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Abstract

We consider a path-following problem in which the goal is to ensure that the error between the
system output and the geometric path be asymptotically less than a prespecified constant, while
guaranteeing a forward motion along the path and boundedness of all states. A solution to this
problem was given in [12] for a class of nonlinear systems and for paths satisfying a certain geometric
condition. In this paper, we exploit averaging techniques to develop an alternative simpler solution to
the above problem for the same class of systems but under stronger conditions on the path geometry.

1 Introduction

Path-following has recently been introduced as an interesting alternative to the more classical problem
of reference tracking [1]-[8]. The primary task in path-following is to ensure that the system output
converges to a geometric path, while the properties of the output’s motion along the geometric path
are of secondary importance. In particular, instead of requiring a specific motion along the geometric
path, which is typical in reference tracking, in path-following problems the designer is allowed to select
a motion along the geometric path from a large class of possible motions. This additional flexibility is
often a major advantage of path-following over reference tracking [7]-[8]. For instance, it was shown in
[9]-[12] that this extra degree of design freedom can be used to avoid the fundamental limitations on
achievable tracking accuracy imposed by unstable zero dynamics in reference tracking problems.

Our results are most closely related to [11] and [12] which we briefly summarize. In [11] the goal is to
ensure asymptotic convergence of the system output to the geometric path, while guaranteeing a forward
motion along the path and boundedness of all states. This problem was solved in [11] for linear systems
and paths satisfying a certain geometric condition, the so called repeatability. A more general problem
was considered in [12] where practical (instead of asymptotic) convergence of the system output to the
geometric path was required. While in [12] the same class of repeatable geometric paths was considered,
the results were proved for a more general class of nonlinear systems with input-to-state stabilizable zero
dynamics.

Here, we consider the same path-following problem and class of systems as in [12] but under more
stringent conditions on the path geometry. In particular, we assume that the geometric path can be
parameterized by a scalar positive parameter θ and that the parameterized path is periodic in the
parameter. Periodic paths are repeatable in the sense of [12] but the opposite is not true. For periodic
paths, we provide a novel and significantly simpler controller design than the one developed in [12]. We
note that the proof of our main result differs from the proof in [12] and it is of independent interest as
it exploits the averaging techniques (see e.g. [13]) for the first time in this context.
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In Section 2 we formulate the path-following problem of interest and give sufficient conditions for its
solvability for a class of nonlinear systems with potentially unstable zero dynamics. Our novel design
and the main result are presented in Section 3. An example with simulations is provided in the same
section. A summary is given in Section 4. All proofs are given in the appendix. For brevity, whenever
there is no ambiguity we drop function arguments.

2 Preliminaries

The sets of real numbers and non-negative real numbers are respectively denoted as R and R+. A
set of functions that are r times continuously differentiable is denoted as Cr. A continuous function
γ : R+ → R+ is of class K∞ if it is zero at zero, strictly increasing and unbounded. Given an arbitrary
nonempty set S, we denote its convex hull and interior respectively as conS and int{S}.

We consider systems with a vector relative degree {r1, . . . , rm} that can be transformed by a global
coordinate and feedback transformation into1

ż = f(z, y), (1)
ẋi = Ari

xi + Bri
ui, yi = Cri

xi, (2)

where z ∈ Rn−r, xi , [xi
1 . . . xi

ri
]T ∈ Rri , y , [y1 . . . ym]T ∈ Rm, u , [u1 . . . um]T ∈ Rm, and

r ,
∑m

i=1 ri. We also define r? , maxi ri which is the maximal relative degree among all output
components yi in (2). We let the function f : Rn−r ×Rm → Rn−r, f(0, 0) = 0, be locally Lipschitz, and
define the matrices Ari ∈ Rri×ri , BT

ri
, Cri ∈ R1×ri by

Ari =
[

0 Iri−1

0 0

]
, BT

ri
=

[
0 . . . 0 1

]
, Cri =

[
1 0 . . . 0

]
.

The subsystem (2) consists of m integrator chains relating the input u with the output y, where the
ith chain has ri integrators and its states are denoted by xi. In the sequel, we also use the notation
x , [(x1)T . . . (xm)T ]T ∈ Rr.

The subsystem (1) represents a possibly unstable zero dynamics of the plant driven by its output y.
We assume that the zero dynamics can be input-to-state stabilized (ISS) in an appropriate sense when
y is regarded as a control input to the subsystem (1). In particular, we assume the following:

Assumption 1 Suppose that there exist:

(i) a Cr?

function σ : Rn−r → Rm with σ(0) = 0;
(ii) a C1 Lyapunov function Vz : Rn−r → R+;
(iii) class K∞ functions αi : R+ → R+, i = 1, 2, 3;
(iv) a locally Lipschitz function π : Rn−r → Rm, with π(0) = 0

such that the following holds:

A1: α1(‖z‖) ≤ Vz(z) ≤ α2(‖z‖) for all z ∈ Rn−r;

A2: ∂Vz

∂z f(z, σ(z) + d) ≤ −α3(‖z‖) + πT (z)d for all z ∈ Rn−r and d ∈ Rm;

A3: lim‖z‖→∞
‖π(z)‖
α3(‖z‖) = 0. ¤

While we allow the zero dynamics (1) with y ≡ 0 to be unstable, Assumption 1 implies that the
zero dynamics (1) with the “control input” y = σ(z) + d is ISS with respect to the disturbance d. More

1The class of systems that are globally diffeomorphic to the system (1)-(2) is characterized in [17]-[18]. For simplicity
we assume that this transformation is valid globally, but we stress that it needs to exist only in a set containing the path
that needs to be followed.



precisely, A2 and A3 imply that there exists a function % ∈ K∞ and a positive definite function αz such
that (for more details see [12]):

‖z‖ ≥ %−1(‖d‖) =⇒ ∂Vz

∂z
f(z, σ(z) + d) ≤ −αz(‖z‖) . (3)

When the subsystem (1) is a controllable linear system, that is f(z, y) = Azz + Bzy with (Az, Bz)
controllable, Assumption 1 is automatically satisfied. Namely, it is straightforward to show that A1-A3
hold if we take: σ(z) = −Kzz where Kz is such that the matrix Az −BzKz is Hurwitz; Vz(z) = zT Pzz
where the matrix Pz = PT

z > 0 solves the Lyapunov equation (Az −BzKz)T Pz + Pz(Az −BzKz) = −I;
and π(z) = BT

z Pzz.
It is well known (see [14]) that the presence of unstable zero dynamics prevents asymptotic tracking

of arbitrary reference signals yd(t) and in such cases we may not be able to achieve lim supt→∞ ‖y(t)−
yd(t)‖ ≤ ε with arbitrarily small ε > 0. The path following problem reformulates and relaxes the tracking
problem in order to achieve arbitrarily small errors between the output and a given desired “path” in
the output space. We assume that the desired path Yd is a closed and bounded one-dimensional smooth
manifold Yd ⊂ Rm. Moreover, for our problem formulation it is useful to consider paths that are
parameterized with a scalar parameter θ, that is

Yd , {yd(θ) = [yd1(θ) · · · ydm(θ)]T : θ ≥ 0} . (4)

A parameterized path Yd is periodic in its parameter θ if there exists a constant θM > 0 such that for
all θ ≥ 0, yd(θ) = yd(θ + θM ). We use the following assumption:

Assumption 2 The parameterized path Yd is periodic in its parameter with the period θM > 0, and it
satisfies 0 ∈ int{conYd}. ¤

The path following problem that we consider is stated next.
Problem statement (path following):
Given a path Yd parameterized with θ and an arbitrary ε > 0 design a control law u as well as an
appropriate signal θ = θ(t) so that the following requirements hold for the closed-loop system:

R1 : Practical convergence to the path Yd: lim supt→∞ ‖y(t)− yd(θ(t))‖ ≤ ε,

R2 : Forward motion along the path Yd: θ̇(t) ≥ 0 and limt→∞ θ(t) = ∞,

R3 : State boundedness: ∀t ≥ 0, ‖(z(t), x(t))‖ ≤ n(‖(z(0), x(0))‖), ‖[θ̇(t) . . . θ(r?−1)(t)]‖ ≤ MΘ,

where n : R+ → R+ is a continuous function and MΘ > 0 is a positive constant. ¤
Note that path-following differs from the set stabilization problem where we would only require R1

but not R2 and the second bound in R3. We impose the requirement R2 to appropriately generalize
reference tracking. Indeed, by requiring limt→∞ θ(t) = ∞ in conjunction with R1 we forbid that the
output y converges to a specific point on the path Yd (hence, the path following problem is not the
same as stabilization of the set Yd). Also, we forbid a backward motion along the path Yd by requiring
θ̇(t) ≥ 0.

3 Main result

In this section we first provide a novel solution to the path-following problem and then we state our
main result (Theorem 1). The proofs of all results are given in the appendix. Before we state the main
result, we detail the construction of the control law u and θ(t) to satisfy conditions R1-R3.

The first step in our approach is to find a function σ(·) that satisfies Assumption 1. Note that this
function can be interpreted as a control law that input-to-state stabilizes zero dynamics with respect to



control additive disturbances. We consider only geometric paths yd(·) that satisfy Assumption 2. Using
such σ(·) and yd(·), we construct u as follows

u = ϕ(z, x, Θ, ω) , [ϕT
1 . . . ϕT

m]T , (5)

where
ϕi(z, x, Θ, ω) = y

(ri)
di (θ) + σ

(ri)
i (z)−Kiẽ

i , (6)

ydi come from (4), σi are appropriate scalar components of σ from Assumption 1, Ki are such that
Ari −BriKi are Hurwitz and we use the definitions:

ẽi , [xi
1 − σi − yd . . . xi

ri
− σ

(ri−1)
i − y

(ri−1)
d ]T , ẽ , [ẽ1 . . . ẽm]T , (7)

This completes the controller design. To design θ(t), we first augment the system (1)-(2) with the
following dynamics

Θ̇ = Ar?Θ + Br?ω , (8)

where Θ , [θ . . . θ(r?−1)]T represents r? additional states stemming from the path parameter θ and its
first r? − 1 derivatives, and ω is an additional control input representing the highest derivative of θ,
that is θr? , ω. A key feature of the path following is the possibility to design a control law for ω and
determine the path parameter θ as a function of time and system states2. The fact that we can choose ω
and, hence, θ(t) (subject to R2 and R3) in the path following problem formulation gives us extra degrees
of freedom that turn out to be useful for non-minimum phase plants. Indeed, as already pointed out
under our Assumption 1 our problem may not be solvable with the choice θ(t) = t used for the standard
reference tracking and another choice is needed.

A direct consequence of Assumption 2 is the existence of a periodic function φδ parameterized with
a positive scalar parameter δ and satisfying certain conditions that we need to construct ω in (8).

Lemma 1 Suppose that the path Yd satisfies Assumption 2. Then, for any δ > 0 and r ∈ N there exists
a locally Lipschitz function φδ : [0, 1] → R such that

φδ(0) = φδ(1), (9)

[Φr(1) Φr−1(1) . . . Φ1(1)]T = [θM 0 . . . 0]T , (10)
Φr−1(τ) ≥ 0, ∀τ ∈ [0, 1], (11)∣∣∣∣

∣∣∣∣
∫ 1

0

yd(Φr(τ))dτ

∣∣∣∣
∣∣∣∣ ≤ δ , (12)

where Φ0(τ) , φδ(τ) and Φi(τ) ,
∫ τ

0
Φi−1(τ1)dτ1 represents the ith integral of the function φδ. ¥

Now we can construct ω. Given a fixed δ > 0 we let

ω =
1

T r? φδ

(
t

T

)
, (13)

where φδ comes from Lemma 1 and T is a positive scalar parameter. Both parameters δ and T in (13)
will depend on the required tracking accuracy ε and they will be determined later (see the appendix). It
is useful to discuss the reasons behind the conditions in Lemma 1. The condition (9) ensures continuity
of the control signal ω with respect to t. The condition (10) requires that the path parameter θ traverses
exactly one period of the path Yd over the interval [0, 1]. Moreover, it requires that at τ = 1 all derivatives
of θ are equal to zero, which combined with Θ(0) = [θ0 0 . . . 0]T implies that yd(θ(τ)) = yd(θ(τ + 1)) for
all τ ≥ 0. The condition (11) is due to the requirement θ̇ ≥ 0 in R2, while the condition (12) bounds
the effect of the motion of yd(θ(τ)) over one period.

Our main result is stated next:
2The standard reference tracking, in which θ(t) = t, is thus a special case of the path following where ω = 0 and

Θ(0) = [0 1 0 . . . 0]T .



Theorem 1 Suppose that Assumptions 1 and 2 hold. Then, for any ε > 0 there exist δ = δ(ε) and
T ? = T ?(ε) > 0 such that for all T ∈ (0, T ?] the solutions of the system (1), (2), (5), (8), (13) starting
from the set of initial conditions

X0 , {[zT xT ΘT ]T : Θ = [θ0 0 . . . 0]T , θ0 ≥ 0}, (14)

satisfy the requirements R1− R3. ¥

The proof of Theorem 1 is given in the appendix. In order to explain the intuition behind our result
we introduce a new state variable:

ΘT , [θ1 θ2 . . . θr? ]T , [θ T θ̇ . . . T r?−1θ(r?−1)]T . (15)

and using (7) we rewrite the closed loop system (1), (2), (5), (8), (13) in a form that is more amenable
for analysis:

ż = f(z, σ(z) + yd(θ1) + ẽy), (16)

˙̃e
i

= Aiẽ
i, i = 1, . . . , m, (17)

T Θ̇T = Ar?ΘT + Br?φδ

(
t

T

)
, (18)

where Ai , Ari −BriKri are Hurwitz by design and we used the definition

ẽy , y − σ − yd , [ẽ1
1 . . . ẽ1

m]T .

The main idea behind our proof (see the appendix) is to first find an auxiliary output ỹ , y − σ(z)
which is selected so that the resulting zero dynamics of the system (1)-(2) is ISS when the auxiliary
output ỹ is treated as their input3. In other words, the system is rendered strongly minimum phase
with respect to the auxiliary output. Note that the control law (5), (6) is designed to achieve the path
following for the auxiliary output. Indeed, since we have that ||ỹ − yd|| = ||ẽy|| ≤ ||ẽ|| (ẽ comes from
(7)) and for all i = 1, . . . , m (17) are stable by design, we have that

lim sup
t→∞

‖ỹ(t)− yd(θ(t))‖ = lim sup
t→∞

||ẽy(t)|| = 0 . (19)

Note that this holds irrespective of stability of the zero dynamics subsystem (16). The last step is to
show that by adjusting δ and T in (13) we can force z(t) to converge to an arbitrarily small neigbourhood
of the origin. Since σ(·) was assumed to be locally Lipschitz and zero at zero (Assumption 1), this implies
that for arbitrarily small ε > 0 we can adjust δ and T so that

lim sup
t→∞

‖σ(z(t))‖ ≤ ε . (20)

This immediately implies via (19) that the actual output y(t) satisfies the requirement R1 in our problem
statement. In order to show that (20) holds, we note that Assumption 1 implies that

V̇z =
∂Vz

∂z
f(z, σ(z) + d) ≤ −α3(‖z‖) + πT (z)d , (21)

where we can now think of d , yd(θ1) + ẽy (see (16)). Note that (19) implies that ey(t) converges to
zero and hence d(t) ≈ yd(θ(t)) for sufficiently large t. Moreover, our construction of ω can be used to
show that (20) holds. Indeed, by assuming d(t) ≈ yd(θ(t)) and integrating (21) over interval [t, t + T ],
we obtain

Vz(z(t + T ))− Vz(z(t)) ≤ −
∫ t+T

t

α3(‖z(s)‖)ds +
∫ t+T

t

πT (z(s))yd(θ(s))ds . (22)

3The idea of replacing the original by an auxiliary output is reminiscent to the flatness approach, see [15]-[16] and
references therein. The key difference here is that instead of searching for a flat output which approximates the original
output, we construct a control law for the path parameter θ to reduce the difference between the two outputs.



Our construction of ω (see (12) in Lemma 1), guarantees that
∫ t+T

t
πT (z(s))yd(θ(s))ds can be made

arbitrarily small by choosing δ and T sufficiently small. Hence, we conclude that

Vz(z(t + T ))− Vz(z(t)) ≤ −
∫ t+T

t

α3(‖z(s)‖)ds + ε1 (23)

holds, where ε1 > 0 can be made arbitrarily small. Finally, using the averaging proof techniques (see
[13]) we can show that (20) holds, which immediately gives us the requirement R1. The requitement R2
holds by construction of φδ in Lemma 1 and the requirement R3 is not hard to show using the fact that
the zero dynamics are ISS and (17) are stable.

Remark 1 It is useful to compare our results to [11], [12] that are most closely related to our work.
Theorem 1 in [11] provides sufficient conditions for existence of feedback control laws for u and ω

that ensure the requirements R1− R3 for controllable linear systems and ε = 0. Along with an additional
technical condition, Theorem 1 in [11] requires that 0 ∈ int{conU}, where the set U is the repeatable path
of the path Yd defined by U , {s ∈ Yd : ∀θ1 ≥ 0, ∃θ2 > θ1, yd(θ2) = s}. Since periodic paths satisfy
U = Yd, it follows that Assumption 2 implies the conditions of Theorem 1 in [11].

Theorem 1 in [12] provides sufficient conditions (Assumptions 1-2) for existence of feedback control
laws for u and ω that ensure the requirements R1− R3 for system (1)-(2). While Assumption 1 is the
same as here, Assumption 2 requires existence of constants θM > θm > 0 such that for all z ∈ Rn−r

and θ ∈ R+ it holds that mins∈[θ+θm,θ+θM ] π
T (z)yd(s) ≤ 0. We note that Assumption 2 here implies the

corresponding one in [12]. ¤

Remark 2 While the design from [12] applies to systems and paths considered in this paper, the two
designs are different and they lead to completely different control laws for ω, which results in different
motions on the geometric path. For instance, we achieve periodic motion on the path in this paper and
the period can be reduced by reducing T in (13). On the other hand, if we apply the design from [12]
to the same class of periodic paths, the motion on the geometric path may not be periodic. Hence, the
design in this paper provides an alternative design to [12] that may be more appropriate in situations
when periodic motion on the path is required. ¤

Remark 3 Theorem 1 can be proved with a relaxed Assumption 1 but we do not pursue this direction
here. Indeed, our main result can be proved if we replace A2, A3 with the following assumptions:
A2’: ∂Vz

∂z f(z, σ(z) + d) ≤ −α3(‖z‖) + π̄T (z)$(d);
A3’: lim‖z‖→∞

‖π̄(z)‖
α3(‖z‖) = 0, where π̄ : Rn−r → Rl, π̄(0) = 0, and $ : Rm → Rl are locally Lipschitz

functions.

Remark 4 If ω is allowed to depend on the path parameter θ then we can prove our result without
requiring periodicity of the path Yd in Assumption 2. Indeed, Assumption 2 can be replaced with the
following condition

∃θM > θm > 0, ∀θ ≥ 0, 0 ∈ int{conYθ
d} ,

where Yθ
d , {yd(s) : s ∈ [θ + θm, θ + θM ]}. Furthermore, if ω is allowed to depend on both the path

parameter θ and the zero dynamics states z, then Assumption 2 can be replaced with a less demanding
condition from [12]

∃θM > θm > 0, ∀z ∈ Rn−r, ∀θ ≥ 0, min
s∈[θ+θm,θ+θM ]

πT (z)yd(s) ≤ 0.

However, this is not anymore a purely geometric condition but a relationship between path geometry and
stabilizability of zero dynamics. ¤

Example 1 We apply our design to the system

ż1 = z1 − z3
2 sin y2 + y1, ż2 = z2 + z3

1 sin y1 + y2,
ẏ1 = u1, ẏ2 = u2,

(24)



and the path Y?
d =

{
[2 cos θ − 1 2 sin θ − 1]T : θ ≥ 0

}
. The output of interest is y = [y1 y2]T , with

respect to which the resulting zero dynamics ż1 = z1, ż2 = z2 are exponentially unstable.
We select the auxiliary output ỹ , [ỹ1 ỹ2]T = y − σ(z1, z2), where σ(z1, z2) = −[4z1 + z3

1 4z2 + z3
2 ]T ,

with which system (24) becomes

ż1 = −4z1 − z3
1 − z3

2 sin(ỹ2 − 4z2 − z3
2) + ỹ1, ż2 = −4z2 − z3

2 + z3
1 sin(ỹ1 − 4z1 − z3

1) + ỹ2,
˙̃y1 = u1 − σ̇1(z), ˙̃y2 = u2 − σ̇2(z).

(25)

Differentiating the Lyapunov function Vz(z) = 1
2‖z‖2 along the solutions of system (25) we get V̇z ≤

−4‖z‖2 + πT (z)ỹ, where π(z) , [z1 z2]T , hence Assumption 1 is satisfied. The path Y?
d is periodic with

the period θM = 2π and satisfies 0 ∈ int{conY?
d}, thus Assumption 2 holds and our design is applicable.

Figure 1: a) The constructed function φ(τ), and b) output trajectory y(t) versus the path Y?
d in y1 − y2

plane.

We construct the feedback for u using (6)-(7), set T = 1
4 , and compute the periodic function φ using

Lemma 2. We omit the explicit expression for the resulting function φ, but show it on Fig. 1a. We
simulate the resulting closed-loop system (24) for 10s from initial conditions [z1(0) z2(0) y1(0) y2(0)]T =
[0 0 2 − 2]T , and show the obtained behavior on Fig. 1b. ¤

4 Conclusion

We considered a path-following problem in which the goal is to ensure that the error between the system
output and the path be asymptotically smaller than a given constant, while guaranteeing output’s
forward motion along the path and boundedness of all states. For a class of parameterized periodic
paths and a class of nonlinear systems with input-to-state stabilizable zero dynamics we used averaging
tools to construct an open-loop control law for the path parameter and a feedback control law for the
original control variable which solve the problem. This paper can be viewed as a sequel to [12], in
which we develop an alternative, much simpler control design under more stringent conditions on path
geometry.
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5 Appendix

Proof of Lemma 1: We construct the function θ? : [0, 1] → R+, θ? ∈ Cr, satisfying
[
θ? dθ?

dτ
. . .

drθ?

dτ r

]T

|τ=0 =
[
θ0 0 . . . 0

]T
, (26)

[
θ? dθ?

dτ
. . .

drθ?

dτ r

]T

|τ=1 =
[
θ0 + θM 0 . . . 0

]T
, (27)

θ̇?(τ) ≥ 0, ∀τ ∈ [0, 1], (28)∣∣∣∣
∣∣∣∣
∫ 1

0

yd(θ?(τ))dτ

∣∣∣∣
∣∣∣∣ ≤ δ. (29)



Then the claim of Lemma 2 follows by setting φ , drθ?

dτr .
If the path Yd satisfies Assumption 2, then from Caratheodory’s theorem [20, pg. 155] it follows that

there exist yi ∈ Yd and αi ≥ 0,
∑m+1

i=1 αi = 1, such that
∑m+1

i=1 αiyi = 0. From the path periodicity we
deduce existence of the values θi ∈ [0, θM ], i = 1, . . . m, such that yd(θi) = yi. Without loss of generality
we assume that θi+1 > θi, i = 1, . . . , m, and αi > 0, i = 1, . . . ,m + 1.

We define Tδ , 1
6

δ
My

, τ2i ,
∑i

j=1 αj , τ2i−1 ,
∑i

j=1 αj −min{αi

2 , 1
m+1Tδ}, and

θc(τ) ,
{

θi, τ ∈ [τ2i−2, τ2i−1],
θi + θi+1−θi

min{αi
2 , 1

m+1 Tδ} (τ − τ2i−1), τ ∈ [τ2i−1, τ2i],

where i = 1, . . . , m + 1, τ0 = 0, and θ2m+2 = θM + θ1. Note that the function θc is C0, piecewise linear,
nondecreasing, θc(0) = θ1, θc(1) = θM + θ1, and satisfies

∣∣∣
∣∣∣
∫ 1

0
yd(θc(τ))dτ

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣∑m+1

i=1 αiyi −
∑m+1

i=1 (τ2i − τ2i−1)yi +
∫ τ2i

τ2i−1
yd(θc(τ))dτ

∣∣∣
∣∣∣ =∣∣∣

∣∣∣
∫ τ2i

τ2i−1
[yd(θc(τ))− yi]dτ

∣∣∣
∣∣∣ ≤ 2My

∑m+1
i=1 (τ2i − τ2i−1)yi ≤ 1

3MyT δ = 1
3δ.

Thus the function θc satisfies conditions (26)-(29) with θ0 = θ1, but it is not sufficiently smooth, that
is, θc ∈ C0 instead of θc ∈ Cr. We smoothen the function θc by redefining it on sufficiently small
neighborhoods containing the ”kinks”, that is, containing the points τ = τi, i = 1, . . . , 2m+2. Select the
points τk, k = 1, . . . , 4m+4, τk > τk−1, τ4m+4 = 1, such that τi ∈ (τ2i−1, τ2i) and τ2i−τ2i−1 ≤ 1

m+1T δ,
i = 1, . . . , 2m + 2. Let the function θ̃i : [τ2i−1, τ2i] → R+, θ̃i ∈ Cr, satisfy the following conditions

θ̇i(τ) ≥ 0, ∀τ ∈ [τ2i−1, τ2i],
θ̃
(j)
i (τ2i−1) = θ

(j)
c (τ2i−1),

θ̃
(j)
i (τ2i) = θ

(j)
c (τ2i), j = 0, . . . , r, i = 1, . . . , 2m + 2,

where θ̃
(0)
i = θ̃i. Utilizing the functions θ̃i we define the function θ? ∈ Cr by

θ?(τ) ,
{

θc(τ), τ 6∈ [τ2i−1, τ2i], ∀i,
θ̃i(τ), τ ∈ [τ2i−1, τ2i],

which by construction satisfies (26)-(28), but it also satisfies (29) due to
∣∣∣
∣∣∣
∫ 1

0
yd(θ?(τ))dτ

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∫ 1

0
yd(θc(τ))dτ

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣
∫ 1

0
(yd(θ?(τ))− yd(θc(τ))) dτ

∣∣∣
∣∣∣

≤ δ
3 +

∣∣∣
∣∣∣∑2m+2

i=1

∫ τ2i

τ2i−1

(
yd(θ̃i(τ))− yd(θc(τ))

)∣∣∣
∣∣∣ ≤ δ

3 + 2My

∑2m+2
i=1 (τ2i − τ2i−1) ≤ δ.

(30)

¥
Proof of Theorem 1: Let all conditions of Theorem 1 hold and let φ come from Lemma 1.
Let the path-following accuracy ε > 0 be given. In order to construct δ, T ? > 0 we introduce

My , supθ≥0 ‖yd(θ)‖, c? , α2 ◦ %−1(My) + 1, Ω(c?) , {z ∈ Rn−r : Vz(z) ≤ c?}, Mπ , supz∈Ω(c?) ‖π(z)‖
and

Lπ , sup
z1,z2∈Ω(c?), z1 6=z2

‖π(z1)− π(z2)‖
‖z1 − z2‖ , Lσ , sup

z1,z2∈Ω(c?), z1 6=z2

‖σ(z1)− σ(z2)‖
‖z1 − z2‖ ,

Lf1 , sup
z1,z2∈Ω(c?), z1 6=z2, ‖ỹ‖≤My+1

‖f(z1, σ(z1) + ỹ)− f(z2, σ(z2) + ỹ)‖
‖z1 − z2‖ , (31)

Lf2 , sup
z∈Ω(c?), ‖ỹ1‖,‖ỹ2‖≤My+1, ỹ1 6=ỹ2

‖f(z, σ(z) + ỹ1)− f(z, σ(z) + ỹ2)‖
‖ỹ1 − ỹ2‖ ,

where yd(·) is the parameterized path, ρ(·) comes from (3) and α2(·), Vz(·), σ(·) and π(·) come from
Assumption 1. All constants in (31) are finite, since all the functions are assumed to be locally Lipschitz



and the sets over which the suprema are taken are compact. Let δ ∈ (0, ε) be arbitrary and choose
T ? > 0 such that for all T ∈ (0, T ?] we have that the following holds:

e−Lf1T

(
α−1

1

(
α1

(
ε

Lσ

)
− 2Mπ(My + 1)T

)
+

Lf2(My + 1)
Lf1

)
− Lf2(My + 1)

Lf1
≥ δ

Lσ
, (32)

−1
4
α3

(
δ

Lσ

)
T + MyLπ

(
α−1

1 (c?) +
Lf2(My + 1)

Lf1

) (
1

Lf1
(eLf1T − 1)− T

)
≤ 0 , (33)

where α1(·) comes from Assumption 1. We show next that such T ? always exists. Indeed, for T = 0
condition (32) reduces to ε ≥ δ, hence it holds. Since all functions in (32) are continuous, this implies
existence of a sufficiently small T1 > 0 such that all T ∈ (0, T1] satisfy (32). Condition (33) can be
rewritten as g(T ) , −c1T + c2

(
1

Lf1
(eLf1T − 1)− T

)
≤ 0, where c1, c2 > 0, and the function g satisfies

g(0) = 0, dg
dT |T=0 = −c1 < 0. This implies existence of T2 > 0 such that all T ∈ (0, T2] satisfy g(T ) < 0.

Taking T ? , min{T1, T2} proves the claim. For arbitrary δ1 ∈ (0, ε), we also introduce

δ , 1
4Mπ

α3

(
δ1

Lσ

)
.

Let T ∈ (0, T ?] be fixed and let ω be defined using the defined δ via Lemma 1 and (13).
Next we prove that R1-R3 hold for the closed loop system (16)-(18). First, we analyze behavior of the

subsystem (17). Taking the derivative of Lyapunov function Ve(ẽ) , ẽT P ẽ, where P = diag{P1, . . . , Pm},
and AT

i Pi +PiAi ≤ −I, along solutions of subsystem (17), we get that V̇e ≤ −‖ẽ‖2, and hence the errors
ẽ and ẽy converge to zero, since

‖ẽy(t)‖ ≤ ‖ẽ(t)‖ ≤ pM

pm
‖ẽ(0)‖e− t

pM , ∀t ≥ 0 , (34)

where pmI ≤ P ≤ pMI. Next, we consider the behavior of the subsystem (16). Note that by Assumption
1 we have that (16) is input-to-state stable from input d , yd(θ) + ẽy to state z. Moreover, due to (34)
and the definition of My we have that

lim sup
t→∞

Vz(z(t)) < c? = α2 ◦ %−1(My) + 1. (35)

We will show that there exists time t? > 0 such that

Vz(z(t)) ≤ α1

(
ε

Lσ

)
∀t ≥ t? . (36)

Note that (36) can be used to complete the proof. Indeed, using the fact that ||yd(θ) − y|| − ||σ(z)|| ≤
||yd(θ)− σ(z)− y|| = ||ẽy||, that ||σ(z)|| ≤ Lσ||z||, (34) and since (36) implies that lim supt→∞ ||z(t)|| ≤
ε

Lσ
, we have that

lim sup
t→∞

||yd(θ(t))− y(t)|| ≤ lim sup
t→∞

||σ(z(t))|| ≤ Lσ lim sup
t→∞

||z(t)|| ≤ ε ,

which completes the proof of R1. The requirement R2 is satisfied by construction due to (10)-(11), while
the requirement R3 follows from (34)-(35), (10), and periodicity of the function φ.

The last thing we need to do is prove that (36) holds. We use the bounds

V̇z ≤ −α3(‖z‖) + πT (z)(yd(θ1) + ẽy) ≤ ‖π(z)‖(‖yd(θ1)‖+ ‖ẽy‖), (37)
Lf1‖z‖+ Lf2(My + 1) ≥ ‖ż‖ ≥ −Lf1‖z‖ − Lf2(My + 1) (38)

which combined with z(t0) ∈ Ω(c?), ‖ẽy(t0)‖ ≤ 1 result in the following estimates

Vz(z(t)) ≤ Vz(z(t0)) + (t− t0)Mπ(1 + My), (39)

‖z(t)− z(t0)‖ ≤ (eLf1(t−t0) − 1)
(
‖z(t0)‖+

Lf2

Lf1
(1 + My)

)
, (40)

‖z(t)‖ ≥ e−Lf1(t−t0)

(
‖z(t0)‖+

Lf2

Lf1
(1 + My)

)
− Lf2

Lf1
(1 + My). (41)



From (34)-(35) it follows that there exists time t1 > 0 such that ∀t ≥ t1, Vz(z(t)) ≤ c? and
‖ẽy(t)‖ ≤ min

{
1, 1

4Mπ
α3

(
δ

Lσ

)}
. If ∀t ≥ t1 it holds that Vz(z(t)) ≤ α1

(
ε

Lσ

)
− 2Mπ(My + 1)T ,

then condition (36) is satisfied for t? = t1. Suppose that there exists t2 ≥ t1 for which Vz(z(t2)) ∈[
α1

(
ε

Lσ

)
− 2Mπ(My + 1)T, c?

]
which combined with (32) and (41) implies

‖z(t2 + T )‖ ≥ δ
Lσ

,

∀t ∈ [t2, t2 + T ], 1
4α3(‖z(t)‖) ≥ πT (z(t))ẽy(t).

(42)

Integrating (37) over the period t ∈ [t2, t2 + T ], and utilizing (42) we get

Vz(z(t2 + T ))− Vz(z(t2)) ≤ − ∫ t2+T

t2
α3(‖z(t)‖)dt +

∫ t2+T

t2
πT (z(t))(yd(θ1(t)) + ẽy(t))dt

≤ − 3
4α3

(
δ

Lσ

)
T +

∫ t2+T

t2
πT (z(t))yd(θ1(t))dt ≤ − 1

4α3

(
δ

Lσ

)
T,

(43)

where we bounded the term
∫ t2+T

t2
πT (z(t))yd(θ1(t))dt by combining (12), (40) and (33),

∫ t2+T

t2
πT (z(t))yd(θ1(t))dt ≤ πT (z(t2))

∫ t2+T

t2
yd(θ1(t))dt + My

∫ t2+T

t2
‖π(z(t))− π(z(t2))‖dt

≤ 1
4α3

(
δ

Lσ

)
T + MyLπ

(
‖z(t2)‖+ Lf2

Lf1
(1 + My)

) ∫ t2+T

t2
(eLf1(t−t2) − 1)dt

≤ 1
4α3

(
δ

Lσ

)
T + MyLπ

(
α−1

1 (c?) + Lf2
Lf1

(1 + My)
)(

1
Lf1

(eLf1T − 1)− T
)
≤ 1

2α3

(
δ

Lσ

)
T.

(44)

From (43) we deduce that there exists t3 = t2 +mT , m ∈ N, such that Vz(z(t3)) ≤ α1

(
ε

Lσ

)
−2Mπ(My +

1)T . We show that there exists time t4 , t3 + lT , l ∈ N, such that

Vz(z(t4)) ≤ α1

(
ε

Lσ

)
− 2Mπ(My + 1)T, (45)

∀t ∈ [t3, t4], Vz(z(t)) ≤ α1

(
ε

Lσ

)
. (46)

Bound (39) guarantees that Vz(z(t)) ≤ α1

(
ε

Lσ

)
−Mπ(My + 1)T , ∀t ∈ [t3, t3 + T ]. If Vz(z(t3 + T )) ≤

α1

(
ε

Lσ

)
− 2Mπ(My + 1)T , then (45)-(46) hold for t4 = t3 + T . If however, Vz(z(t3 + T )) ≥ α1

(
ε

Lσ

)
−

2Mπ(My +1)T then from (39) and (43) we have Vz(z(t3+2T )) ≤ α1

(
ε

Lσ

)
−Mπ(My +1)T − 1

2α3

(
δ

Lσ

)
T

and Vz(z(t)) ≤ α1

(
ε

Lσ

)
, ∀t ∈ [t3 + T, t3 + 2T ]. Repeating this argument l times, where l ≥ 2Mπ(My+1)

α3( δ
Lσ

) ,

we get Vz(z(t3 + (l + 1)T )) ≤ α1

(
ε

Lσ

)
− Mπ(My + 1)T − l

2α3

(
δ

Lσ

)
T ≤ α1

(
ε

Lσ

)
. Thus conditions

(45)-(46) hold for t4 = t3 + (l + 1)T . Finally, by induction we have that the condition (36) holds with
t? = t3.

¥


