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Abstract

For a class of square continuous time nonlinear controllers we design a suitable resetting rule inspired by the resetting rule
for Clegg integrators and First Order Reset Elements (FORE). With this rule, we prove that the arising hybrid system with
temporal regularization is passive in the conventional continuous time sense with a small shortage of input passivity decreasing
with the temporal regularization constant. Based on the passivity property, we then investigate the finite gain stability of the
interconnection between this passive controller and a passive nonlinear plant.
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1 Introduction

In recent years, much attention has been given to the
analysis and design problem of control systems in the
hybrid context, namely when the closed-loop dynamics
obeys either a continuous law imposing a constraint on
the pointwise derivative of the solution when it belongs
to the so-called flow set, and/or a discrete law imposing
a constraint on the jump that the solution undertakes
when it belongs to the so-called jump set. This type of
interpretation of hybrid systems, thereby merging clas-
sical discrete- and continous-time concepts in a unifying
framework has been pursued in the past years by pro-
viding a specific mathematical characterization of the
underlying mathematical theory. An extensive survey of
the corresponding results can be found in [8].

A specific instance of hybrid systems corresponds to
the case analysed here of continuous-time plants con-
trolled by a hybrid controller, namely a hybrid closed-
loop where the jumps only affect the controller states.
Within this class of systems a relevant example consists
in the reset control systems first introduced in [5], where
a jump linear system (the “Clegg integrator”) generaliz-
ing a linear integrator was proposed. This generalization
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was then further developed in [10] where it was extended
to first order linear filters, and therein called First Order
Reset Elements (FORE). FORE received much atten-
tion in recent years and have been proven to overcome
some intrinsic limitations of linear controller [1]. More-
over, by relying on Lyapunov approaches, suitable anal-
ysis and synthesis tools for the stability of a class of reset
systems generalizing control systems with FORE have
been proposed in [2,14] and references therein. Moreover,
in the recent paper [4] the Lo stability of reset control
systems has been addressed in the passivity context, by
showing interesting properties of the reset system under
the assumption that the continuous-time part of the re-
set controller is passive before resets and that a suitable
non-increase condition is satisfied by the storage func-
tion at jumps. In [4] it was also shown by a simulation
example that resets do help closed-loop performance in
passivity-based closed-loops.

In this paper we further develop over the ideas of [4] by
using a specific temporally regularized reset strategy for
the reset controller. The reset strategy generalizes the
new interpretation of FOREs and Clegg integrators pro-
posed in [17,14] and references therein. We show that,
with the proposed reset strategy, passification is possi-
ble for any continuous-time underlying dynamics under
some sector growth assumption on the right hand side of
the continuous-time dynamics of the controller. The ob-
tained passivity property is characterized by an excess of
output passivity and a lack of input passivity whose size
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can be made arbitrarily small by suitably adjusting the
reset rule. As an example, the proposed reset strategy
allows to establish a passivity property for any FORE,
including those characterized by an exponentially unsta-
ble pole, while the results in [4] only allow to establish
passivity of FOREs with stable poles. This increased po-
tential of the reset rule proposed here is illustrated on a
nonlinear simulation example.

The paper is organized as follows. In Section 2 we de-
scribe the class of controllers under consideration and
the proposed reset rule, together with some notation and
preliminaries characterizing the hybrid systems frame-
work of [8]. In Section 3 we first state our main passiv-
ity result and then establish finite Lo gain properties
of interconnected systems involving the proposed reset
controller. Finally, in Section 4 we discuss a simulation
example.

2 A class of nonlinear reset controllers

Consider the following nonlinear controller mapping the
input v to the output wu,

Te = f(xc) + g(xc,v)

(1)
u = h(x.),
whereu € RY, v € R, so that the controller is square and

where the following regularity assumption is satisfied by
the right hand side.

Assumption 1 The functions f(-) and h(-) are con-
tinuous and sector bounded, namely there exist two con-
stants Ly and Ly, such that for all z., |f(z.)| < Ly|z|
and |h(x.)| < Lp|z,|.

Moreover, g(-,-) is continuous in both its arguments
and uniformly sector bounded in the second argument,
namely there exists a constant Ly such that for all x.
and all v, |g(zc,v)| < Lglv|.

In this paper we propose a hybrid modification of the
controller (1) aimed at making it passive from v to u,
regardless of the properties of the original dynamics in
(1). In particular, the modified controller follows the
continuous-time dynamics of (1) at times when the in-
put/output pair belongs to a certain subset of the in-
put/output space. When the input/output pair exits
that subset, the state of the controller is reset to zero,
intuitively re-initializing the controller within the set
where it is allowed to flow.

To avoid Zeno solutions, namely solutions that exhibit
infinitely many jumps in a bounded time interval, we
also embed the hybrid modification with a temporal reg-
ularization clock, imposing that the controller cannot be

us

Y(u,v) <0

jump possible

P(u,v) =0

flow allowed

\ >

€1

d(u,v) =0

flow allowed

Y(u,v) <0

jump possible

Figure 1. Input/output space of the controller (2) and sub-
sets where ¥ (u, v) E 0.

reset to zero before p times after the previous reset (see
also [14,11].

The proposed hybrid controller is given by

‘T.c = f(xc) + g(xC’rU)

(2
{

if < p or lu,v) > 0

ifr > pand $(u,v) <0

+ o

x 0
T =0
u = h(z,.

)
(2a)

where 9(u, v) is defined as
P(u,v) = (u+ ev)T (v — eu) (2b)

and €1 and e; are some (typically small) non-negative
scalars. As usual in the hybrid system framework, we
call C the set {(z.,7,v) : 7 < p or Y(h(z.),v) > 0}
and D the set {(z¢,7,v) : 7> p and Y (h(z.),v) < 0}.

The rationale behind the reset controller (1) is illustrated
in Figure 1 where the input/output space of (2) is rep-
resented for the case ¢ = 1. In the figure, the shaded
region corresponds to the set 1(u,v) > 0 where the sys-
tem always flows, regardless of the value of 7. Instead,
in the remaining region, where ¥ (u,v) < 0, the system
will jump provided that 7 > p. Note also that when
€1 = € = 0, the shaded region reduces to the first and
third quadrant, resembling the resetting rule character-
ized for the first order reset element (FORE) in [17,14].
When the reset occurs, since h(0) = 0, the v component
of the input/output pair will jump at zero thus resulting
in a vertical jump to the horizontal axis. Moreover, ¢;
and ey allow to have extra degrees of freedom in the re-
setting rule. In particular, the goal of €; is to guarantee
that the reset rule maps the new input/output pair in



the interior of the shaded set whenever v # 0. Instead,
as it will be clear next, the goal of €2 is to modify the
resetting rule to obtain some strict output passivity for
the reset controller (2).

Controller (2) will be dealt with in this paper following
the framework of [9,8,3]. In particular, by Assumption 1,
controller (2) satisfies the hybrid basic assumptions (see,
e.g., [3]), which ensure desirable regularity properties
of the solutions, such as existence, and robustness to
arbitrarily small perturbations (see [8] for details).

As usual in the hybrid system framework, the evolu-
tion of the state & = (&;,&,) either continuously flows
through C, by following the dynamic given by f(&,.) +
g(&z,v) and 1, or jumps from D to (0,0). Such alterna-
tion of jumps and flow intervals can be conveniently char-
acterized by using a generalized notion of time, called hy-
brid time. By following [9], aset E C R>o x N is a hybrid
time domain if it is the union of infinitely many intervals
of the form [tj,tj+1] X {]} where 0 = t() <t <t S, ey
or of finitely many such intervals, with the last one
possibly of the form [t;, ;1] x {j}, [t;,tj+1) x {j}, or
t,00] x {7}

The evolution of the state £ of a hybrid system (2),
depends on the input signal v, so that both £ and v
must be defined on hybrid time domain. By following
[3], we call hybrid signal each function defined on a hy-
brid time domain. A hybrid signal v : domv — V is
a hybrid input if v(-, 7) is Lebesgue measurable and lo-
cally essentially bounded for each j. A hybrid signal
¢ : domé — R™ x Rxg is a hybrid arc if £(-, ) is lo-
cally absolutely continuous, for each j. With the basic
assumptions satisfied, a hybrid arc £ = (§,;,&;) and a
hybrid input v is a solution pair (§,v) to the hybrid sys-
tem (2) if dom ¢ = domw, (£(0,0),v(0,0)) € CUD, and
s.1 for all j € N and almost all ¢ such that (¢, j) € dom¢,

(€, 5),v(t, 7)) € C
Ea(t,]) = [(&a(t,5) + 9(&(t, ), v(t0); (3)

fq—(t,j) =1
s.2 for all (¢,7) € dom & such that (¢,j + 1) € dom¢,

(€(t,5),v(t, 7)) € D
€w(t’j + 1) =0; (4)
€T(t’j + 1) =0;

Note that any continuous-time signal v : Ry¢9 — R?
can be rewritten as hybrid signal with domain F, for
any given hybrid domain FE. In fact, suppose that £ =
Uj=olts tj+1] x {5} is an hybrid time domain. Then, we
can define a hybrid signal v lifted from v on E as follows:
v(t,j) = T(t) for each (t,j) € E. Conversely, suppose
that (£, v) is a solution pair to the hybrid system (2).

Then, the output signal u = h(&,) is a hybrid signal and
domwu = dom £. From u we can construct an continuous-
time signal @ : R>g — R? projected from u on R>( as
follows: u(t) = wu(t,j) for each (¢,j) € domw such that
(t,j+1) ¢ domwu, and u(t) = u(t, 7 + 1) otherwise.

We denote with ||7]|, the £, gain of a continuous-time
signal v. The £, gain of a hybrid signal v, related to
the continuous part of its domain, will be denoted by

oo = (S 2 Io(t.)Pat) " Note that §
ep yJ . Note that for any

j=0Jt;
continuous-time signal v projected from a hybrid signal ©
on Rxg, we have that ||7]|; = ||v]|c,p- Conversely, for any

hybrid signal v lifted from a continuous-time signal 7 on a
given hybrid time domain E, we have that ||v|., = ||7]|,.

Finally, the following lemma characterizes regularity of
solutions. to (2).

Lemma 1 Under Assumption 1, all the solutions of (2)
are uniformly non-Zeno. Moreover, for each L, inte-
grable input signal T, a solution pair (§,v) where v is
the hybrid input signal lifted from T on dom¢&, is a com-
plete solution pair.

Proof. By the definition of C and D in (2), given any
solution pair (gvv) = ((facag'r)vv) of (2)a tj - tjfl Z P
for all (¢,j) € dom(x), j > 2. This implies that the uni-
formly non-Zeno definition in [9] (see also [6]) is satisfied
with T = p and J = 2.

By CUD =R" x R>¢ x V, dom¢ is bounded only if
¢ blows up in finite time. Looking at the dynamics of
the system in (2a), by Assumption 1, |Z.| < |f(z.) +
g(xe,v)| < Ly|ze| + K|v| and || = 1. Therefore, if |v|
is L, integrable, |¢| is bounded in any given compact
subset of R>o x N. O

3 Main results
3.1 Passivity of the reset controller

The following theorem shows that the hybrid controller
(2) is almost passive with a shortage of input passivity
proportional to the temporal regularization constant p
plus €;. Moreover, the slight modification of the func-
tion 9 (-, -) enforced by €2 induces some excess of output
passivity.

Theorem 1 Consider the hybrid controller (2) satisfy-
ing Assumption 1. Define

€1 €2
IS IS

1—¢€16 ’ 1—e€1e

(5)
k(p) := pmax{1, pel1}(1 + egpmax{1, pef1}).



Given a Lo integrable input signal v € R>g — V and a
solution pair (£,v) to (2), with v lifted from T on dom &,
then

/ a7 > — (21 + F) [BOIR + 2O (6)

where the output signalw € R>o — RY is projected from
the hybrid output signal u : domu — R? corresponding
to the solution pair (§,v),

Remark 1 Note that Theorem 1 establishes the pas-
sivity of (2) based on the norm || - || 2, namely only
taking into account the continuous-time nature of the
hybrid solutions. This type of passivity concept is rele-
vant because of Lemma 1 and, moreover, allows to rely
on standard passivity results [15] to conclude properties
of the closed loop between (2) and a plant, ad detailed
in section 3.2.

J

Proof of Theorem 1. Consider an input signal v : R>¢ —
V such that ||7]|2 is defined, and consider a solution pair
(&,v) = ((&,&r),v) to the hybrid system (2), where v is
the hybrid signal lifted from ¥ on dom &. By Lemma 1,
dom v is unbounded.

Define the set 7 = J;[t;.t; + p| x {j} where for all j,
t; is such that, for each 7 € Ry, (t; — 7,7) ¢ domé&.
Note that by time regularization, 7 C dom¢ but 7 is
not necessarily a hybrid time domain. It follows that
Y(t,7) € dom & such that (¢,5) ¢ T we have &,(¢t,7) > p,
therefore

u(t,;)v(t,]) +€1|U(t7j)|2 - 62|u(taj)|2 > 0 (7)

and g9 = —<2—_ Therefore

where e; = —< e

l—erea

Ooﬂ s = tjﬂu Nl o(t, =

/0 (H)TD(t)dt Z / (b ) o(t, )dt
titp

:Z</t‘ u(t, ) o(t, j)dt +

ti+1
+ / u(t,j>Tv(t,j>dt>
t

itp

>

~M

tj+p
(/t u(t,5)"o(t, j)dt + (8)

tj+1 tj+1
+ / e o(t, )Pt + / ealu(t, j)|Pdt
t

itp tjtp

>

-

tjt+p
/ w(t, )Tt )dt — ealu(t, )Pdt +
tj

tj+1 tj+1
+/ —£1|v(t,j)|2dt+/ ealu(t,5)?dt | .
¢

J tj

Consider now the continuous dynamics of z. in (2a). By
Assumption 1, we have

2] < [f(we) + (e, v)| < Lafae| + Klo|  (9)

Then, for (t,7) € [t;,t; + p] x {j} € T, we have

t
futt, )| < Lo / 4109 Ko (s, j)|ds

tj

ti+p
<L / L= Felu(s, f)lds  (10)

tj

tit+p
< LgKmaX{l,eLlp}/ [v(s, j)|ds
tj

Note that in (10) there is no dependence on the initial
condition by the fact that &,(¢;,7) = 0. It follows that

tit+p
/ Ju(t, j)[2dt <

t

ti+p tj+p 2
g/ L§K2max{1,e2m}/ (s, )|ds | dt
tj tj

» (1)
ti+p
= pL2K?max{1,e*1r} </ |v(s,j)|ds> dt

tj

tit+p
<RI max{1, 0 [ (s, g)Pds
tj

where we used Holder’s integral inequality [16, page 274]
in the last step of (11).

tit+p
/ ult, §)To(t, )dt <
t

J

titp 2
< Ly K max{1,el1?} </ |v(t7j)|dt> (12)

tj

ti+p
< pLgKmaX{l,eLlp}/ |v(t,j)|2dt
tj

where, as above, the last inequality is obtained by using
Holder’s integral inequality.

Define k(p) = pmax{1,pef1}. By (11), (12), we have
that

ti+p
/ w(t, )T o(t, §)dt — ealu(t, ) dt] <
t

J

(13
ti+p
<K +22k(p) [ Jolt.) P

tj



Define now k(p) = k(p)(1 + e2k(p)) then, from (8), we
can say that

/ h a(t)To(t)dt >
0
titp
> (—k(p) /t [o(t, 5)[Pdt +

7 J

tit1 [ZES
+/ —ameﬁ+/ eolult, )Pt
t

i 3 (14)
> — (e1+k(p)) Z/t_m u(t, §)[2dt+
£ [ et
= — (e1 + k(p)) 17015 + eallm()ll3
0

Remark 2 It is important to underline that the pas-
sive behavior of the hybrid controller (2) is strongly
related to the definition of the jump and flow sets D
and C, more than to the dynamic equations of the con-
troller. Roughly speaking, the passive behavior of the
controller can be considered as an effect of the definition
of ¥ (u,v), that forces a particular shape of the sets C
and D. Following this intuition, while ¢ (u, v) constrains
C and D to induce passivity, time regularization adds
some extra constraint on C' and D possibly destroying
part of this passivity property. This results in a short-
age of passivity parameterized with p. a

3.2 Application to feedback systems

In this section we use the passivity theorem [15] to es-
tablish useful stability properties of the reset controller
(2) interconnected to any passive nonlinear plant:

By = fp(op,u+d)

(15)
y = hp(z,u+d),

via the negative feedback interconnection v = w — v,

where w is an external signal. In (15), d is an additive dis-

turbance acting at the plant input. The following state-

ment directly follows from the properties of (2) estab-
lished in Theorem 1.

Proposition 1 Consider the hybrid controller (2) sat-
isfying Assumption 1 in feedback interconnection v =
w — y with the plant (15).

3 See also [4] for a similar application of the passivity the-
orem to reset controllers.

For any €1 >0, e2 >0 and p > 0, given €1 and k(p) as
in (6), if the plant is output strictly passive with excess
of output passivity 6p > €1 + k(p), then the closed-loop
system (2), (15) with v =w —y is finite-gain Lo stable
from (w,d) to (u,v).

In Proposition 1 we require a specific excess of output
passivity from the plant because we assume that the con-
troller requires implementation with certain prescribed
selections of €; and p. In the case where it is possible to
reduce arbitrarily these two parameters, it is possible to
relax the requirements of Proposition 1 as follows:

Proposition 2 Consider the hybrid controller (2) sat-
isfying Assumption 1 in feedback interconnection v =
—y with the plant (15).

If the plant (15) is output strictly passive, then for any
€2 > 0, there exist small enough positive numbers €] and
p* such that for all e < € and all p < p*, the closed-
loop system (2), (15) with v = w — y is finite-gain Lo
stable from (w,d) to (u,v).

Proof. The proposition is a straightforward consequence
of Proposition 1 noting that for a fixed €5, the lack of out-
put passivity established in Theorem 1 decreases mono-
tonically to zero as €; and p go to zero. Then it is always
possible to reduce the two parameters to match the pas-
sivity condition in [15]. O

Figure 2. The very strictly passive version (16) of the reset
controller (C corresponds to (2)).

Both Propositions 1 and 2 either require an explicit
bound on the excess of output passivity of the plant or
constrain the controller parameters ¢; and p to be small
enough. An alternative solution to this is to add an ex-
tra feedforward loop to the reset controller (2), follow-
ing the derivations in [12, page 233], to guarantee that
the arising reset system is very strictly passive, namely
it is both input strictly passive and output strictly pas-
sive. To this aim, we modify the output equation of (2)
by adding the feedforward term esv, as represented in
Figure 2. The corresponding reset controller can then be



written as:

if T < por(i,v) >0
=1

{ e = f(xe) + g(xe,v)

+ = O ~
e if7 > pand(i,v) <0
TH =0
= h(z.) + ezv

(16a)
where (1, v) is defined as

Y(h,v) = (4 + (e — 63)U)T((1 + €e2e3)v — €20) (16D)

and e3 > 0 is suitably selected as specified below. When
using the modified reset controller (16), the following
result holds.

Proposition 3 Consider the hybrid controller (16)
satisfying Assumption 1 in feedback interconnection
v =w —y with a passive plant (15).

For any ¢; > 0, eo > 0 and p > 0, given &1 and k(p)
as in (6), if e3 > €1 + k(p), then the closed-loop system

(16), (15) with v = w — y s finite-gain Lo stable from
(w,d) to (u,v).

Proof. Define a new output & = u + e3v and denote by @
the output signal projected from @ on R>g. Then, from
(6), we have that

/0 AT > e /O T+ (-2 —k;(p))/ooovTv
> ﬁ <62/OooﬁTﬂ+ (63—51—k(p))/ooovTv> .

It follows that

o0
/0 at)™o(t) > mllall3 + n20oll3 (17)
with 7, = —2— > 0 and 7, = ==ke) 5
M = 1éres 2 T 2enes :

Replace now the output u of the controller (2) with
@ = u+ e3v = h(z.) + esv. Then, 1) (@, v) is obtained by
substituting « = @ — egv in the expression of ¥ (u,v) of
Equation (2b). By the passivity theorem in [15], Propo-
sition 3 follows. O

Remark 3 The results in this section can be seen as a
generalization of the results on full reset compensators
in [4], where passivity techniques are used to establish fi-
nite gain Lo stability of the closed-loop between passive
nonlinear plants and reset controllers. When focusing on
linear reset controllers such as Clegg integrators [5] and

First Order Reset Elements (FORE) [10,2], the novelty
of Theorem 1 as compared to the results in [4] is that
those results establish passivity of FORE whose under-
lying linear dynamics is already passive (namely FORE
with stable poles). Conversely, our results of Theorem 1
apply regardless of what the underlying dynamics of the
controller is. Therefore, for example, any FORE with
arbitrarily large unstable poles would still become pas-
sive using the flow and jump sets characterized in by
(2). Note however that, as compared to the approach
in [4], we are using a different selection of the flow and
jump sets. In the example section we illustrate the use
of unstable FOREs within (2). N

4 Simulation example

We consider a planar two-link rigid robot manipulator
in Figure 3, as modeled in [13]. Denoting by ¢ € R? the
two joint positions and by ¢ € R? the corresponding
velocities, the manipulator is modeled as

D(q)G + C(q,4)q + h(q) = up (18)

where D(q) is the inertia matrix, C'(g, ¢)¢ comprises the
centrifugal and Coriolis terms, h(q) is the gravitational
vector, and u, represents the external torques applied
to the two rotational joints of the robot. In Figure 3, m;
and msy represent the links masses, a; and ay represent
the links lengths, I; and ls represent the distances of the
center of mass of each link from the preceding joint, and
I and I represent the rotational inertias at the two
joints. The numerical values of the parameters are listed

di de]

in the table of Figure 3. Denoting D(q) = [
diz dao

C11 Ci12

T
C(q,q) = [ 0 ],and h(q) = [hl hz} , we get:

C21

d11 = Il + mll% + I2 + mg(a% + l% + 2(1112 COS((]Q))7

dio = I + mg(lg + ails COS((]Q)),

dag = I + mal3,

c11 = —maaqls sin(g2)do,

c12 = —maarlz sin(gz2) (41 + ¢2),

co1 = maayls sin(ga)g,

hy = g(mily +maay) cos(q1) + gmala cos(q1 + q2), ha =
gmala cos(q1 + q2)-

Given a reference signal r € R? representing the desired
joint position, following a standard passivity based ap-
proach, it is possible to close a first control loop around
the robot (18) to induce the equilibrium point (g, q) =
(r,0) while guaranteeing passivity from a suitable input
u to the joint velocity output ¢, as shown in Figure 4.
In particular, define V(q,r) = %"(q —7)T(q —r), where
the scalar k, > 0 is a weight parameter on the position



T
Link | I; [m] | m; [kg] | L [kgm?] | a; [m]
1 0.5 6 0.2 1
2 0.25 5 0.1 0.5

Figure 3. The robot example and its parameters.

B q
n Robot q

U
P h(q)_aV(g,T) r

Figure 4. Control loop of the two-links robot.

error, and choose

up = —L/g;’ ) + h(q) + u. (19)

Then, the interconnection (18), (19) corresponds to

oV(g,r)

D(q)G+ C(q,4)q + 9 =Y (20)

and, following similar steps to those in [7], it can be
shown to be passive from u to ¢. In particular, use the
storage function E = %QTD(q)q' + V(q,r) to conclude

E =¢"D(q)j+ iqTD(q)q +ky(g—1)"g

="u+q" (;D(q) - Clg, q)) d @)
:qTU

where the second equality follows from (20) and the third

equality follows from the well known fact that 27 (D(q)—
2C(q,4))z = 0, for all z € R

For the outer loop, we rely on the very strictly passive
controller (16) where the dynamics in (16a) is selected
as a pair of decentralized First Order Reset Elements,
namely denoting z. = [7.1 )T, we select f(z.) =
AZe1 Aereo])T and g(xe, ¢) = ¢. Moreover, as shown in
Figure 4, we choose u = kyu, where kyy is a positive
constant.

Joint positions

- — == - = =
P =

Control inputs

Figure 5. Simulations results. Stable FORE and no resets
(dash-dotted), stable FORE with resets (dashed) and un-
stable FORE with resets (solid).

By Proposition 3, the closed loop system (18), (19), (16a)
with u = k4 is finite-gain Lo stable. Figure 5 com-
pares several simulation results for this closed-loop using
the constant reference signal r = [106]7 and the follow-
ing values of the parameters: k, = 100, k3 = 100 and
p = 0.1. First, we select stable FORE poles (A1, A2) =
(—=2,-1) so that the closed-loop stability can be con-
cluded also using the results in [4]. For this case, when no



resets occur, the position output (namely ¢) and plant in-
put (namely u) responses correspond to the dash-dotted
curves in Figure 5. That response is converging because
the system without resets is passive due to the stabil-
ity of the FORE poles. When introducing resets, the re-
sponse becomes the dashed curves in the figure, where it
can be appreciated that a single reset occurring around
t = 0.8 s significantly improves the closed-loop response.
A last simulation is carried out by selecting an unsta-
ble FORE with (A1, A2) = (2,1). In this case the speed
of convergence of the second joint is faster at the price
of a reduction of the speed of convergence of the first
joint. Note also that the dwell time imposed by the tem-
poral regularization is never active for this specific sim-
ulation, as each jump occurs after more than p = 0.1
seconds from the previous jump. We don’t include a sim-
ulation with the unstable FORE without resets because
this leads to diverging trajectories.

5 Conclusions

In this paper we proposed a reset rule for nonlinear con-
trollers which ensures a certain type of input/output
passivity. Then, relying on the passivity theorem we con-
cluded useful properties of control systems involving this
type of reset controller. A simulation example illustrates
the effectiveness of the approach.
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