c(δ) + δ̇c(ε)s(δ))

(1/3mL2 − 1/4mR2)δ̇c(ε)s(ε)−mL2ε̇c(δ)s(δ)
mL2δ̇c(δ)s(δ)


 .

Appendix B: Entries of Equations (16)

ẍ =
a(δ, ε)
d(δ, ε)

(
Fx + vf1 −mLδ̇2s(δ)

)

+
j(δ, ε)
d(δ, ε)

(
Fy + vf2 + mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+
Lc(δ)e(δ, ε)

d(δ, ε)

(
vf3 + ε̇c(ε)s(ε)δ̇(2/3mL2 − 1/2mR2)−mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+
Lc(δ)f(δ, ε)

d(δ, ε)

(
vf4 − δ̇2c(ε)s(ε)(1/3mL2 − 1/4mR2) + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)

ÿ =
j(δ, ε)
d(δ, ε)

(
Fx + vf1 −mLδ̇2s(δ)

)

+
b(δ, ε)
d(δ, ε)

(
Fy + vf2 + mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+
g(δ, ε)
d(δ, ε)

(
vf3 + ε̇c(ε)s(ε)δ̇(2/3mL2 − 1/2mR2)−mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+
h(δ, ε)
d(δ, ε)

(
vf4 − δ̇2c(ε)s(ε)(1/3mL2 − 1/4mR2) + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)

δ̈ =
Lc(δ)e(δ, ε)

d(δ, ε)

(
Fx + vf1 −mLδ̇2s(δ)

)

+
g(δ, ε)
d(δ, ε)

(
Fy + vf2 + mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+
e(δ, ε)
d(δ, ε)

(
vf3 + ε̇c(ε)s(ε)δ̇(2/3mL2 − 1/2mR2)−mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+
f(δ, ε)
d(δ, ε)

(
vf4 − δ̇2c(ε)s(ε)(1/3mL2 − 1/4mR2) + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)
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ε̈ =
Lc(δ)f(δ, ε)

d(δ, ε)

(
Fx + vf1 −mLδ̇2s(δ)

)

+
h(δ, ε)
d(δ, ε)

(
Fy + vf2 + mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+
f(δ, ε)
d(δ, ε)

(
vf3 + ε̇c(ε)s(ε)δ̇(2/3mL2 − 1/2mR2)−mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+
i(δ, ε)
d(δ, ε)

(
vf4 − δ̇2c(ε)s(ε)(1/3mL2 − 1/4mR2) + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)

where

a(δ, ε) = −108R2L2(c(δ))2 + 9R4(c(ε))2 − 36L2(c(ε))2R2 − 48L4(c(δ))2 + 48L4(c(ε))4(c(δ))2

−64L4(c(ε))2 − 144(c(δ))4L4 + 144L2(c(ε))2(c(δ))2R2 + 144(c(δ))4L4(c(ε))2 −
36L2(c(ε))4(c(δ))2R2 − 24L2R2 − 18R4;

b(δ, ε) = −(48L4 + 96L4(c(δ))2 + 60L2R2 + 16L4(c(ε))2 + 48L4(c(ε))2(c(δ))2 +

18R4 + 36R2L2(c(δ))2 − 36L2(c(ε))2(c(δ))2R2 − 9R4(c(ε))2 − 144(c(δ))4L4)

j(δ, ε) = −12L2c(δ)s(δ)s(ε)(4L2 + 12L2(c(δ))2 + 3R2)

d(δ, ε) = m(−72R2L2(c(δ))2 + 9R4(c(ε))2 − 36L2(c(ε))2R2 + 48L4(c(ε))4(c(δ))2

−64L4(c(ε))2 + 144L2(c(ε))2(c(δ))2R2 − 36L2(c(ε))4(c(δ))2R2 − 24L2R2 − 18R4)

e(δ, ε) = 12(−4L2 − 12L2(c(δ))2 − 3R2 + 12(c(ε))2(c(δ))2L2)

f(δ, ε) = 144L2c(δ)s(δ)s(ε)c(ε)

g(δ, ε) = −12Ls(δ)s(ε)(4L2 + 12L2(c(δ))2 + 3R2)

h(δ, ε) = 12Lc(ε)c(δ)(12L2 + 4L2(c(ε))2 + 6R2 − 3(c(ε))2R2 − 12L2(c(δ))2)

i(δ, ε) = 12(−16L2(c(ε))2 − 6R2 + 3(c(ε))2R2 + 12(c(ε))2(c(δ))2L2) .

Appendix C: Entries of H11(δ, ε), H12(δ, ε), H21(δ, δ̇, ε, ε̇), H22(δ, δ̇, ε, ε̇)

Let the radius R = 0 and the exogenous input vf = 0 in the design. In this case,

a(δ, ε) = −48L4(c(δ))2 + 48L4(c(ε))4(c(δ))2 − 64L4(c(ε))2 − 144(c(δ))4L4 + 144(c(δ))4L4(c(ε))2
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b(δ, ε) = −(48L4 + 96L4(c(δ))2 + 16L4(c(ε))2 + 48L4(c(ε))2(c(δ))2 − 144(c(δ))4L4)

d(δ, ε) = −16mL4(c(ε))2(4− 3(c(ε))2(c(δ))2)

j(δ, ε) = −12L2c(δ)s(δ)s(ε)(4L2 + 12L2(c(δ))2)

e(δ, ε) = 12(−4L2 − 12L2(c(δ))2 + 12(c(ε))2(c(δ))2L2)

f(δ, ε) = 144L2c(δ)s(δ)s(ε)c(ε)

g(δ, ε) = −12Ls(δ)s(ε)(4L2 + 12L2(c(δ))2)

h(δ, ε) = 12Lc(ε)c(δ)(12L2 + 4L2(c(ε))2 − 12L2(c(δ))2)

i(δ, ε) = 12(−16L2(c(ε))2 + 12(c(ε))2(c(δ))2L2) .

Since d(δ, ε) = −16mL4(c(ε))2(4 − 3(c(ε))2(c(δ))2) < 0 holds for any (δ, ε) ∈ (−π
2 ,−π

2

)
, H11(δ, ε),

H12(δ, ε), H21(δ, δ̇, ε, ε̇), H22(δ, δ̇, ε, ε̇) are valid on U as are defined next.

H11(δ, ε) =




a(δ,ε)
d(δ,ε)

j(δ,ε)
d(δ,ε)

j(δ,ε)
d(δ,ε)

b(δ,ε)
d(δ,ε)


 , H21(δ, ε) =




Lc(δ)e(δ,ε)
d(δ,ε)

g(δ,ε)
d(δ,ε)

Lc(δ)f(δ,ε)
d(δ,ε)

h(δ,ε)
d(δ,ε)




Because det(H21(δ, ε)) = − Lc(δ)
(d(δ,ε))2

(
2304L5(c(ε))3c(δ)

(
4− 3(c(ε))2(c(δ))2

))
< 0 hold for any (δ, ε) ∈ U ,

H21(δ, ε) is invertible on U .

H12(δ, δ̇, ε, ε̇) =




a(δ,ε)
d(δ,ε)

(
−mLδ̇2s(δ)

)

+ j(δ,ε)
d(δ,ε)

(
mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+Lc(δ)e(δ,ε)
d(δ,ε)

(
ε̇c(ε)s(ε)δ̇2/3mL2 −mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+Lc(δ)f(δ,ε)
d(δ,ε)

(
−δ̇2c(ε)s(ε)1/3mL2 + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)

j(δ,ε)
d(δ,ε)

(
−mLδ̇2s(δ)

)

+ b(δ,ε)
d(δ,ε)

(
mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+g(δ,ε)
d(δ,ε)

(
ε̇c(ε)s(ε)δ̇2/3mL2 −mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+h(δ,ε)
d(δ,ε)

(
−δ̇2c(ε)s(ε)1/3mL2 + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)



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H22(δ, δ̇, ε, ε̇) =




Lc(δ)e(δ,ε)
d(δ,ε)

(
−mLδ̇2s(δ)

)

+ g(δ,ε)
d(δ,ε)

(
mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+ e(δ,ε)
d(δ,ε)

(
ε̇c(ε)s(ε)δ̇2/3mL2 −mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+f(δ,ε)
d(δ,ε)

(
−δ̇2c(ε)s(ε)1/3mL2 + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)

Lc(δ)f(δ,ε)
d(δ,ε)

(
−mLδ̇2s(δ)

)

+h(δ,ε)
d(δ,ε)

(
mLδ̇2s(ε)c(δ) + 2mLδ̇ε̇c(ε)s(δ) + mLε̇2s(ε)c(δ)

)

+f(δ,ε)
d(δ,ε)

(
ε̇c(ε)s(ε)δ̇2/3mL2 −mL2ε̇2c(δ)s(δ) + mgLs(δ)c(ε)

)

+ i(δ,ε)
d(δ,ε)

(
−δ̇2c(ε)s(ε)1/3mL2 + 2mL2δ̇c(δ)s(δ)ε̇ + mgLc(δ)s(ε)

)




Appendix D: Details of Design Step 3-6

Details of Design Step 3

F2 =
[
∂f2(ξ2, α1(ξ1, v1))

∂ξ2

]

(0,0)

=




0 0 0 49.83 8.01
0 0 1 0 0
0 −100 −20 0 0
0 0 0 0 1
0 0 0 −100 −20




,

G2 =
[
∂f2(ξ2, α1(ξ1, v1))

∂v1

]

(0,0)

=




0 11.4
0 0

28.5 0
0 0
0 −28.5




.

Assigning Q = diag(100, 100, 20, 100, 20) and R = diag(0.5, 0.5) obtains

K2 =
(

0 −11.06 −5.72 0 0
14.1 0 0 61.4 13.7

)
.

All eigenvalues of (F2 + G2K2) are in C−.
Details of Design Step 4

F3 =
[
∂f3(ξ3, α2(ξ2, v2))

∂ξ3

]

(0,0)

=




0 0 −175.9 −73.24 0 0
0 161.2 0 0 749.9 164.5
0 0 0 1 0 0
0 0 −415.0 −183.9 0 0
0 0 0 0 0 1
0 −402.8 0 0 −1848 −410.8




,
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G3 =
[
∂f3(ξ3, α2(ξ2, v2))

∂v2

]

(0,0)

=




11.4 0
0 11.4
0 0

28.5 0
0 0
0 −28.5




.

Assigning Q = diag(100, 100, 100, 20, 100, 20) and R = diag(0.5, 0.5) obtains

K3 =
(

14.1 0 −55.9 −10.06 0 0
0 5.71 0 0 26.5 5.80

)
.

All eigenvalues of (F3 + G3K3) are in C−.
Details of Design Step 5

F4 =
[
∂f4(ξ4, α3(ξ3, v3))

∂ξ4

]

(0,0)

=




0 0 1 0 0 0 0
0 161.2 0 −813.9 −188.0 0 0
0 0 226.3 0 0 1052 230.6
0 0 0 0 1 0 0
0 402.8 0 −2008 −469.6 0 0
0 0 0 0 0 0 1
0 0 −565.4 0 0 −2604 −576




,

G4 =
[
∂f4(ξ4, α3(ξ3, v3))

∂v3

]

(0,0)

=




0 0
11.4 0
0 11.4
0 0

28.5 0
0 0
0 −28.5




.

Assigning Q = diag(100, 100, 100, 100, 20, 100, 20) and R = diag(0.5, 0.5) obtains

K4 =
(

0 5.71 0 −24.61 −5.28 0 0
14.14 0 10.85 0 0 34.1 7.06

)
.

All eigenvalues of (F4 + G4K4) are in C−.
Details of Design Step 6
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F5 =
[
∂f5(ξ5, α4(ξ4, v4))

∂ξ5

]

(0,0)

=




0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 226.2 0 −1094 −248.2 0 0
0 161.2 0 350 0 0 1441 311.1
0 0 0 0 0 1 0 0
0 0 565.3 0 −2709 −619.9 0 0
0 −402.8 0 0 0 0 0 1
0 0 0 −874.4 0 0 −3575 −777




,

G5 =
[
∂f5(ξ5, α4(ξ4, v4))

∂v4

]

(0,0)

=




0 0
0 0

11.4 0
0 11.4
0 0

28.5 0
0 0
0 −28.5




.

Assigning Q = diag(100, 100, 100, 100, 100, 20, 100, 20) and R = diag(0.5, 0.5) obtains

K5 =
(

14.1 0 4.87 0 −29.5 −8.75 0 0
0 5.62 0 6.97 0 0 34.3 9.23

)
.

All eigenvalues of (F5 + G5K5) are in C−.
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