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Abstract

In this paper, we propose a new procedure to reduce the order of control

oriented TC SI engine models. The techniques is based on the identification of

time scale separation within the dynamics of various engine state variables with

pertinent use of the perturbation theory. The model reduction is accomplished in

two steps and exploits the dynamic and physical characteristics of engine design

and its operation. In the first step, regular and singular perturbation theories

are collectively employed to eliminate temperature dynamics and replace them

with their quasi-steady state values. This is followed by the elimination of fast

pressures. As a result, a library of engine models is obtained which are associated

with each other on sound theoretical basis. Different assumptions under which

this modeling is realizable are presented and their existence in the context of

engine is discussed. The limitations of the proposed engine model as a true

representation of the actual engine behavior (as depicted by the comprehensive

model) are qualitatively assessed through comprehensive simulation studies.
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1 Introduction

With the automotive industry growing and its market maturing, emission and fuel

economy standards are becoming increasingly stringent. While minimizing emissions

and improving fuel economy, it is also of a paramount importance from the customers’

point of view that there is a minimal (or no) sacrifice in terms of the drivability.

Developing such an engine control system which delivers these conflicting requirements

in a most efficient way has been a major challenge, especially during the last three to

four decades.

Obtainment of best possible engine performance with minimum possible emission

calls for the implementation of much improved control methods and hardware. Here,

the development and reduction of mathematical models of the engine becomes quite

crucial as most of the existing advanced control methodologies require the knowledge

of the mathematical model of the plant and that too in a sufficiently simplified form.

Among the existing approaches for engine modeling, a major trend has been to

use the measured engine data to establish functional relationships between inputs and

outputs to obtain steady state engine maps. Such approaches, though widely used,

yield models that are engine specific, leading to a lack of generalization capability in the

model itself, and any engine components parts (such as engine controllers) that may be

based upon it. Moreover, heavy dependence on the look-up tables is often undesirable

as the accuracy is highly dependent on the amount of data available, extrapolation is

unreliable and may induce unnecessary numerical noise (discontinuities) [7]. This is a

major limitation of the empirical, quasi-static approach.

An alternative is to formulate a physics-based mathematical model of the system.

2



This model should accurately evince all the fundamental phenomena associated with

the engine operation so that tasks of perturbation studies, sensitivity and error analysis

and controller design can be readily carried out. An important class of engine models

established on physical laws, which over the past three decades have proven to be quite

effective in performing studies on engine dynamics, engine supervision and development

of advanced engine control, is the mean value engine models (MVEM) [6],[7]. MVEMs

describe the average engine behavior over several engine event cycles. For naturally

aspirated engines, such model have now been well researched and are being successfully

utilized in several aspects of engine operation including its control, torque management

and supervision [8].

Furthermore, in order to regulate emissions in naturally aspirated SI engines, the

use of three way catalytic converter has thus far been deemed quite effective which

converts the harmful byproducts of combustion process into less harmful products like

CO2 and water vapors. However, in recent times there has been a further push to

reduce the CO2 emissions as it is a key element in causing global warming due to green

house effect. One proven way to reduce CO2 emissions is to reduce the size of the

engine cylinders [18], [4]. This, however, comes at the expense of maximum torque

that the engine can generate and hence affects drivability. One surest way to generate

more power out of the engine of given volume is to increase the amount of air and fuel

that it can burn by packing more air and fuel. A turbocharger does exactly that by

compressing the incoming air to a pressure higher than that of the ambient and as a

result deliver greater charge densities with the lower pumping losses associated with

reduced capacity engine.

Due to the proven efficacy of the MVEM of naturally aspirated engines in control
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related implementations, efforts have been directed in obtaining similar models for TC

SI engines as well. Initial endeavours in this direction include [14] and [16] whereby

the problem of control oriented modeling of the turbocharger is considered. In partic-

ular, [14] compares and discusses three key turbine and compressor MVEM models as

described in [11], [15] and [17]. These works are followed by [4] where a fully validated

comprehensive 13th order TC SI engine model is developed. The modeling strategy is to

first consider the physics of engine components (like air filter, compressor, intercooler,

throttle, engine, turbine and exhaust system) which yields model structures as they

behave in the engine setting. The resulting componentwise engine model is used by

the same authors for further investigation with regard to cylinder air charge estimation

and engine control and optimization ([2], [3]).

Nevertheless, none of the above referred papers utilize the dynamic and physical

attributes of the engine to develop a systematic procedure for model reduction. A

rigorous procedure to build such reduced order models will improve portability of the

engine models, leading to reduced engine calibration times as prior work in controller

development on one turbocharged system can be utilized on multiple systems. More-

over, implementation of advanced nonlinear and robust design tools, which so far have

not been practiced (apart from [10] in the context of diesel engines) entails the sys-

tem models to be sufficiently simple. The existing reduced order TC SI engine models

(see [13] for example) are strictly based on empirical findings and are valid only in a

very narrow range of operation which make them inappropriate for representing other

engines.

In this contribution we propose a systematic procedure to develop a set of new

reduced order but versatile mean value models for turbocharged SI engines. The aim
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here is to simplify and reduce the order of a comprehensive higher order engine model

(as described in [1] and [4]) without compromising the physics involved in their de-

velopment. The order reduction is accomplished by the identification of multiple time

scale separation within the dynamics of temperatures and pressures corresponding to

various engine compartments and hence singular perturbation theory is applicable.

Different sets of assumptions under which these model reductions are applicable are

presented and discussed. As a result, a library of three engine models is obtained. It is

shown that all the models evince similar characteristics under a wide range of operating

conditions provided certain sets of mild assumptions hold.

The advantages of reduced order models thus obtained are that they are highly

suited for development of enhanced control methods, are appropriate for analyzing the

system behavior by simulation studies and at the same time provide valuable insight

into the engine operation. The validity of the assumptions in the context of actual

existing engines is scrutinized first analytically and then verified with some simulation

studies.

In section 2 below, the structure of 13th order engine, as presented in [1], is briefly

reviewed and summarized in the form of stage 1 model (Σ1). Section 3 deals with the

development of a procedure for model simplification by order reduction. This section

is partitioned into subsections 3.1 and 3.2 which discuss two stages of model reduction

and present the end results in the form of stage 2 (Σ2) and stage 3 (Σ3) models,

respectively.
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2 Stage 1 Engine Model

In this section, we briefly describe the comprehensive componentwise engine model

introduced in [1] and [4]. This model incorporates the physics due to individual con-

stituent components and their interactions through pipes and/or manifolds (referred

to as control volumes), builds on previous work in the engine modeling and has been

extensively validated. Therefore, this model represents state-of-the-art progress in

control-oriented modeling of TC SI engines and we adopt it as our starting point. It is

important to mention that the order of this model is too high which makes it unsuitable

for design of highly sophisticated controllers. In rest of this section, we summarize its

structure in the form of stage 1 model denoted by Σ1.

2.1 Control Volumes

The modeling principle is to place components (like the air filter, compressor, inter-

cooler, engine, turbine and turbo-shaft) between the control volumes. The pressure

and temperature within the control volumes are determined by mass flow into and out

of the volume. On the other hand, mass flows and temperatures of the flows at the inlet

of control volumes are determined by the components on the basis of the pressure and

temperature in the control volumes before and after them. In other words, behavior of

the gas within the control volumes (CV) is dictated by filling and emptying dynamics

of temperatures and pressures. In a TC SI engine, there are six control volumes that

are modeled the same way. Each control volume is modeled as a dynamic element with

two states, namely temperature Tcv(t) and pressure Pcv(t), taking into account mass

and energy balances. The Table 1 lists all the control volumes and their corresponding

6



Figure 1: Schematic of TC SI Engine

state variables. The inputs, outputs and parameters corresponding to each control

volume are listed in the Table 2. Figure 1 shows the block diagram representation of

the TC SI engine as a cascade connection of various components that are connected

via pipes (control volumes).

2.2 Equations

The equations describing the dynamics of pressure and temperature within the control

volumes are derived from the laws of conservation of mass and energy. Specifically, the

dynamic equation for temperature comes from differentiation of the law of conservation

of energy, while the equation for pressure dynamics originates by differentiating the
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Table 1: TC SI Engine Control Volumes

Control Volume (cv) Variables

Air filter (af ) Paf (t) (Pa), Taf (t) (K)

Compressor (c) Pc(t) (Pa), Tc(t) (K)

Intercooler (ic) Pic(t) (Pa), Tic(t) (K)

Intake manifold (im) Pim(t) (Pa), Tim(t) (K)

Exhaust manifold (em) Pem(t) (Pa), Tem(t) (K)

Turbine (t) Pt(t) (Pa), Tt(t) (K)

Table 2: Control volume inputs, outputs and parameters

Inputs ṁcvin
(t) (Kg/s), Mass flow in

ṁcvout
(t) (Kg/s), Mass flow out

Tcvin
(t) (K), Temperature upstream

Outputs Pcv(t) (Pa), Pressure in the control volume

Tcv(t) (K), Temperature in the control volume

Parameters Vcv (m3), Volume of the control volume

R ( J
KgK

), Gas constant

γ, ratio of specific heats cp

cv
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ideal gas law [6].

Ṗcv(t) =

(

γR

V

)

[ṁcvin
(t)Tcvin

(t) − ṁcvout(t)Tcv(t)] (1)

Ṫcv(t) =

(

Tcv(t)

Pcv(t)

)(

γR

Vcv

)[

ṁcvin
(t)Tcvin

(t) − ṁcvout(t)Tcv(t) −
Tcv(t)

γ
(ṁcvin

(t) − ṁcvout(t))

]

(2)

It may be noted that in equations (1)-(2), mass flows, ṁcvin
(t) and ṁcvout

(t), are

functions of state variables, Pcv(t) and Tcv(t). However, for the sake of brevity the

dependence of mass flows on Pcv(t) and Tcv(t) is omitted in the notations mcvin
(t) and

mcvout
(t).

2.3 Stage 1 model

The following assumptions apply:

Assumption 1 No substantial heat or mass transfer through the control volume walls

takes place.

Assumption 2 The temperature and pressure in whole control volume are uniform.

Assumption 3 The fluid is a perfect gas.

Remark 1 : Assumption 1 may not hold strictly, as some heat transfer to the en-

gine control volumes walls does occur. This assumption can be easily relaxed by

including a term Q̇ in the dynamical equations, (1) and (2), to account for this

heat transfer. However, the rate of heat transfer is usually quite small in compar-

ison to pressure and temperature dynamics and hence is dropped for notational

convenience.
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Remark 2 : Assumption 2 ensures that no pulsating due to air resonance takes place.

Though real engines do exhibit this phenomenon due to the sudden opening and

closing of values, its speed is of the order of sound waves. While considering the

mean value model this process can be ignored.

Remark 3 : By assumption 3, we can apply ideal gas law which governs the dynamics of

pressure. Although, no gases exactly exhibits ideal behavior, for a large number

of gases this approximation is close enough.

If assumptions 1 to 3 hold, then the equations governing the dynamics of pressure

and temperature within all the six control volumes (as listed in Table 1) can be de-

picted on the basis of equations (1)-(2). With turboshaft dynamics accounted for via

the speed of the turbocharger, ωtc, following comprehensive 13th order engine model,

Σ1, is obtained [1], [4], [5]:

Σ1 =




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
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










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
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
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
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




























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



























Ṗaf (t) =
(

γR
Vaf

)

[ṁafin
(t)Tafin

(t) − ṁafout
(t)Taf (t)]

Ṫaf (t) =
(

Taf (t)
Paf (t)

)(

γR
Vaf

) [

ṁafin
(t)Tafin

− ṁafout
(t)Taf (t) − Taf (t)

γ
(ṁafin

− ṁafout
)
]

Ṗc(t) =
(

γR
Vc

)

[ṁcin
(t)Tcin

(t) − ṁcout
(t)Tc(t)]

Ṫc(t) =
(

Tc(t)
Pc(t)

)(

γR
Vc

) [

ṁcin
(t)Tcin

(t) − ṁcout
(t)Tc(t) − Tc(t)

γ
(ṁcin

(t) − ṁcout
(t))
]

Ṗic(t) =
(

γR
Vic

)

[ṁicin
(t)Ticin

(t) − ṁicout
(t)Tic(t)]

Ṫic(t) =
(

Tic(t)
Pic(t)

)(

γR
Vic

) [

ṁicin
(t)Ticin

(t) − ṁicout
(t)Tic(t) − Tic(t)

γ
(ṁicin

(t) − ṁicout
(t))
]

Ṗim(t) =
(

γR
Vim

)

[ṁimin
(t)Timin

(t) − ṁimout
(t)Tim(t)]

Ṫim(t) =
(

Tim(t)
Pim(t)

)(

γR
Vim

) [

ṁimin
(t)Timin

− ṁimout
(t)Tim(t) − Tim(t)

γ
(ṁimin

(t) − ṁimout
(t))
]

Ṗem(t) =
(

γR
Vem

)

[ṁemin
(t)Temin

(t) − ṁemout
(t)Tem(t)]

Ṫem(t) =
(

Tem(t)
Pem(t)

)(

γR
Vem

) [

ṁemin
(t)Temin

(t) − ṁemout
(t)Tem(t) − Tem(t)

γ
(ṁemin

(t) − ṁemout
(t))
]

Ṗt(t) =
(

γR
Vt

)

[ṁtin
(t)Ttin

(t) − ṁtout
(t)Tt(t)]

Ṫt(t) =
(

Tt(t)
Pt(t)

)(

γR
Vt

) [

ṁtin
(t)Ttin

(t) − ṁtout
(t)Tt(t) − Tt(t)

γ
(ṁtin

(t) − ṁtout
(t))
]

ẇtc(t) =
(

1
Itc

)

(Tqt
(t) − Tqc

(t) − wtc(t)cfr)
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where, Tqt
(t) represents the driving torque due to the turbine and Tqc

(t) denotes

the loading torque from the compressor. cfr symbolizes the friction coefficient of the

turboshaft. The expressions of mass-flows and inlet temperatures in terms of engine

states Pcv(t), Tcv(t) and wtc(t) are presented in Table 3. Complete details and validation

on this can be found in [2] and [4].

Remark 4 : This 13th order engine model, Σ1, does not include some important

phenomena like engine oil temperature, engine warm up dependence and wall

wetting, that are quite significant for describing the complete engine operation.

However, our main aim in this paper is to demonstrate a systematic and rigorous

procedure for model reduction. Once a reduced order model has been obtained

any additional features can be easily incorporated to account for such phenomena.

3 Model Reduction

In this section we investigate the simplification of the engine model Σ1 via order re-

duction. Comprehensive model Σ1 is deemed to be very effective in examining the

behavior of various engine components and carrying out simulation studies. Neverthe-

less, it is too complex for usage in tasks involving optimization and control using model

based techniques. Thus, in order to design improved controllers with the objective of

achieving best possible engine performance, model simplification via order reduction is

necessary.

The order reduction is accomplished in two stages and is based on the use of per-

turbation theory [12]. In the development of first lower order model, the dynamic char-

acteristics of pressure and temperature of mass in the control volumes are considered.
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Table 3: Control volume mass flows and inlet temperatures

Control

Volume

Mass flow in (ṁcvin
), mass flow out (ṁcvout

) and Inlet temperature

Ṫcvin

Air Filter ṁafin
=

P 2
amb−Paf Pamb

CRTaf
; ṁafout

= ṁcin
; Tafin

= Tamb

Compressor ṁcin
=
(

Paf

RTaf

π
4 ωtc

D3
c

2

)

√

√

√

√

√

√

√

√

√

√















1−min









K1









CpTaf

(

Pc
Paf

)
γ−1

γ

1
2 (ωtc

Dc
2 )2









2

,1









K2















; ṁcout
= ṁicin

;

Tcin
= Taf

(

1 +

(

Pc
Paf

)

−1

ηc

)

Intercooler ṁicin
=

P 2
c −PicPc

CRTic
; ṁicout

= ṁimin
; Ticin

= Tc − ηic (Tc − Tamb)

Intake

Manifold

Ψ
(

Pim

Pic

)

=



















√
γ
(

2
γ+1

)
γ+1

2(γ−1)

, Pim

Pic
≤ 0.5283

√

2γ
γ−1

(

(

Pim

Pic

)
2
γ −

(

Pim

Pic

)
γ+1

γ

)

, 1 ≥ Pim

Pic
> 0.5283

;

ṁimin
= Pic

√

RTic
Ae(α)Ψ

(

Pim

Pic

)

; ṁimout
=

PimVdncylηvolNrps

4πRTim
; Timin

= Tic;

Exhaust

manifold

ṁemin
= ṁimout

(

1 + 1

λ(A
F )

s

)

; ṁemout
= ṁtin

;

Turbine Ψt

(

Pt

Pem

)

=























√
γeg

(

2
γeg+1

)

γeg1

2(γeg−1)

, Pt

Pem
≤ 0.5283

√

√

√

√

2γeg

γeg−1

(

(

Pt

Pem

)
2

γeg −
(

Pt

Pem

)

γeg+1

γeg

)

, 1 ≥ Pt

Pem
> 0.5283

;

ṁtin
= ṁt + ṁwg; ṁt = Pem

√

Tem
kt1

√

1 −
(

Pt

Pem

)kt2

;

ṁwg = Pem√

RTem
Ψt

(

Pt

Pem

)

CdAwgmax
uwg; ṁtout

=
P 2

t −PtPamb

CRTt
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Whereas stage 3 model reduction is based on the physical magnitudes. Subsections 3.1

and 3.2 below deal with the stage 2 and stage 3 model reductions, respectively.

3.1 Stage 2 Engine Model: Model reduction I

This model simplification is based on the observation that in all the engine control

volumes the magnitude of the derivative of pressure is significantly larger in comparison

to the magnitude of derivative of temperature. This difference in magnitudes can be

attributed to the
(

Tcv(t)
Pcv(t)

)

term in (2). Typically, the ratio
(

Tcv(t)
Pcv(t)

)

in the context

of engine control volumes is a very small positive quantity. Since variations in the

temperatures are negligibly small in comparison to the pressures, temperatures can be

thought to belong to a compact set which contains the equilibrium point (Tcvin
(t) in

this case). In order to investigate this time scale separation let us rewrite equations

(1)-(2), which govern the dynamics of temperature and pressure in each control volume,

in the following form:

Ṗcv(t) = f(t, Pcv(t), Tcv(t)) (3)

Ṫcv(t) = εTcv
(t)g(t, Pcv(t), Tcv(t)) (4)

where,

εTcv
(t) =

(

Tcv(t)
Pcv(t)

)

, f(t, Pcv(t), Tcv(t)) =
(

γR

V

)

[ṁin(t)Tcvin
(t) − ṁout(t)Tcv(t)] and

g(t, Pcv(t), Tcv(t)) =
(

γR

V

)

[

ṁin(t)Tcvin
(t) − ṁout(t)Tcv(t) − Tcv(t)

γ
(ṁin(t) − ṁout(t))

]

.

Since the values of temperatures and pressures in engine control volumes are strictly

positive finite quantities, it is easy to say that there exists 0 < ε∗ < ∞ such that
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∀ cv ∈ [af, c, ic, im, em, t]

εTcv
(t) ≤ ε∗ ∀t ≥ 0 (5)

Furthermore, if εTcv
(t)max and εTcv

(t)min denote the maximum and minimum values of

εTcv
(t) (for each control volume), respectively, then its average value, εavcv

, becomes

εavcv
=

εTcv
(t)max + εTcv

(t)min

2
(6)

From (5) and (6), we deduce that ∃ ∆εTcv
(t), which signifies the variation of εTcv

(t)

from its average value, such that

εTcv
(t) = εavcv

+ ∆εTcv
(t) ∀t ≥ 0 (7)

By substituting (7) in (4) we obtain

Ṫcv(t) = εavcv
g(t, Pcv(t), Tcv(t)) + ∆εTcv

(t)g(t, Pcv(t), Tcv(t)) (8)

Assumption 4 The magnitude of ∆εTcv
(t) in all engine control volume is sufficiently

small in comparison to εavcv
.

Assumption 5 The magnitude of εavcv
is sufficiently small.

Remark 5 : Satisfaction of Assumption 4 with a sufficiently small ∆εTcv
(t) allows for

the effective use of regular perturbation theory to obtain a simplified engine model

(which yields an approximate response) [12]. This concept has been further elu-

cidated by means of Theorem 1 later in this section. One way to analytically

evaluate the effect of smallness of ∆εTcv
(t) on closeness of the approximate solu-

tion to the actual solution is to examine the upper bound on the nominal ∆εTcv
(t)

fluctuations as shown below.
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By denoting

εTcv
(t)min

εTcv
(t)max

= λcv (9)

it is straightforward to note that

∆εTcv
(t)

εavcv

≤ (1 − λcv)

(1 + λcv)
≡ Kcv (10)

Since, λ ∈ [0, 1] we have Kcv ∈ [0, 1]. Further, in the case at hand εTcv
(t)min > 0

is always true, therefore, it can be concluded that Kcv < 1 also holds for all

times. In order for the simplified model to be a good approximation of the

original control volume dynamic description, (3)-(4), the bounding factor Kcv

should be as small as possible. Smaller the value of Kcv, closer will be the

dynamic and steady state responses of the approximating system to the original

system. Moreover, when Kcv = 0 the approximating system is the exact copy of

the original system. Some sample plots, where Kcv is plotted for various control

volumes under widely changing operating conditions, are demonstrated in figure

2. The simulation results depict the worst case scenario as the throttle position

is varied from almost closed to wide open. It is clear from the simulation results

that
(

∆εTcv

εavcv

)

is upperbounded by Kcv for all control volumes and Kcv itself is

much smaller than one. So, it can be deduced that magnitude of ∆εTcv
is much

smaller that εavcv
under all operating condition.

Remark 6: Figure 2 shows the plot εTcv
(t) and εavcv

for all six control volumes. It is

easy to see that the the magnitude of εavcv
in all the cases is of the order 10−3 and

therefore in the context of engine can be seen as sufficiently small. This permits

the implementation of singular perturbation theory for model order reduction

(demonstrated later in this section) [12].
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Figure 2:
∆εTcv

εavcv
and Kcv responses for all engine control volumes

In light of Remarks 5 and 6 above, it is reasonable to assume that the assumptions

4 and 5 are satisfied.

Due to the smallness of ∆εTcv
(t), solving equation (8) can be seen as a regular

perturbation problem. The smallness of ∆εTcv
(t) will now be exploited to establish an

approximate solution to (8).

By setting ∆εTcv
(t) = 0, the following nominal or unperturbed system is obtained:

˙̄Tcv(t) = εavcv
g(t, Pcv(t), T̄cv(t)) T̄cv(t0) = T̄cv0

(11)

where, T̄cv(t) represents the temperature.

The closeness of solutions of dynamic equations (8) and (11) is ensured by following

Theorem 3.4 of [12]. With respect to the engine setup, this result can be expressed in

the form of Theorem 1 below.
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Figure 3: εTcv
(t) and εavcv

responses for all engine control volumes

Theorem 1 Let εavcv
g(t, Pcv(t), T̄cv(t)) be piecewise continuous in t and Lipschitz in

T̄cv(t) on [t0, t1]×W with a Lipschitz constant L, where W ⊂ R6 is an open connected

set. Let T̄cv(t) and Tcv(t) be solution of

˙̄Tcv(t) = εavcv
g(t, Pcv(t), T̄cv(t)), T̄cv(t0) = T̄cv0

and

Ṫcv(t) = εavcv
g(t, Pcv(t), Tcv(t)) + ∆εTcv

(t)g(t, Pcv(t), Tcv(t)), Tcv(t0) = Tcv0

such that T̄cv(t), Tcv(t) ∈ W for all t ∈ [t0, t1]. Suppose that

∆εTcv
(t)g(t, Pcv(t), Tcv(t)) ≤ µ‖ε∗ − min(εavcv

)‖, ∀ (t, Tcv(t)) ∈ [t0, t1] × W

for some µ > 0. Then,

‖T̄cv(t) − Tcv(t)‖ ≤ ‖T̄cv0
− Tcv0

‖exp[L(t − t0)] +
‖ε∗ − min(εavcv

)‖µ
L

{exp[L(t − t0)] − 1}
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Hence, the overall system control volume dynamics, (3)-(4), can be approximated by

the following set of equations

Ṗcv(t) = f(t, Pcv(t), T̄cv(t)) (12)

˙̄Tcv(t) = εavcv
g(t, Pcv(t), T̄cv(t)) (13)

Further, by simple change of time variable equations (12)-(13) can be expressed in

standard singularly perturbed form as

εavcv
Ṗcv(τ) = f(τ, Pcv(τ), T̄cv(τ)) (14)

˙̄Tcv(τ) = g(τ, Pcv(τ), T̄cv(τ)) (15)

The system description (14)-(15) is in standard singularly perturbed form and

demonstrates the time scale separation between the dynamics of pressure and tem-

perature [12]. Specifically, the dynamics of pressure are much faster than those of

temperature. The usual practice in singular perturbation theory is to approximate the

fast dynamic with its quasi steady state value and reduce the order of the system by

considering only slow dynamic. In this case, we pursue the alternative direction by

focusing on the fast dynamic (pressure) and approximating the slow dynamic (tem-

perature) by its quasi steady state value. This course of action is motivated by the

following:

The transient fluctuations in temperatures are much smaller than those in pres-

sures. This makes approximation of temperatures a more viable choice. From

(2) it is easy to see that the steady state value (equilibrium point) of control

volume temperatures is equal to the temperature of the gases at the inlet (as at

equilibrium ṁcvin
= ṁcvout

). Inlet temperatures, in turn, are typically functions
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of pressures. As a result, excluding temperatures (Tcv(t)) from the state vector

and replacing them by their quasi-steady state values (Tcvin
(t) in this case) allows

the complete engine to be described by fewer state variables.

Therefore, we retain the Pcv(τ) as the state to obtain the reduced order system as

Ṗcv(τ) = f(τ, Pcv(τ), Tcvin
(τ, Pcv(τ))) (16)

0 = g(τ, Pcv(τ), T̄cv(τ)) (17)

Let the solution of (16) be represented as P̄cv(τ). Since, the temperature variable T̄cv(τ)

has been eliminated and replaced by its quasi-steady value Tcvin
(τ, P̄cv(τ)), the only

information we can obtain about T̄cv by solving (16) is determined as

T̃cv(τ) = Tcvin
(τ, P̄cv(τ)) (18)

where, T̃cv(τ) represents the quasi-steady state behavior of T̄cv(τ) when Pcv(τ) =

P̄cv(τ). The important point to note here is that Tcvin
(τ, P̄cv(τ)) is not free to start

from a prescribed initial condition and hence does not represent a uniform approx-

imation of T̄cv(τ). The best we can expect is to check the stability properties of

[

T̄cv(τ) − T̄cvin
(τ, P̄cv(τ))

]

and in that ensuring that the T̃cv(τ) (or P̄cv(τ)) remains suf-

ficiently close to T̄cv(τ) (or P̄cv(τ)) during the desired interval of time.

By denoting y(τ) = T̄cv(τ) − Tcvin
(τ, P̄cv(τ)), the error dynamics are yielded as

ẏ(τ) = ˙̄T (τ) − Ṫcvin
(τ, P̄cv(τ)) (19)

Then, the closeness of solution of (14)-(15) to (16) can be established by Theorem 11.1

of [12] (commonly known as Tikhnov’s theorem) which, in the case at hand, can be

stated as follow:
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Theorem 2 Consider the singular perturbation problem of (14)-(15) and let T̄cv(τ) =

Tcvin
(τ, Pcv(τ)) be an isolated root of (17). Assume that the following conditions are

satisfied for all

[

τ, Pcv(τ), T̄cv − Tcvin
(τ, Pcv(τ)), εavcv

]

∈ [0, τ1] × DPcv
× Dy × [0, ε0]

for some domains DPcv
⊂ Rn and Dy ⊂ Rm in which DPcv

is convex and Dy contains

the origin:

• The functions f, g, their first partial derivatives with respect to
(

Pcv, T̄cv, εavcv

)

,

and the first partial derivative of g with respect to τ are continuous, the function

Tcvin
(τ, Pcv(τ)) and the jacobian [∂g(τ, Pcv, T̄cv)/∂T̄cv] have continuous first partial

derivatives with respect to their arguments.

• The reduced order system (16) has a unique solution P̄cv(τ) ∈ S, for τ ∈ [τ0, τ1],

where S is a compact subset of DPcv
.

• The origin is an exponentially stable equilibrium point of the boundary-layer model

(17), uniformly in (τ, Pcv); let M ⊂ Dy be the region of attraction of (17) and

Ωy be a compact subset of M .

Then, there exits a positive constant ε∗avcv
such that for all T̄cv(τ0)−Tcvin

(τ0, Pcv(τ0)) ∈

Ωy and 0 < εavcv
< ε∗avcv

, the singular perturbation problem of (14)-(15) has a unique

solution of Pcv(τ), T̄cv(τ) on [t0, t1], and

Pcv(τ) − P̄cv(τ) = O(εavcv
) (20)

Tcv(τ) − Tcvin
(τ, P̄cv(τ)) − ŷ(τ) = O(εavcv

) (21)

holds uniformly for τ ∈ [τ0, τ1], where ŷ(τ) is the solution of (17). Moreover, given any
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τb > τ0, there exists ε∗∗avav
≤ εavcv

such that

T̄cv(τ) − Tcvin
(τ, P̄cv(τ)) = O(εavcv

) (22)

holds uniformly for τ ∈ [τb, τ1] whenever εavcv
< ε∗∗avcv

.

Thus following (16), the stage 2 model (Σ2) (in original time variable t) obtained

after the first reduction can be approximated as the following 7th order system:

Σ2 =































































































Ṗaf (t) =
(

γRTafin
(t)

Vaf

)

[ṁafin
(t) − ṁafout

(t)]

Ṗc(t) =
(

γRTcin

Vc

)

[ṁcin
(t) − ṁcout

(t)]

Ṗic(t) =
(

γRTicin
(t)

Vic

)

[ṁicin
(t) − ṁicout

(t)]

Ṗim(t) =
(

γRTimin
(t)

Vim

)

[ṁimin
(t) − ṁout(t)]

Ṗem(t) =
(

γRTemin
(t)

Vem

)

[ṁemin
(t) − ṁemout

(t)]

Ṗt(t) =
(

γRTtin
(t)

Vt

)

[ṁtin(t) − ṁtout
(t)]

ẇtc(t) =
(

1
Itc

)

(Tqt
(t) − Tqc

(t) − wtc(t)cfr)

Remark 7: It is interesting to note that εTcv
(t) is always a very small number and

is bounded within the interval of the order 10−3 (as shown in Figure 3). This

allows for the use of time varying singular perturbation parameters.

3.1.1 Comparison of Σ1 and Σ2

In this subsection, we examine the errors in the pressures and temperatures introduced

by reducing the order of engine model Σ1 and to engine model Σ2. Figures 4 and 5

show the deviations in the responses of pressures and temperatures when the temper-

ature dynamics are excluded and replaced by their quasi-steady state values. In the

simulation, we assume that at time t = 5s a step change in throttle takes place whereby
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the throttle status changes from almost closed to wide open. This is followed by in-

stantaneous opening of wastegate at time t = 10s. It is clear from the error responses

that the behavior of pressures and temperatures generated by Σ1 and Σ2 are identical

in steady state. On the other hand, as expected the values are different during the

transient phases but the errors are quite small.

Due to the non-zero errors during the transient phases, Σ2 cannot be seen as a

perfect representation of Σ1. However, since Σ2 introduces only a negligible error

relative to the original 13th order validated model, Σ1, it can be treated as a good

representation for all practical purposes including controller design.
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Figure 4: Discrepancies in pressure responses due to Σ1 and Σ2
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Figure 5: Discrepancies in temperature responses due to Σ1 and Σ2

3.2 Stage 3 Engine Model: Model Reduction II

In this section, we explore the possibility of further model reduction of engine model

Σ2 derived in the previous section. While reductions leading to Σ2 are based on the

dynamic characteristics of engine control volumes, now we consider their physical prop-

erties, specifically, the relative control volumes. The motivation for this follows from

the fact that the magnitude of the pressure dynamics is inversely proportional to vol-

ume Vcv. Thus, smaller Vcv will lead to faster transients and hence there exists a

time scale separation within the dynamics of control volume pressures. In order to

conceptualize this argument, let us rewrite the equation (16) as follows:

Ṗcv(t) =
1

εPcv

(

γRTcvin

Vmax

)

[ṁcvin
(t) − ṁcvout

(t)] (23)

where, εPcv
=
(

Vcv

Vmax

)

and Vmax = max(Vim, Vem, Vt, Vc, Vic).
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Assumption 6 There is a sufficiently large difference in the sizes of various engine

control volume reservoirs.

Assumption 7 The volumes of intercooler control volume, intake manifold and ex-

haust manifold are sufficiently larger than those of air filter, compressor and

turbine contol volumes and the turbine control volume is the smallest.

Remark 8: Assumption 6 holds without loss of generality as the sizes of various

engine control volumes are usually sufficiently different in production engines.

On the other hand, assumption 7 is justified as in the context of turbocharged

engine, sizes of intake manifold, exhaust manifold and intercooler control volumes

are typically much larger than those of turbine, compressor and air filter with

turbine control volume being the smallest. In the situations where this is not

strictly true, an alternative assumption can be made and the same procedure for

model reduction can be adopted.

As a result, the reduced order model Σ2 can be rewritten depicting the time scale

separation due to the different volume magnitudes in the following singularly perturbed

form:

Ṗ1(t) = fic,im,em (P1(t), P2(t), wtc(t)) (24)

εtṖ2(t) = faf,c,t (P1(t), P2(t), wtc(t)) (25)

where,

P1(t) =

[

Pic(t) Pim(t) Pem(t)

]T

, P2(t) =

[

Paf (t) Pc(t) Pt(t)

]T

,
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fic,im,em (P1(t), P2(t), wtc(t)) =

















γRTicin
(t)

Vmax
(ṁicin

(t) − ṁicout
(t))

γRTimin
(t)

Vmax
(ṁimin

(t) − ṁimout
(t))

γRTemin

Vmax
(ṁemin

(t) − ṁemout
(t))

















and

faf,c,t (P1(t), P2(t), wtc(t)) =

















(

εt

εaf

)(

γRTamb

Vmax

)

(ṁafin
(t) − ṁafout

(t))

(

εt

εc

)(

γRTcompin

Vmax

)

(ṁcompin
(t) − ṁcompout

(t))

(

γRTtin

Vmax

)

(ṁtin(t) − ṁtout
(t))

















.

As a consequence of assumption 6 and 7, we have εt to be sufficiently small. The

smallness of εt allows the application of singular perturbation theory and, hence, dy-

namics of P2(t) can be approximated by their quasi-steady value. By setting εt = 0,

from (25) we obtain

0 = faf,c,t (P1(t), P2(t), wtc(t)) (26)

Solution of (26) for P2(t) in terms of P1(t) and wtc(t) yields its quasi-steady state value

which can be expressed in the following form:

Paf (t) = gaf (t, P2(t), ωtc(t)) (27)

Pc(t) = gc (t, P2(t), ωtc(t)) (28)

Pt(t) = gt (t, P2(t), ωtc(t)) (29)

where, functions gaf (t, P2(t), ωtc(t)), gc (t, P2(t), ωtc(t)) and gt (t, P2(t), ωtc(t)) are ap-

proximated by expanding faf,c,t (P1(t), P2(t), wtc(t)) in its Taylor series and solving it

for P2(t) by equating it to zero. The existence of a unique solution of (26) is ascertained

by the application of implicit function theorem [9].

The reduced order stage 3 model thus obtained after the exclusion of fast pressures

and replacing them with their quasi-steady state values of the form (27)-(29) is given
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by

Σ3 =















































Ṗic(t) =
(

γRTicin
(t)

Vic

)

[ṁicin
(t) − ṁicout

(t)]

Ṗim(t) =
(

γRTimin
(t)

Vim

)

[ṁimin
(t) − ṁout(t)]

Ṗem(t) =
(

γRTemin
(t)

Vem

)

[ṁemin
(t) − ṁemout

(t)]

ẇtc(t) =
(

1
Itc

)

(Tqt
(t) − Tqc

(t) − wtc(t)cfr)

Remark 9: It may be noted that whereas Σ2 is obtained by considering the fast

dynamics (control volume pressures) and eliminating the slow dynamics (control

volume temperatures), Σ3 is derived by getting rid of the fast pressures and

considering the slow ones. Thus, to obtain reduced order model Σ3 from Σ1 we are

focusing on the middle time scale. Middle time scale is physically most relevant

time scale with respect to both slow as well as fast time scales. The control inputs,

throttle angle and waste gate control, which play a vital role in the control design

are directly associated with the dynamical equations governing the variables in

the middle time scale, namely Pic, Pim and Pem. Furthermore, conceptually

control oriented mean value model should capture the average behavior and,

hence, considering middle time scale is more feasible from the point of view of

controller design.

3.2.1 Comparison of Σ1 and Σ3

As in stage 2 model reduction, the key to the accuracy of stage 3 engine model Σ3 lies

in the accuracy with which the fast pressure, Paf (t), Pc(t), Pt(t) can be approximated.

In this section we demonstrate the solution of (26) using Taylor series expansion

(shown in figures 6, 7 and 8). It is easy to see that the solution of Σ3 approaches Σ1 as

the order of approximation is increased. It is worth pointing out that the authors had
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to stop at 5th order approximation due to the computational and display limitations

of MATLAB symbolic toolbox. With an alternative computational tool, it may be

possible to achieve even higher level of accuracy.
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4 Conclusions

In this paper, a novel technique to obtain reduced order engine models is demonstrated.

It is constructively shown that if certain set of assumptions are satisfied then it is

possible to sequentially eliminate some of the state variable and represent the engine

behavior by fewer states to obtain reduced order models. The assumptions, imposed

on the physical and dynamic characteristics of the engine, are found to hold quite

well. Model reduction is achieved by the application of perturbation theory, first to
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eliminate slow temperatures and then to reject fast pressures. The main advantage of

this modeling approach is that it is based on the solid theoretical basis and as a result

the reduced order models closely approximate the original model under a wide range

of operating conditions. Moreover, the obtained model, because they heavily rely on

physical laws rather than empirical findings, can be carried to represent a number of

different engines.

While investigating the model reduction a number of interesting modeling scenarios

are revealed. In the situations where the ratio of temperature and pressure stays

relatively constant with the changing operating conditions, reduction from Σ1 to Σ2 is

an accurate description of true behavior. Further, if the difference in the relative sizes

of various control volumes is large, reduced order model Σ3 is a closer description of
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Σ2. It is also interesting to note that the reduction from Σ1 to Σ3 can also be directly

directly in the situations where the assumptions leading to Σ2 cannot be guaranteed

but those necessary for Σ3 hold. In the rare situations where any of these assumptions

do not hold then an alternative model reduction approach should be adopted.
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