
arb

code version 0.54

Dalton Harvie

August 12, 2015

1 What is arb?

arb solves arbitrary partial differential equations on unstructured meshes using the finite
volume method. The code is written in fortran95, with some meta-programming done
in perl with help from maxima.

The primary strengths of arb are:

• All equations and variables are defined using ‘maths-type’ expressions written by
the user, and hence can be easily tailored to each application;

• All equations are solved simultaneously using a Newton-Raphson method, so im-
plicitly discretised equations can be solved efficiently; and

• The unstructured mesh over which the equations are solved can be componsed of
all sorts of convex polygons/polyhedrons.

arb requires a UNIX type environment to run, and has been tested on both the Apple
OsX and ubuntu linux platforms. Certain third party programs are used by arb:

• A fortran compiler; ifort and gfortran are supported;

• The computer algebra system maxima;

• A sparse matrix linear solver: UMFPACK, pardiso and (currently a single) Harwell
Subroutine Library routines are supported; and

• The mesh generator gmsh.

Further details about how to get and install this software are given in section 2.3.

arb is copyright Dalton Harvie (2009–2014), but released under the GNU General Public
Licence (GPL). Further details of this licence can be found in the licence directory once
the code has been unpacked.

1

http://maxima.sourceforge.net/
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.pardiso-project.org/
http://geuz.org/gmsh/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

2 Installation

2.1 No-nonsense setup on ubuntu 10.04 or 12.04:

1. Install required packages via apt-get:

sudo apt-get install maxima maxima-share gfortran

liblapack-dev libblas-dev gmsh curl gnuplot paraview valgrind

2. Download the arb files, unpack the archive, move to the working directory and
create the directory structure (see section 2.4 for more detail)

wget http://people.eng.unimelb.edu.au/daltonh/

downloads/arb/code/latest.tar

tar -xf latest.tar

cd arb_*

./unpack

3. Download and compile the suitesparse solver (see section 2.3.4 for more detail)

cd src/contributed/suitesparse/

make

cd ../../..

4. Run a test simulation and view the results (see section 3 for more detail)

./arb

gmsh output/output.msh

On ubuntu 8.04 the versions of perl, gfortran and gmsh in the standard repositories
are too old to be installed via this method.

2.2 No-nonsense setup on OsX:

Installation on OsX is slightly more fiddly. This procedure is known to work on OsX 10.6
and 10.8, and previously I had it working on OsX 10.4.

1. Install Apple’s Xcode developer package.

2. Install a gfortran binary package as per section 2.3.2

3. Install a maxima binary package as per section 2.3.1

4. Follow steps 2 and onwards from the ubuntu instructions.

2

2.3 Installing prerequisit software (in more detail)

2.3.1 Maxima

Equation generation is performed using the Maxima Computer Algebra system. It is
released under the GNU General Public Licence (GPL) and is available for free. To check
whether you have it installed already try typing maxima. If the program is installed you
will enter a symbolic maths environment. Then check that the command load(f90);

finds these libraries, and then quit using quit();. If you need to install it:

Installing maxima on ubuntu:

On ubuntu linux maxima and the f90 package can be installed using

sudo apt-get install maxima maxima-share

Installing maxima on OsX using a binary package:

A precompiled version of maxima for the mac is available from sourceforge. This is a
fastest way of getting things going. Download the package and copy the application
‘Maxima.app’ to your
Applications directory as directed. To make it available from the command line place
the script misc/maxima OsX/maxima somewhere in your path (for example in a bin

directory).

Installing maxima on OsX using fink/macports:

On OsX maxima can be installed using either macports or fink package managers. For
fink enable the unstable branch and use

sudo fink install maxima

For macports replace fink with port in the above. Compilation will take some time.

2.3.2 A fortran compiler and the blas/lapack libraries

Two different compilers have been tested with arb: ifort (Intel) and gfortran. The
Intel Fortran compiler ifort is probably the faster of the two as currently also supports
OMP execution. It also includes the Intel Maths Kernel library which itself includes the
excellent Pardiso linear solver routines (see section below): however this compiler is not
free except on linux and even then, only under specific non-commercial circumstances.
The GNU compiler gfortran is an easier option to get going, and is freely available on
both the OsX and linux platforms. It does not include the Pardiso routines but with the
new interface to the UMFPACK routines this isn’t a tremendous disadvantage (except
for the OMP caveat).

3

http://maxima.sourceforge.net/
http://www.gnu.org/licenses/gpl.html
http://sourceforge.net/projects/maxima/files/
http://www.macports.org/
http://www.finkproject.org/
http://software.intel.com/en-us/intel-compilers/

Compiler choice is made automatically when the arb script is run (defaulting to ifort

if it exists, otherwise using gfortran). These defaults can be overwritten with the arb

options --compiler-gnu or --compiler-intel.

Installing ifort:

The non-commercial download site for ifort on linux is here. For OsX the compiler must
be bought. Make sure you install both the compiler and MKL (Math Kernel Libraries).
ifort versions of 11.1.069 and newer (including Composer XE) have been tested on
both linux (v12 and v13) and OsX (v12 only).

Installing gfortran on ubuntu:

On ubuntu linux gfortran and the lapack/blas libraries can be installed using

sudo apt-get install gfortran liblapack-dev libblas-dev

gfortran version 4.2.4 on ubuntu 8.04 doesn’t seem to work on some computers (inter-
nal compiler error) whereas version 4.4.3 on ubuntu 10.04 does. The version on ubuntu
12.04 is fine too. On ubuntu 8.04 you could try downloading a newer binary version of
gfortran but I haven’t tried this.

Installing gfortran on OsX using a binary package:

The easiest way to install an up-to-date version of gfortran is via a precompiled pack-
age. One that worked for me is found here - currently (23/2/11) this is version 4.6.
Alternatively this hpc site and this gcc site gives information about other precompiled
versions. Check that once installed the gfortran executable is in your path - that is,
typing gfortran at the command line should find the compiler. Version 4.5 of gfortran
should also work fine.

Installing gfortran on OsX using fink/macports:

gfortran can also be installed by the package managers but there are some issues with
this. gfortran is included as part of fink’s gcc packages (for example gcc45) but it will
need to be installed as 64bit, otherwise there will be some compatibility problems with
UMFPACK (unless this is modified). With macports it is also part of gcc but needs to
be specified as a variant:

sudo port install gcc46 +gfortran

Again, compilation will take some time. I have not tested this fully.

2.3.3 Pardiso

The pardiso sparse linear matrix solver is included as part of the Intel Math Kernel Library
which is packaged with the Intel Fortran compiler (see above).

4

http://software.intel.com/en-us/articles/non-commercial-software-download/
http://gcc.gnu.org/wiki/GFortranBinariesMacOS
http://hpc.sourceforge.net/
http://gcc.gnu.org/wiki/GFortranBinaries#MacOS
http://www.pardiso-project.org/
http://software.intel.com/en-us/intel-compilers/

If using the intel compiler then this solver will automatically become available (check
the initial output when running arb to see if this has been found). There is currently
no interface to use this solver external to the Intel Math Kernel library.

2.3.4 UMFPACK

The UMFPACK sparse linear solver is part of the suitesparse collection of sparse matrix
routines written by Prof. Tim Davis. It is written in c and released under the GNU GPL
(see conditions here).

UMFPACK depends on ‘METIS - Serial Graph Partitioning and Fill-reducing Matrix
Ordering’. METIS is freely available but not free distributable. For more details see the
conditions here.

The installation process for the UMFPACK/METIS combination has been automated so
that it can be easily used with arb. To install these packages and compile them in a
form that is suitable for arb:

cd src/contributed/suitesparse

make

The make command will download version 3.6.0 of UMFPACK and version 4.0.3 of
METIS (using curl - install on ubuntu using sudo apt-get install curl if you don’t
have it already), and then compile these libraries using the gcc compiler. A wrapper script
for using UMFPACK from fortran (included with UMFPACK) will also be compiled. The
files will be placed in the src/contributed/suitesparse directory, so will not overwrite any
alternative suitesparse or metis libraries already on your system. You need to have gcc

installed on your system to build these libraries.

If all goes well the following files will be placed in src/contributed/suitesparse to be used
by arb:

libamd.a

libcamd.a

libccolamd.a

libcholmod.a

libcolamd.a

libmetis.a

libumfpack.a

umf4_f77wrapper.o

All of these files are required for UMFPACK to successfully run.

You also need to have a version of the blas libraries available for arb to use UMFPACK.
On OsX these should already be installed as part of Xcode (see section 2.3.2). On ubuntu

5

http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cise.ufl.edu/research/sparse/umfpack/current/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/faq?q=metis/metis/faq#distribute

linux they can be installed using sudo apt-get install libblas-dev if they’re not
already present.

To remove the compiled libraries and files type

make clean

from the suitesparse directory. This will leave only the downloaded files (ready to be
reused). To remove the suitesparse and metis downloads as well, type

make clean_all

Note that UMFPACK library compilation is dependent on the type of machine architec-
ture and the libraries will need to be remade if transferred from one machine to another
- do a make clean and then a make again from within the suitesparse directory.

arb has been tested with the following combinations of umfpack/suitesparse and metis:

• UMFPACK.tar.gz 02-Jun-2010 11:46 and metis-4.0.tar.gz (4.0.1)

• SuiteSparse-3.6.0.tar.gz and metis-4.0.tar.gz (4.0.3)

2.3.5 Perl

On ubuntu or OsX you should already have a version of perl installed.

2.3.6 Harwell Subroutine Library

An interface to the subroutine MA28D has been implemented. With the availability
of UMFPACK, there is no real reason to use this, except for development. For more
information see the src/contributed/hsl ma28d directory. An interface to MA48D
is under development (don’t hold your breath though!).

2.3.7 Numerical Recipes in Fortran 77

These are an alternative to using some of the lapack routines. There is no reason to use
these, except for development. For more information see the src/contributed/numerical recipes

directory.

6

http://www.hsl.rl.ac.uk/
http://www.nr.com/

2.3.8 Gmsh

While not integral to the arb code, the mesh and data format which arb uses is that
developed for gmsh. Gmsh is a mesh element generator which can be run using scripts or
via a graphical interface and can be used for post-processing (visualisation) too. Gmsh
uses the GNU General Public Licence (GPL).

There is some great introductory material available on the gmsh website on the use of
this program, particularly these online screencasts.

Installing gmsh on ubuntu 10.04/12.04:

sudo apt-get install gmsh

On earlier ubuntu versions the repository version is too old.

Installing gmsh on anything else or getting the latest version on ubuntu:

Download a version from the gmsh website. Version 2.4 is the minimum required for arb
- most importantly the msh file format produced needs to be 2.1 or greater. I have had
no problems using development versions that are available.

2.3.9 ParaView

There is now capability to output in the .vtk format, used by (for example) ParaView.
To install ParaView on ubuntu use:

sudo apt-get install paraview

On the mac there are binaries available. Input of this file format is not supported.

2.3.10 Tecplot

Tecplot is proprietary visualisation software. arb can output to its *.dat asci format,
but not input from this format.

2.4 Installing arb

As arb is distributed as source code that is compiled for each application, arb is not
installed in the traditional sense. Instead, for each new simulation a new self-contained
copy of the source files is unpacked from a source tarball. Once created arb is run from
a working directory which contains a specific structure of files and subdirectories. Two
routines, pack and unpack, are provided to automate the process of managing this
required file/subdirectory structure.

7

http://geuz.org/gmsh/
http://www.gnu.org/licenses/gpl.html
http://geuz.org/gmsh/
http://geuz.org/gmsh/screencasts/
http://geuz.org/gmsh/
http://www.paraview.org/
http://www.tecplot.com/

2.4.1 Unpacking the code

To create a new version of arb, a new working directory should be created or downloaded
that contains the five files

archive.tar.gz

unpack

readme

licence

version

Using the command

./unpack

from within this directory will unpack the archive ready for use.

The remainder of this section details the file structure and how to pack up the code
again.

2.4.2 The working directory and file structure

Once the archive is unpacked the working directory will contain the following subdirec-
tories and files/links:

• src directory: contains the main fortran source code of arb, and the makefile

necessary to build everything (except for the contributed libraries). It also con-
tains the meta-programming perl script setup equations.pl and a template
file equations module template.f90 which are used to create the fortran file
equations module.f90 within build which is specific to each problem.

• src equations/contributed directory: This directory may/should/can contain
contributed third party code that can be used by arb, along with associated inter-
face modules — for example, linear solver routines. There is a separate subdirec-
tory for each package. Each directory contains error handling modules that handle
runtime cases where the third party routines are not available, and also some brief
installation instructions. Most directories work on the drop-box principle — if the
required files are available then they will be included in the arb executable.

• build directory: all building is done within this directory. Some notable files are
equations module.f90 which contains all of the fortran coding that is specific
to the current problem, and fortran input.arb which is the only input file read
by the executable fortran file.

• tmp directory: temporary files are stored within this directory.

8

http://www.chemeng.unimelb.edu.au/people/staff/daltonh/downloads/arb/code/latest.tar

• tmp/setup directory: includes files produced during the setup of the problem (run-
ning of setup equations.pl). If you’re having to debug a problem setup then
this is the place to look. The file debugging info.txt contains a lot of detail
regarding the equation setup. The file unwrapped input.arb is a completely un-
wrapped version of the last run input, in which any INCLUDEd files are unwrapped,
with any relevant text strings substituted. This file can be input directly to arb
again if desired.

• output directory: output files from a simulation are placed in here.

• misc directory: contains miscellaneous files — for example: a create mesh script
which builds a .msh file from any .geo file in the working directory; a batcher.pl

script which automates the running of consecutive arb runs; and a test suite

script which runs all cases in the examples directory as a check.

• doc directory: contains documentation including this manual.

• examples directory: example problem-specific *.arb files with their associated
geometry files (structure files with .geo extension, and mesh files with .msh ex-
tension) are stored here. Looking through these examples is currently the best
way to learn about the language syntax and generally understand how to run arb
simulations.

• templates directory: New for version 0.4, this directory contains template *.arb

files for doing common chunks of setup. For example, there is a navier stokes

directory which contains all of the code chunks necessary to run Navier-Stokes
problems. There are also directories to implement high-order limited advection in
both two and three dimensions. These pieces of template code can be used via
the INCLUDE ROOT and INCLUDE commands.

• pack script: packs the directory for transportation to another location or computer.
This script has many useful options — try ./pack --help.

• licence directory: contains licence details, including the (GNU GPL) licence
under which arb is released and the specific version of the code. A history file
within the directory packer history.txt records the distribution history of this
particular code directory.

• *.arb files: these files and an associated .msh or .geo file contain all the problem-
specific information required for a particular simulation.

• arb script: this shell script is a wrapper script for setting-up, making and running
arb. You can pass options to this script to control the compilation process —
for example choose between the gnu and intel compilers, whether using OMP or
not, whether you are restarting a simulation or starting from scratch. This script
works out when the equation meta-programming has to be redone or not, and
when recompilation is necessary, although with other options you can overwrite
this behaviour. To list the options type arb --help.

9

2.4.3 Packing the code

To pack a simulation ready to transport or backup, use the command

./pack

from within the working directory. This will create a subdirectory with a name of the
form arb v[version] [date] which contains all files necessary to run arb. Following
the command with a name, as in

./pack a_name

will create the archive in a subdirectory named a name instead of the default.

The script pack accepts a number of options. By default only files within the examples

or gmsh directories that are specific to this manual are included in the archive. The
options --example, --misc or --all specify that all files within either the example,
misc or both directories are contained within the archive. By default only source code
within the src/contributed directory that is not subject to a non-free third party
licence is included in the archive. Using the options --contributed or --all causes all
files in these directories to be archived (including the build suitesparse libraries). Using
--distribute means that no third party software is included in the archive and example
input files will be copied to the working directory. The option --build means that all
files in the build directory will be included in the archive. This may be useful if you want
to transport the simulation to another machine that may not have maxima installed (for
example).

Use ./pack --help to list other options.

10

3 Running simulations

3.1 A super-quick example: A heat conduction simulation

Once the code is unpacked you should be left in the working directory. If this version
has been downloaded from the homepage then the three files

heat_conduction_around_ellipse.arb

surface.geo

surface.msh

that exist in the working directory specify a simple heat conduction problem. If they don’t
exist for whatever reason they can be copied from examples/manual/heat conduction around ellipse

to the working directory.

Now run the simulation using

./arb

If all goes well the code will be metaprogrammed and compiled, the simulation will run
and output will be produced in the directory output. Note that if a specific .arb file is
not passed to the arb script, as above, it will default to any .arb files that exist within
the working directory. The above code worked because only one .arb file should have
been present in the working directory when the code is first unpacked.

To view the output type

gmsh output/output.msh

You should see the temperature field around a heated ellipse.

3.2 Other examples:

Other example simulation files are included in the subdirectories of examples. To run
any of these first copy the relevant *.arb and *.geo or *.msh files to the working
directory. If only a *.geo file is included (or if you want to change the mesh resolution)
create the .msh file via the included create mesh script:

misc/create_msh/create_msh geo_file.geo

replacing ‘geo file.geo’ with name of the file. Note that an optional first numeric argu-
ment can be passed to the script to control the relative cell size — the smaller the parame-
ter, the smaller the mesh element size and greater the number (see misc/create msh/create msh

--help). Finally run arb using ./arb and view the results.

Right now the examples include:

11

• 1d nonuniform diffusion: diffusion along a line containing two diffusion coef-
ficients (1D)

• advection 2d box test: advection of scalar in two dimensions demonstrating
high-order limited advection inclusions

• bouncing ball: a transient bouncing ball

• cube laplacian dhctac10 2012: nonlinear laplacian in a 3D box, presented at
the CTAC10 conference (and shown in associated paper [?])

• heat conduction around ellipse: diffusion (nominally heat) around an ellipse
within a box (2D)

• heat conduction with linked regions: similar to the above but demonstrat-
ing the use of linked regions (2D)

• inviscid burgers equation: 1D transient

• laplacian in square: comparison between the numerical and analytical solution
for a laplacian problem (2D)

• slit flow with structured mesh xy plane: Navier-Stokes flow with struc-
tured mesh

• slit flow with structured mesh xz plane: Same but in different direction

• steady state channel flow with cylinder: CFD benchmark problem of fluid
flow around a slightly offset cylinder at Re = 20 (2D)

• stokes flow through cylinder: Stokes flow through a pipe in 3D

• weiluns stokes sphere: Flow around a sphere in cylindrical polar coordinates

3.3 The arb run script:

This shell script handles the perl meta-programming, fortran compiling, linking and run-
ning of arb. It uses a makefile (src/makefile) to determine when various components
have to be remade. All code building is done in the directory build.

By default the arb script will try to do all that is necessary to run a simulation from
scratch (except make the suitesparse libraries), however its behaviour can be altered by
(at least) the following options:

• --clean: remove all meta-programmed fortran source and executable objects
before building again.

• --clean-compile: remove all executable objects before building again. This may
be handy if you want to run a simulation on a machine that has a fortran compiler,
but not say maxima.

12

• --clean-setup: remove all meta-programmed fortran source before building
again.

• --setup: create perl meta-programmed fortran source (default).

• --no-setup: do not recreate perl meta-programmed fortran source.

• --compile: create executable objects by compiling fortran source (default).

• --no-compile: do not recreate executable objects by compiling fortran source. If
both --no-setup and --no-compile are specified, the existing arb executable
will be rerun regardless of changes to the .in files.

• --run: run the arb executable once it is built (default).

• --no-run: do not run the arb executable.

• -q|--quiet: send screen output to output/output.scr.

• -c|--continue: continue on from a previous simulation. This is the not the
default behaviour. Unless this is specified the contents of output will be cleared
out before each simulation. Note that a copy of the previous output files are
placed in output/previous so if you accidentally run arb without the continue
flag (once) you can get the old files back from this directory.

• -d|--debug: compile the fortran using debug flags, and run the executable within
the gdb environment.

• --compiler-gnu: compile the fortran using gfortran (default if ifort is not
present).

• --compiler-intel: compile the fortran using ifort (default if ifort is present).

3.4 A more detailed guide: Newtonian fluid flow

To discuss the working method in more detail we use the example of the steady-state flow
of a Newtonian fluid around a cylinder that is provided in examples/steady state channel flow with cylinder.

There are 5 basic steps to setting up, running and debugging an arb simulation:

1. Create a mesh: Geometry definition and mesh creation can be performed in
gmsh. The domain geometry details are stored in a .geo file, which can be
created by hand (file editing) or with the help of the gmsh GUI. Once a geometry
(.geo file) has been created, gmsh can mesh this to produce a .msh file which is
the file that is read in by arb. You can either do this via the gmsh GUI, or via the
simple create mesh script (mentioned above) which calls gmsh. When creating
a 3D mesh be sure to optimise the mesh after creation (greatly improves mesh
quality - create mesh does this by default for 3D meshes).

13

arb uses the concept of ‘regions’ to locate various equations (for example boundary
conditions, domain equations etc) and these should be defined in the .geo file prior
to meshing (some regions are also created by arb). Regions have names that are
delimited by the < and > signs: for example <inlet> and <outlet> (generally any
user-defined names are delimited this way in arb). Like variable names (discussed
later) region names can contain any characters except for " and #. Region and
variable names are case sensitive.

In the example geometry file the boundary regions <inlet>, <outlet> and <cylinder>

have all been defined as physical entities. The area region of <flow domain>

which contains all mesh cells within the flow domain has also been created. This
region is necessary as by default, gmsh does not write out mesh cells to a mesh
file unless they are part of a physical entity. Note that certain region names are
reserved: see section 4.2 for more details.

2. Edit the *.arb input file: Aside from the mesh file, all information that is spe-
cific to a simulation is contained in this file. Some commands/statements/options
within this file will require the fortran to be recreated and the fortran executable
to be recompiled, while other commands/statements/options within this file are
passed directly to the fortran exectuable at run time (see build/fortran input.arb).

Further details regarding the syntax of the *.arb file can be found in Sections
4 and 5. As these are not very complete, it is a good idea to look through the
example files too.

3. Run arb: From the working directory

./arb

will run arb.

The first thing that happens is that the makefile checks what libraries/software
are available and prints diagnostic messages to the screen.

The perl script setup equations.pl is then called. It reads any *.arb files that
are present in the working directory, and using maxima, creates the fortran source
code file build/equations module.f90. The name of a specific *.arb file can
also be given, as in

./arb steady_state_channel_flow_with_cylinder.arb

to only run this one simulation. setup equations.pl writes plenty of progress
information to the screen - if all goes well this output will end with the state-
ment ‘SUCCESS’. Otherwise errors in the *.arb file will need to be found and
corrected. Aside from the screen output, more debugging information is written
by setup equations.pl to the file tmp/setup/debugging info.txt. Other
files in the tmp/setup directory trace the interaction between the perl script and
maxima.

Next the fortran code is compiled. If the debugging option has been requested
(./arb --debug) the any error messages will be contained in build/make.log.

14

If all goes well the resulting executable will run. Alongside the .msh and output.stat

(statistics) files written to the directory output, other files in this directory can
be used to diagnose problems. If these don’t help, there are many debug and
debug sparse logicals scattered through the code, and in src/general module.f90

there are options to print out alternative output files.

4. View results: arb produces a file output/output.msh which can be opened
by gmsh for viewing. The file output/output step.csv is also produced which
contains (by default) mainly none centred variables, and can be easily graphed
using the script misc/plot step/plot step.pl.

5. Rerun the simulation: The output/output.msh file produced by arb includes
both the mesh information as well as variable data, so can be passed back to arb
as an input .msh file for subsequent simulations. To do this replace the existing
MSH FILE line in the *.arb file with

MSH_FILE "output/output.msh" input

and rerun arb, without first removing this file via

./arb --continue

If you forget the --continue flag then you can recover the previous output files
that are saved in output/previous for just this emergency.

15

4 Simulation setup reference

4.1 Meshes

arb uses an unstructured mesh composed of cell elements that are separated by face
elements. The dimension of each element is specified on a per-element basis, consis-
tent with the particular computational domain that the element is within (that is, not
globally). Cell elements are classified as either boundary cells (that is, on the boundary
of a domain) or domain cells (that is, contained within a domain). Domain cells have
a dimension that is equal to that of the domain they are in (ie, dimension 3/2/1 if the
domain is a volume/surface/line, resp.). Boundary cells have a dimension that is one
less than that of the associated domain (ie, dimension 2/1/0 if the domain is a vol-
ume/surface/line, resp.). Face elements are any elements that separate cell elements.
Face elements also have a dimension that is one less than that of the domain they are
within. Some face elements are specified explicitly within a .msh file (if they are part of a
physical entity such as <inlet> for example), while the remainder are generated by arb
when the mesh is read in. Face elements are also classified as being either domain faces
or boundary faces. Each boundary face has the same geometry, and is conincident with,
a boundary cell. Hence, a mesh has the same number of boundary faces as boundary
cells.

Meshes are read in from .msh files, generally produced by the gmsh program. Multiple
.msh files can be read in by arb for each simulation. arb has been coded to be able to
handle any poly-sided first order elements supported by the gmsh file format. It has been
tested to date (v0.3) with tetrahedron, boxes and prisms in 3D, triangles and rectangles
in 2D, lines in 1D and points in 0D. Tetrahedron, triangles, lines and points are the
default element geometries created by gmsh.

Meshes and data are also exported by arb using the .msh format. During every simulation
all domains and all output-enabled data will be written by default to the output/output.msh
file. Other files may also be written, corresponding to any .msh files that are read in
(with any associated output-enabled data). Regions imported from .msh files as well as
regions created by arb will be exported to any written .msh files, however note that as
the physical entities handled by gmsh can only have a single dimension, elements that
have a dimension that is less than any others within a region will not be associated with
that region in any arb-created .msh files. This is relevant for example when a compound
region is created that contains both domain and boundary cells. When this arb-written
.msh file is displayed by gmsh it will only appear to contain the domain cells.

4.1.1 Cell and face element specification

The distinction between cell elements and face elements is not made by gmsh or con-
tained explicitly in the .msh file, but rather must be made by arb when a .msh file is
read in. Gmsh’s behaviour is to only write an element to a .msh file if it is a member
of a physical entity. Further, each physical entity has a single dimension. So, to decide

16

whether an element is either a face or cell element, arb does two things when reading in
each .msh file:

1. The maximum dimension of all physical entities with the .msh file is found. This
is stored as the dimension of the particular mesh;

2. When an element is read in that has the same dimension as that of the mesh, it is
regarded as a cell element. If it has a dimension that is one less than that of the
mesh, it is regarded as a face element. If it has a dimension that is two or more
less than that of the mesh, then the element is ignored.

So what’s the implication of all this? Generally arb will be able to work out from
each .msh file which elements within it are cell elements and which are face elements.
The only time it won’t is when there are multiple domains having different dimensions
contained within the one .msh file. For example, you have both a volume domain and
a surface domain specified within a .msh file, on which you want separate (but possibly
linked) sets of equations solved.

If you do have multiple domains having different dimensions contained within the one file
then the dimension of all regions (that is, physical entities) contained within the .msh file
that belong to any domains that have a dimension that is less than that of the .msh file
need their centring explicitly specified. For example, if a .msh file contains both a volume
and a surface domain, then all regions associated with the surface domain must have
their centring explicitly specified. Statements for specifying this cell/face centring for
particular regions (gmsh physical entities) are described in section 4.2.1. Alternatively,
there is another way that may work for your simulation: As arb can read multiple .msh

files for each simulation, it may be easier to place domains of different dimensions
in separate .msh files. The cell/face specification will then be handled automatically
without additional statements in the constants.in file (If you want multiple domains
to share common mesh features however this may be difficult to accomplish using gmsh).

4.1.2 Data and mesh file rereading

The .msh files written by arb can contain data. Variables associated with cell elements
can be written in either ElementData (a uniform value for each cell) or ElementNodeData
(values vary linearly within each cell) gmsh formats. Variables associated with face el-
ements will only be written in ElementData format. Variables which are none centred
are written using a special Data format which gmsh won’t display. Note that face and
cell boundary elements are not written separately to each .msh file by arb, but rather
as a single element. Hence both cell and face boundary data is associated with a single
element in each .msh file.

One purpose of exporting data to a .msh file is to provide initial conditions for another (or
next) simulation. In this case generally you just have to specify the output/output.msh
file from the previous simulation as the mesh file to be read in for the next simulation.
Note that each arb-written .msh file contains all the information about a mesh that was

17

originally contained in the mesh-only gmsh-written .msh file: Hence, when starting a
simulation from an arb-written datafile is it not necessary (nor does it make sense) to
also read in the original gmsh .msh file. Also note that data files that contain variable
values can only refer to mesh elements that are specified in the same data file (unless
some fancy facelink magic is worked in your equations).

4.1.3 Mesh read and write options

Mesh and data input and output is specified by MSH FILE statements within the constants.in
file:

MSH_FILE "msh_file_name_including_path" comma ,separated ,list ,

of,options # comments

The file name refers to the read location. Options for the default output file should be
referred to by output/output.msh (which is the read location if it did exist). If a .msh

file is to be written it will always be written to the output directory. As a result, all file
basenames must be unique.

Three types of options are available for each .msh file:

Output options:

These options specify what information is to be written to the .msh file.

• output: Both a mesh and all specified variables will be written.

• centringoutput: Both a mesh and all specified variables will be written. Output
will be split between three files, each containing variables of only a single centring
(cell, face and none). This can be handy for gmsh compatibility when doing cutgrid
and streamtrace operations for example.

• centringmeshoutput: Only the mesh is written, split between three files as
above.

• meshoutput: Only the mesh is written.

• nooutput: Neither the mesh or any data will be written.

• vtkoutput,centringvtkoutput,meshvtkoutput,centringmeshvtkoutput,novtkoutput:
Same as the *.msh file options, but for *.vtk output, compatible with ParaView
(for example). The default is novtkoutput.

• datoutput,centringdatoutput,meshdatoutput,centringmeshdatoutput,nodatoutput:
Same as the *.msh file options, but for *.dat output, compatible with Tecplot.
The default is nodatoutput.

18

By default all meshes have the nooutput option specified, with the exception of the
output/output.msh mesh, which has option output.

Input options:

These options specify what information is to be read from the .msh file.

• input: Both a mesh and all relevant data will be read.

• centringinput: Both a mesh and all relevant data will be read. In this case
the existing .msh is split into three, each containing variables of only a single
centring (cell, face and none) as output from a previous simulation employing
centringoutput. In this case the filename should be specified without the cen-
tring, for example output/output.msh (rather than output/output.cell.msh).

• centringmeshinput: Only the mesh is read, split between three files as above.

• meshinput: Only the mesh is read.

• noinput: Neither the mesh or any data will be read.

By default all meshes have the input option specified, with the exception of the
output/output.msh mesh, which has option noinput.

Data format options:

These options specify how cell centred data will be written to the .msh file. These
options overwrite any data format options specific to individual variables.

• elementdata: All cell data will be written using the ElementData format.

• elementnodedata: All cell data will be written using the ElementNodeData

format.

• elementnodelimiteddata: All cell data will be written using the ElementNodeData
format, but with the gradients in each cell limited so that each vertex value is
bounded by surrounding cell values.

By default all meshes have no data format options specified, the format instead being
determined by the options contained in the individual variable definitions within input
.arb file.

4.2 Regions

Regions are sets of elements that are used to locate user-defined variables and equations.
Each region may contain only mesh elements of the same centring (that is, either cell
or face elements, but not both). Regions may contain elements of different dimensions

19

(see caveat in previous section regarding gmsh display of this though). Regions can
be defined by the user directly in gmsh when the mesh is generated, or via statements
in the .arb file that are interpreted when arb is run. There are also several generic
system generated regions. Region names must be delimited by the <> characters, and
within these delimiters cannot contain the characters <, >, # or ". Apart from these four
characters their names may contain any non-alphanumeric characters.

4.2.1 Defining regions via gmsh

Regions are specified in gmsh by defining and then naming physical entities. To do this
via the gmsh GUI:

• Add a physical entity (under the physical groups tab) by selecting various elemental
entities.

• Edit the geometry file (using the edit tab) and change the physical entity’s name
from the numerical name given by gmsh to the required <> delimited name suitable
for arb.

• Save the .geo file.

• Reload the .geo file again (using the reload tab). If you now check under the
visibility menu that the physical entity is visible.

You can specify the cell or face designation of any gmsh element using the following
commands within the constants.in file. This is seldom necessary (although it doesn’t
hurt either), unless the .msh file it is contained within contains multiple domains, of
differing dimensions (see discussion in previous section).

CELL_REGION <gmsh_region_name >

FACE_REGION <gmsh_region_name >

4.2.2 Defining regions within the constants.in file

There are several types of region specification statements that can be used in the
constants.in file. Regions specified by these statements will overwrite any regions
defined in the .msh files, however a warning is issued (This allows .msh files to be
reread without altering region definition statements). The specification statements are:

Compound region:

CELL_REGION <name > "COMPOUND +<region1 >+<region2 >-<region3 >"

comments

FACE_REGION <name > "COMPOUND <region1 >-<region2 >" # comments

20

A compound region is defined using other existing regions. All regions that are used in
the definition (ie, <region1>, <region2> and <region3> in the above examples) must
have the (same) centring that is specified by the REGION keyword. If a + sign precedes
a region name in the list of regions, then all the mesh elements that are in the following
region are added to the new compound region, if they are not already members. If a -

sign precedes a region name in the list of regions, then all the mesh elements that are
in the following region are removed from the new compound region, if they are (at that
stage) members of the new compound region. If no sign immediately precedes a region
name in the defining list then a + sign is assumed. When constructing a compound
region arb deals with each region in the defining list sequentially; so whether a mesh
element is included in the compound region or not may depend on the order that the
regions are listed.

At region:

S
ea
rc
h
re
f:

A
T

re
gi
on

in
s
e
t
u
p
m
o
d
u
l
e
.
f
9
0

CELL_REGION <name > "AT x1 x2 x3" # comments

CELL_REGION <name > "AT x1 x2 x3 PART OF <domain >" # comments

FACE_REGION <name > "AT x1 x2 x3" # comments

FACE_REGION <name > "AT x1 x2 x3 PART OF <inlet >" # comments

This statement defines a region that contains one cell or one face mesh element. The
element chosen lies closest to the point (x1,x2,x3). The values x1, x2 and x3 can be
real or double precision floats. An optional PART OF <a region> confines the choice
of an element to those within <a region>. In this case <a region> must have the
same centring as the region statement.

Within box region:

S
ea
rc
h
re
f:

W
IT
H
IN

re
gi
on

in
s
e
t
u
p
m
o
d
u
l
e
.
f
9
0

CELL_REGION <name > "WITHIN BOX x1_min x2_min x3_min x1_max

x2_max x3_max" # comments

FACE_REGION <name > "WITHIN BOX x1_min x2_min x3_min x1_max

x2_max x3_max" # comments

This statement defines a region including all elements (cell or face) that lie within a box
with faces orientated with the coordinate directions, and location defined by the two
corner points having the minimum (x1 min x2 min x3 min) and maximum (x1 max

x2 max x3 max) coordinate values. An optional PART OF function is planned.

Boundary of region:

CELL_REGION <name > "BOUNDARY OF <region >" # comments

FACE_REGION <name > "BOUNDARY OF <region >" # comments

This statement defines a region that contains only the boundary elements (either cell or
face) that border the region <region>.

Domain of region:

21

CELL_REGION <name > "DOMAIN OF <region >" # comments

FACE_REGION <name > "DOMAIN OF <region >" # comments

This statement defines a region that contains only the domain elements (either cell or
face) that are associated with the region <region>.

Associated with region:

CELL_REGION <name > "ASSOCIATED WITH <region >" # comments

FACE_REGION <name > "ASSOCIATED WITH <region >" # comments

This statement defines a region that contains both the domain and boundary elements
(either cell or face) that are associated with the region <region>. Effectively this is a
combination of the BOUNDARY OF and DOMAIN OF statements.

4.2.3 System generated regions

The following regions are generated by arb at the start of a simulation. The names
cannot be used for user-defined regions:

region name description
<all cells> all cells
<domain> internal domain cells
<boundary cells> cells located on the boundary
<all faces> all faces
<domain faces> internal domain faces
<boundaries> faces located on the boundary

Additionally, there are a number of system regions which may be used in user-written
expressions (see section 5) which specify sets of mesh elements relative to the current
position. These names cannot be used for user-defined regions either:

region name rel. to description
<celljfaces> cell faces that surround the current cell
<nobcelljfaces> cell faces that surround the current cell, unless the

current cell is on a boundary. In that instance
move to the neighbouring domain cell and then
cycle around the surrounding face cells.

<cellicells> cell cells that are local to the current cell (more
than just the adjacent cells)

<faceicells> face cells that are local to the current face (more
than just the adjacent cells)

22

<adjacentcellicells> cell cells that are strictly adjacent to the current
cell

<adjacentfaceicells> face cells that are strictly adjacent to the current
face (always two)

<adjacentfaceupcell> face cell that is adjacent to the current face in the
direction of the normal

<adjacentfacedowncell> face cell that is adjacent to the current face in the
opposite direction to the normal

<upwindfaceicells> face the cell that is upwind of the face, used
when performing faceave[advection] aver-
aging (see section 5. Not really a user region.

<downwindfaceicells> face the cell that is downwind of the face, used
when performing faceave[advection] aver-
aging (see section 5. Not really a user region.

<cellkernelregion[l=0]> cell surrounding faces used in a cell averaging kernel
(see section 5. Not really a user region.

<cellkernelregion[l=1-3]> cell surrounding cells used in cell derivative kernels
(see section 5. Not really a user region.

<cellkernelregion[l=4]> cell surrounding nodes used in a cell averaging ker-
nels (see section 5. Not really a user region.

<facekernelregion[l=0-6]> face surrounding cells used in face averaging and
derivative kernels (see section 5. Not really a
user region.

<noloop> face/cell dummy region which specifies no elements, or
the last element used in an operator’s context.

4.3 Variables

This section needs some rewritting: there is only one input file now

There are eight types of user defined variables: constant, transient, derived, unknown,
equation, output, condition and local. Each of these are stored in arb using the same
general data structure (fortran type var). Any of these variables can be defined by a user-
written expression in equations.in which is read by setup equations and interpreted
by maxima. Additionally, the constant type may be defined in constants.in and there
given (only) a numerical value. Along with the user defined variables, there are also
system defined variables which can be used in user-written expressions.

All variables have an associated compound variable type (scalar, vector or tensor) which
is used mainly for output purposes.

Details of both the user and system defined variables are given in this section.

4.3.1 Constant type variable defined in equations.in

Synopsis:

23

Constant variables are evaluated once at the start of a simulation. If defined in equations.in

they are defined using an expression which may contain only system variables and other
constants — in the latter case the constants must have been defined in either the
constants.in file or previously (above) in the equations.in file.

Defining statements:

CELL_CONSTANT <name > [multiplier*units] "expression" ON <

region > options # comments

FACE_CONSTANT <name > [multiplier*units] "expression" ON <

region > options # comments

NONE_CONSTANT <name > [multiplier*units] "expression" options

comments

CONSTANT <name > [multiplier*units] "expression" options #

comments

Statement components:

• (CELL |FACE |NONE |)CONSTANT (required): This keyword specifies the centring
of the variable. Constants that have cell or face centring vary over the simulation
domain, and have values associated with each cell or face, respectively (subject
to the region statement, below). None centred constants have one value that
is not linked to any spatial location. If the centring specifier is omitted from the
keyword (as in CONSTANT) then none centring is assumed (ie., keyword CONSTANT

is equivalent to keyword NONE CONSTANT).

• <name> (required): Each variable must have a unique name, delimited by the
< and > characters. Besides these characters, the variable may contain spaces
and any other non-alphanumeric characters except for double quotation marks "

(which demarcate the expression strings) and hash character # (which indicates
that a comment follows). If the name ends with a direction index, as in <u[l=1]>

or <gradp [l=3]>, then the variable is considered to be a component of a three
dimensional vector compound. Similarly, if the name ends with a double direction
index, as in <tau[l=1,3]>, the variable is considered to be a component of a three
by three tensor compound. Components of compounds that are not explicitly
defined are given a zero value (when used in dot and double dot products for
example). All defined components that are members of the same compound must
be of the same variable type, have the same centring, be defined over the same
region and have the same units and multiplier. Certain names are reserved for
system variables (see section 4.3.11).

• multiplier (optional): When reading in numerical constants, each value is mul-
tiplied by this value. At present not in use in equations.in.

• units (optional): A string which specifies the units for the variable. At present
this string is not interpreted by the code at all and the user must ensure that the
units used are consistent.

24

• "expression" (required): When a constant is defined in equations.in, this
double-quoted expression is used to specify the value of the constant. As they
may contain system variables and also other constants, they may vary throughout
the domain. For more details regarding the syntax of these expressions, see section
5.

• ON <region> (optional): This part of the statement determines over what region
the variable should be defined. It is only applicable for cell and face centred
variables, and must in these cases refer to a region that has the same centring as
the variable. If omitted then by default a cell centred constant will be defined on
<all cells> and a face centred constant on <all faces>. Note that referring
to a variable value outside of its region of definition will produce an error when
running arb.

• options (optional): This is a comma separated list of options. Options earlier in
the list take precedence over later ones. Valid options for the constant variable
type include:

– output: The compound variable that this component is a member of to
be written to each applicable .msh file. The opposite option nooutput ex-
ists. Default is output for unknown variables, output variables, derived cell-
centred variables, and transient variables that do not correspond to the oldest
stored timestep (that is, rstep < rstepmax). The default is nooutput for
everything else.

S
ea
rc
h
re
f:

d
ef
au
lt
ou

tp
u
t

in
s
e
t
u
p
m
o
d
u
l
e
.
f
9
0– stepoutput: The compound variable that this component is a member of is

to be included in the output.step file. The opposite option nostepoutput

exists. By default only this option is set only for unknown, output and
transient non-centred variables that are at the current timestep (that is,
rstep = 0). The option stepoutputnoupdate also exists which specifies
that the variable should be included in the output.step file, but that its
value is not updated before being printed. This option is useful for outputing
variables which should only be updated when a .msh file is actually written
(for example, a variable that records the time when output occurs).

S
ea
rc
h
re
f:
d
ef
au
lt
st
ep
ou

t-
p
u
t

in
s
e
t
u
p
m
o
d
u
l
e
.
f
9
0– componentoutput: This component to be written to each applicable .msh

file. Default is nocomponentoutput for all variables.

– input: The compound variable that is component is a member will be read
from each applicable .msh file. The opposite option noinput exists. Default
is input for all unknown and transient variables and noinput for everything
else.

S
ea
rc
h
re
f:

d
ef
au
lt
in
p
u
t

in
s
e
t
u
p
m
o
d
u
l
e
.
f
9
0– componentinput: This component to be read from each applicable .msh

file. Default is nocomponentinput for all variables.

– elementdata: This compound will be written using the gmsh ElementData

format. Any data format options specified for each .msh file will overwrite
this option. Other options include elementnodedata, elementnodelimiteddata,
componentelementdata, componentelementnodedata and componentelementnodelimiteddata.
Default is elementnodedata and componentelementdata.

25

• comments (optional): Anything written beyond the first # appearing on each line
of the input file is regarded as a comment.

Examples:

CELL_CONSTANT <test constant > "<cellx[l=1] >^2" ON <boundaries

> # a test

FACE_CONSTANT <test constant 2> [m] "<facex[l=2]>" # another

test

4.3.2 Constant type variable defined in constants.in

Synopsis:

Constant variables defined in constants.in are set to numerical values read directly by
the arb executable, rather than expressions interpreted by maxima.

Defining statements:

CELL_CONSTANT <name > [multiplier*units] value ON <region >

options # comments

FACE_CONSTANT <name > [multiplier*units] value ON <region >

options # comments

NONE_CONSTANT <name > [multiplier*units] value options #

comments

CONSTANT <name > [multiplier*units] value options # comments

Statement components:

The components of these statements are the same as in section 4.3.1 with the exception
of:

• value (required): A numerical value of real or double precision type.

Examples:

CONSTANT <mu> [Pa.s] 1.0d-3 # fluid viscosity

NONE_CONSTANT <rho > [997* kg/m^3] 1.0 # fluid density

4.3.3 Constant type variable defined per region in constants.in

Synopsis:

26

This definition can be used in the constants.in file to assign different numerical val-
ues to either a cell or face centred constant in specific regions. Two statements are
required for this type of constant definition: The first defines the list of regions where
the next constant will be set (REGION LIST) and the second defines the constant and
sets/lists the corresponding numerical values ((CELL |FACE)REGION CONSTANT). The
region names in the REGION LIST statement must have the same centring as the follow-
ing REGION CONSTANT statement. Furthermore, the <region> over which the constant
is defined must include all of the regions listed within the previous REGION LIST state-
ment.

Defining statements:

REGION_LIST <region1 > <region2 > ... <regionN > # comments

CELL_REGION_CONSTANT <name > [multiplier*units] value1 value2

... valueN ON <region > options # comments

FACE_REGION_CONSTANT <name > [multiplier*units] value1 value2

... valueN ON <region > options # comments

Statement components:

The components of these statements are the same as in section 4.3.1 with the exception
of:

• <region1> <region2> ... <regionN> (required): A list of regions that have the
same centring as the following REGION CONSTANT statement.

• value1 value2 ... valueN (required): A list of numerical values for the constant,
corresponding in a one-to-one fashion with the list of regions given in the previous
REGION LIST statement.

Examples:

REGION_LIST <inlet > <outlet > # some face regions

FACE_REGION_CONSTANT <electric field > [V/m] 10 20. ON <

boundaries >

4.3.4 Transient type variable defined in equations.in

Synopsis:

Transient variables are used only in transient simulations, and are evaluated at the start
of each timestep. Transient variables are typically used to store previous timestep values,
or to provide constant data to a simulation that depends explicitly on the time.

Defining statements:

27

CELL_TRANSIENT <name > [multiplier*units] "initial expression"

"expression" ON <region > options # comments

FACE_TRANSIENT <name > [multiplier*units] "initial expression"

"expression" ON <region > options # comments

NONE_TRANSIENT <name > [multiplier*units] "initial expression"

"expression" options # comments

NONE_TRANSIENT <name > [multiplier*units] "" "expression"

options # this will use the update expression as the

initial expression

NONE_TRANSIENT <name > [multiplier*units] "expression" options

the initial expression here depends on rstep

Statement components:

Along with the information presented in section 4.3.1, the following applies to transient
variables:

• (CELL |FACE |NONE |)TRANSIENT (required): If no centring is specified then
none centring is assumed.

• <name> (required): Along with the rules detailed in section 4.3.1, transient vari-
ables are associated with particular relative timesteps. Relative timesteps, de-
scribed using the term rstep in this document, indicate how many timesteps
previous to the current one the variable refers to. The rstep value of a variable
is defined in a similar manner to the direction of a variable, using an r index in
square brackets at the end of the variable name: For example, <t[r=0]> would
be the time corresponding to the end of the current timestep, <t[r=1]> would be
time from the previous timestep, <t[r=2]> the time from the (earlier) timestep
before that one and so on. If an r index is omitted from a definition, then r=0

is assumed. Actually, any type of variable can be associated with any particular
relative timestep, but it is rare to do this with anything other than a transient
variable.

• "initial expression" (optional): This expression is applied once (only) at
the start of a simulation, and represents the variable’s initial condition. These
initial expressions are applied in the order of increasing rstep (relative timestep),
meaning that the current (latest) time value is calculated first, followed by the
previous timestep value, and then one before etc. This expression should not
depend on any transient variables that have a higher rstep (an earlier timestep)
or that are from the same timestep (equal rstep) but defined later in the input
file. If an initial expression is not given at all (no quotation marks present for this
field), then the value of zero is assumed if the variable has rstep=0, or the update
expression otherwise. If the initial expression is not specified but quotation marks
are present for this field, then the update expression is substituted for the initial
expression - ie, a shorthand way of repeating the update expression.

• "expression" (required): This expression for the transient variable is applied
once at the start of each timestep. These expressions are applied in the order of

28

decreasing rstep (relative timestep), meaning that the earliest time value is calcu-
lated first, followed by the next timestep value, until the current time (rstep = 0)
is reached. Circular references are not allowed in the expression (in practice this
is not limiting).

• ON <region> (optional): If ommitted then by default a cell centred transient will
be defined on <all cells> and a face centred transient on <all faces>.

• options (optional): This is a comma separated list of options. Valid options for
transient variables are the same as those for constants, as detailed in section 4.3.1)

Examples:

NONE_TRANSIENT <t[r=0]> "0.d0" "<t[r=1]>+<dt >" # current end -

of-timestep time (r=0)

NONE_TRANSIENT <t[r=1]> "<t>-<dt >" "<t>" # time at last step

(r=1)

NONE_TRANSIENT <t[r=2]> "<t[r=1]>-<dt >" "<t[r=1]>" # time at

step before last step (r=2, assuming a constant dt)

NONE_TRANSIENT <z[r=1]> [m] "<z>-<w_0 >*<dt >" "<z_real >" #

position of ball at last step (r=1)

NONE_TRANSIENT <w[r=1]> [m/s] "<w>" "<w_real >" # velocity of

ball at last step (r=1)

4.3.5 Derived type variable defined in equations.in

Synopsis:

Derived variables depend on the unknown variables and other previously defined (ie,
above in the file) derived variables.

Defining statements:

CELL_DERIVED <name > [multiplier*units] "expression" ON <

region > options # comments

FACE_DERIVED <name > [multiplier*units] "expression" ON <

region > options # comments

NONE_DERIVED <name > [multiplier*units] "expression" options #

comments

DERIVED <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.3.1, the following applies to derived
variables:

29

• (CELL |FACE |NONE |)DERIVED (required): If no centring is specified then none
centring is assumed.

• "expression" (required): This is an expression for the derived variable in terms
of constant, transient, unknown, previously defined derived (appearing above in
equations.in) and system variables.

• ON <region> (optional): If ommitted then by default a cell centred derived will
be defined on <all cells> and a face centred derived on <all faces>.

• options (optional): This is a comma separated list of options. Valid options for
derived variables (as well as those given in section 4.3.1) include:

– noderivative: Normally the derivative of this variable’s expression is cal-
culated with respect to each unknown variable (the Jacobian) when perform-
ing the Newton-Raphson solution procedure. Including this option sets this
derivative to zero. This may be required for functions for which the deriva-
tive cannot be calculated or for functions that undergo step changes (not
continuous) which are not ammeniable to solution via the Newton-Raphson
procedure. Using this option will usually slow convergence.

– positive/negative: Including one of these options causes the code to
check the sign of the derived variable. In theory this could be used for
quantities like concentrations that are only physically meaningful when being
positive. By using an expression such as "1-<con>" and including the option
positive an upper limit for a variable can also be enforced. In practice
using these types of limiting conditions to prevent equation singularities slows
convergence to an unfeasibly slow rate. It is usually better to choose the form
of the equations so that they are stable even for small unphysical excursions,
and then check once convergence has been achieved that the results are
physical.

Examples:

FACE_DERIVED <tau[l=1,1]> "<p> - <mu >*2.d0*facegrad[l=1](<u[l

=1]>)" output

CELL_DERIVED <graddivp[l=1]> "celldivgrad[l=1](<p>)" #

divergence based pressure gradient

4.3.6 Unknown type variable defined in equations.in

Synopsis:

Unknown variables are those upon which the equations and derived variables ultimately
depend.

Defining statements:

30

CELL_UNKNOWN <name > [multiplier*units] magnitude "expression"

ON <region > options # comments

FACE_UNKNOWN <name > [multiplier*units] magnitude "expression"

ON <region > options # comments

NONE_UNKNOWN <name > [multiplier*units] magnitude "expression"

options # comments

UNKNOWN <name > [multiplier*units] magnitude "expression" ON <

region > options # comments

Statement components:

Along with the information presented in section 4.3.5, the following applies to unknown
variables:

• (CELL |FACE |NONE |)UNKNOWN (required): If no centring is specified then cell
centring is assumed.

• magnitude (required): An order of magnitude estimate (postive and greater than
zero real or double precision value) must be specified for all unknown variables.
This magnitude is used when checking on the convergence of the solution.

• "expression" (required): For an unknown variable the expression specifies the
variable’s initial value. The expression may contain constant variables, derived
variables, previously defined unknown variables, (initial) transient variables and
system variables.

• ON <region> (optional): If ommitted then by default a cell centred unknown will
be defined on <all cells> and a face centred unknown on <all faces>.

• options (optional): The noderivative option is not applicable for unknown
variables.

Examples:

CELL_UNKNOWN <u[l=1]> 1.d0 "<u_av >" # a velocity component

CELL_UNKNOWN <p> [] 1.d0 "1.d0 -<cellx[l=1]>" # pressure

NONE_UNKNOWN <p_in > [Pa] 1.d0 "1.d0" # the pressure at the

inlet

4.3.7 Equation type variable defined in equations.in

Synopsis:

Equation variables represent the equations to be satisfied. The equation expressions
should be formulated so that when the equation is satisfied, the expression equals zero.

31

The number of equations must equal the number of unknown variables. Furthermore,
for the system to be well posed the equations must be unknown (no single equation can
be made from a combination of the other equations).

Defining statements:

CELL_EQUATION <name > [multiplier*units] "expression" ON <

region > options # comments

FACE_EQUATION <name > [multiplier*units] "expression" ON <

region > options # comments

NONE_EQUATION <name > [multiplier*units] "expression" options

comments

EQUATION <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.3.5, the following applies to equation
variables:

• (CELL |FACE |NONE |)EQUATION (required): If no centring is specified then none
centring is assumed.

• "expression" (required): For an equation variable the expression should equal
zero when the equation is satisfied. The expression may contain constant, tran-
sient, derived, unknown and system variables.

• ON <region> (optional): If ommitted then by default a cell centred equation will
be defined on <domain> and a face centred equation on <boundaries>.

Examples:

CELL_EQUATION <continuity > "celldiv(<u_f >)" ON <domain > #

continuity

FACE_EQUATION <outlet noslip > "dot(<u[l=:]>,<facetang1[l=:]>)

" ON <outlet > # no component tangential to outlet

NONE_EQUATION <p_in for flowrate > "<u_av_calc >-<u_av >" # set

flowrate through inlet to give required average velocity

4.3.8 Output type variable defined in equations.in

Synopsis:

Output variables are evaluated once convergence of the solution has been reached: They
are only for output purposes.

Defining statements:

32

CELL_OUTPUT <name > [multiplier*units] "expression" ON <region

> options # comments

FACE_OUTPUT <name > [multiplier*units] "expression" ON <region

> options # comments

NONE_OUTPUT <name > [multiplier*units] "expression" options #

comments

OUTPUT <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.3.5, the following applies to output
variables:

• (CELL |FACE |NONE |)OUTPUT (required): If no centring is specified then none
centring is assumed.

• "expression" (required): For an output variable the expression may contain
constant, transient, derived, unknown, equation and system variables.

• ON <region> (optional): If ommitted then by default a cell centred output vari-
able will be defined on <all cells> and a face centred output variable on <all

faces>.

• options (optional): The noderivative option is not applicable for output vari-
ables (this option is implicitly set anyway for these variables).

Examples:

NONE_OUTPUT <F_drag > [N] "facesum(<facearea >*dot(<facenorm[l

=:]>,<tau[l=:,1]>),<cylinder >)" # force on object in axial

direction

4.3.9 Condition type variable defined in equations.in

Synopsis:

Condition variables control the running of the simulation. They can initiate the following
actions: output, stop, convergence and a bell.

Defining statements:

CELL_CONDITION <name > [multiplier*units] "expression" ON <

region > options # comments

FACE_CONDITION <name > [multiplier*units] "expression" ON <

region > options # comments

33

NONE_CONDITION <name > [multiplier*units] "expression" options

comments

CONDITION <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.3.5, the following applies to condition
variables:

• (CELL |FACE |NONE |)OUTPUT (required): If no centring is specified then none
centring is assumed.

• "expression" (required): For a condition variable, if the evaluated expression
is positive (> 0) then the condition is satisfied and the corresponding action will
take place. Note that an action will take place if any of the condition variables
that correspond to it are positive (in fact, after one positive value is found the
remainder are not even evaluated).

• ON <region> (optional): If ommitted then by default a cell centred condition
variable will be defined on <all cells> and a face centred condition variable on
<all faces>.

• options (optional): In addition to the options discussed for the other variables,
one or more of the following options may be applied to each condition variable to
specify what action it corresponds to:

– convergencecondition: For transient and steady-state simulations, indi-
cates when the Newton loop has converged. Is evaluated at the start of each
Newton loop.

– stopcondition: For a transient simulation, indicates when the simulation
should finish. Is evaluated at the end of each successful timestep.

– outputcondition: For a transient simulation, indicates when the .msh

output files should be written. Is evaluated at the end of each successful
timestep.

– bellcondition: For a transient simulation, indicates when a noise should
be made (this one’s a bit silly). Is evaluated at the end of each successful
timestep.

Examples:

NONE_CONDITION <time based stop condition > "<t>-<tend >"

stopcondition # when this becomes true (>0.) the

simulation stops

NONE_CONDITION <bouncing bell > "noneif(<z>,-1.d0 ,1.d0)"

bellcondition # is positive when <z> is negative at the

end of a timestep

34

NONE_CONDITION <output test > "<t>-<tout >-<dtout >"

outputcondition # this will be true (>0.) whenever we are

<dtout > from last output

4.3.10 Local type variable defined in equations.in

Synopsis:

Local variables are like derived variables, except that they are not stored, but rather
evaluated only when required. Local variables may be used instead of derived variables
to save memory. This strategy makes sense if the variable is only going to be used once
or twice at each location. Local variables may also be used to split up an otherwise
long expression into smaller (and possibly common) sub-statements, dependent on the
local conditions. For example, in the examples given below, local variables are used to
calculate the second derivative of the normal velocity to a wall, in the normal direction
to a wall.

Defining statements:

CELL_LOCAL <name > [multiplier*units] "expression" ON <region >

options # comments

FACE_LOCAL <name > [multiplier*units] "expression" ON <region >

options # comments

NONE_LOCAL <name > [multiplier*units] "expression" options #

comments

LOCAL <name > [multiplier*units] "expression" options #

comments

Statement components:

Along with the information presented in section 4.3.5, the following applies to condition
variables:

• (CELL |FACE |NONE |)OUTPUT (required): If no centring is specified then none
centring is assumed.

• "expression" (required): A local variable may depend on ‘local’ variables which
correspond to the locale of the calling statement: For example, in the following
examples we refer to the <facenorm> of the face on which the local variable <u n>

is calculated. Note that it would not make sense to output this <u n> separately
over <all cells>, as the <facenorm> would be undefined.

• ON <region> (optional): The output region for a local variable is only really used
right now to specify what elements are output (should the output option be set).

Examples:

35

CELL_LOCAL <u_n > "dot(<u[l=:]>,cellave[lastface](<facenorm[l

=:]>))"

CELL_LOCAL <d u_n d x[l=1]> "cellgrad[l=1](<u_n >)"

CELL_LOCAL <d u_n d x[l=2]> "cellgrad[l=2](<u_n >)"

CELL_LOCAL <d u_n d x_n > "dot(<d u_n d x[l=:]>,cellave[

lastface](<facenorm[l=:]>))"

FACE_LOCAL <d^2 u_n d x_n^2> "facegrad(<d u_n d x_n >)" ON <

boundaries > output

4.3.11 System variables

S
ea
rc
h
re
f:
sy
st
em

va
ri
ab
le
s

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lTODO

4.4 Simulation options

• TRANSIENT SIMULATION|STEADYSTATE SIMULATION: choose between the two
types of simulation.

• END: end input

• START SKIP|STOP SKIP: ignore the text between these statements.

• DEFAULT OPTIONS: add the following options to every subsequent variable, until
cleared again using a blank DEFAULT OPTIONS statement. When listed in order,
default options precede a variable’s individually specified options - hence, in the
case of conflicting option statements, individual options take precedence over de-
fault options (ie, the individual options have a higher priority).

• OVERRIDE OPTIONS: are the same as DEFAULT OPTIONS, except that they follow
a variable’s individually specified options, and so in the case of conflicting option
statements, take precedence over the individual options (ie, the override options
have a higher priority).

• LINEAR SOLVER: choose the type of linear solver to use.

4.5 Include statements and string replacements

Include statements allow other .arb input files to be included. These files can be user
written, or be from a library of template files within the templates directory. String
substitution that occurs as the file is read in allow these included files to be (basically)
used as functions. An ‘unwrapped’ input file that is a handy reference as to how the
include statements behaved (and can be used as an input file for subsequent runs)
is placed at tmp/setup/unwrapped input.arb after every run setup. The include
statements are:

36

• INCLUDE ROOT: choose a template directory to look for any files included via any
following INCLUDE statements. If no string is specified, then the include root
directory name is set equal to that of its parent (including) file. If the blank
string is specified, then INCLUDE ROOT is set to the blank string and all templates
directories (up to two subdirectory levels) are searched for the following included
files. The INCLUDE ROOT definitions are hierarchical, in that the definition in a
child file does not affect that of the parent.

S
ea
rc
h
re
f:

in
cl
u
d
e
ro
ot

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
l

• INCLUDE: command to include a file from the most recent INCLUDE ROOT direc-
tory (or subdirectory thereof), possibly also specifying file-specific string replace-
ments using the syntax REPLACE "a string" WITH "another string" (or the
shorter R "a string" W "another string"). If an INCLUDE ROOT directory
has not been specified (or cancelled with a blank INCLUDE ROOT statement) then
the templates directories will be searched until a matching INCLUDE file is found
(up to two subdirectory levels right now).

S
ea
rc
h
re
f:

in
cl
u
d
e

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
l

• INCLUDE WORKING: include the following files from the working directory. This
command does not affect and is not influenced by the INCLUDE ROOT directory
and is (basically) used to include sets of user-written statements (i.e., like a local
a function).

S
ea
rc
h
re
f:

in
cl
u
d
e
w
or
ki
n
g

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
l

Partnering the include file capability is the ability to read in multiple definitions for the
same variable. The ultimate position of a variable’s definition is that of the first definition
for that variable. The ultimate expression used for a variable is that given (read in) last.
This functionality allows a variable’s expression to be changed from what is used in
(say) a template file by specifying a new definition lower in the file, after the template
file include statement. Options can also be added to previously specified options for a
variable by including more definition statements (that may only contain options and not
expressions) lower in the input file. Similarly for units.

S
ea
rc
h
re
f:

ge
n
er
al

re
p
la
ce
-

m
en
ts

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lThere are two types of string replacements that occur when a line from an input file

is parsed: i) file-specific replacements, which occur recursively through ‘child’ file inclu-
sions, and ii) general replacements, which occur throughout all files from their point of
definition onwards, until (possibly) cancelled. The following demonstrates a general re-
placement statement specifying two general replacement strings, using a long and short
form:

GENERAL REPLACEMENTS REPLACE "<a region>" WITH "<another region>" R "a

string" W "another string"

There are certain system generated general replacements that occur automatically un-
less specifically changed by the user. Use the search hint to find the list of these in
setup equations.pl.

GENERAL REPLACEMENTS CANCEL "<a region>" C "a string"

The above demonstrates how to cancel a search string replacement, using either a long
(CANCEL) or short (C) form. Note that both general and file specific replacements do
not occur on a line of an input file if the line is itself a general replacement definition

37

line (specifically, it begins with the GENERAL REPLACEMENTS keyword), or is an include
line for a file (begins with some type of INCLUDE keyword).

4.6 Kernel options

S
ea
rc
h
re
f:

ke
rn
el

op
ti
on

s
in

k
e
r
n
e
l
m
o
d
u
l
e
.
f
9
0There are many options that can be used to change the kernels used. For example

KERNEL polynomialaverageorder=2,polynomialorder=2

specifies that when averaging/differentiating quantities to/at faces, ensure that a second
order polynomial would be reproduced precisely.

4.7 Glued boundaries

Used to implement periodic or reflection boundaries by glueing two boundary face regions
together. Boundary regions to be glued must have the same element structure (size
and number). Individual element matching between the boundaries is accomplished by
matching the closest element locations, relative to the region centroids (much like the
facelink and celllink operators).

Example of a periodic boundary glueing the top and bottom boundaries of a domain:

GLUE FACES <south> <north>

Example of a reflection (axis of symmetry) boundary along the left side of a domain:

GLUE FACES <west> reflect=1

In the case of reflection, certain operators (eg, facegrad) need to be aware when they
are operating on the component of a vector, that needs to be reflected over this reflection
boundary. See the reflect=1 options for each operator.

4.8 Simulation Info

The following strings can be used within an input file to help keep track of what the file
contains. These and other automatically generated info strings are included as comments
in most of the output files.

INFO TITLE, INFO DESCRIPTION, INFO AUTHOR, INFO DATE, INFO VERSION

38

5 Expression language reference

There’s lots missing in this section. The examples files are currently the best guide as
to the language syntax.

5.1 Operators

5.1.1 General Notes

Operators produce a single value from the arguments that are contained within their
parentheses (). They also accept options, contained within square brackets [].

operator[option1,option2,...](<argument1>,<argument2>,...)

The centring of an operator generally corresponds to the first syllable of the operator,
however there are exceptions. Following the rule is celldiv, which is the cell centred
divergence of a face centred quantity. This operator is cell centred and must be used
in this context, hence its context centring is cell. The content expression passed into
celldiv (actually its first argument) is face centred however. Similarly, facegrad is the
gradient of a cell centred quantity evaluated at a face, so this operator is face (context)
centred, but has cell content centring. Exceptions to the rule include the loop-type
operators, max, min, sum and product. For example, cellmax loops through a region
of cells finding the maximum value of an expression within those cells. Hence, this
operator produces a result which has no centring (none centred) so can be used in any
centring context, but has cell content centring.

Each operator accepts a certain number of arguments, however if an argument is not
specified then a default value may be used. For example, cellmax uses three arguments:
an expression that is to evaluated in each cell (<expression>, here denoted by a single
variable, but more usually an expression of variables), an initial, default expression for
the operator (<default>), and the cell centred content region over which the maximum
will be calculated (<region>). Using implicit argument notation, operators expect the
arguments in a specific order, so cellmax expects these three arguments in the manner

cellmax(<expression>,<default>,<region>)

If less than the required number of arguments are passed to an operator, then a default
value for the omitted arguments will be assumed (or if no defaults are available or are
sensible, an error will be flagged). For example, using

cellmax(<expression>)

sets <default> to -<huge> (the largest negative double precision number that the
processor can store) and <region> to <noloop> if (for example) the expression was
being used in a cell centred context. If in doubt about what the default value for an
argument is, specify it!

39

The alternative to the implicit argument notation is to specify the arguments explicitly
(similar to argument passing in f90). Using explicit notation the order of the arguments
that are passed explicitly is irrelevant, however the order of any arguments that are not
explicitly named (and hence specified implicitly) still is. For example, the following will
all produce the same result

cellmax(expression=<expression>,default=<default>,region=<region>)

cellmax(<expression>,<default>,<region>)

cellmax(region=<region>,default=<default>,expression=<expression>)

cellmax(expression,region=<region>,default)

cellmax(region=<region>,expression,default)

Note in the last case that although <expression> was the second argument in the
operator, it was the first implicitly named operator, so would be read correctly. Using a
combination of the implicit and explicit passing is often convenient. For example, for the
cellmax operator, the following form that uses a default value of -<huge> but performs
the maximum comparison over a specified region is handy

cellmax(<expression>,region=<region>)

Operator options are similar to variable options. Some operators require a dimension,
and this dimension (direction) is specified via the options. For example, celldivgrad
calculates a gradient in a certain direction dimension using the divergence of a face
centred scalar. To find this gradient in the second dimension you use the option [l=2]:

celldivgrad[l=2](<face centred expression>)

Some options are quite generic (eg, noderivative), however most are specific to the
operator. There is no restriction on the order that options are specified.

Options and operators should be written in lowercase (I have started to make both of
these case independent, but no guarantees yet).

Details of individual operators follows. Ultimate details of each operator (including
argument order, options etc) can be found in the code file src/setup equations.pl

which shows how they are expanded into working code. Use search strings such as
ref: celldiv within the perl file to find the specific code.

5.1.2 celldiv: Divergence

S
ea
rc
h
re
f:

ce
lld
iv

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lSummary: Uses Gauss’ theorem to calculate the divergence of a face centred vector

component around a cell.

Statement:

celldiv[options](expression=<expression>)

Centring:

Operator is context cell centred, while <expression> is face centred.

40

Details:

Using Gauss’ theorem to evaluate divergences around cells is probably the defining char-
acteristic of Finite Volume methods. celldiv performs this operation.

Specifically, to discretise the divergence of a face centred vector uj over a cell i that sits
within the domain, Gauss’ theorem gives

1

Vi

∫
Vi

∇ · udV ⇒ 1

Vi

∑
j∈Jnobcellfaces,i

1

Sj

∫
Sj

N i,j · uj dS

=
∑

j∈Jnobcellfaces,i

N i,j · nj

Vi︸ ︷︷ ︸
celldiv

1

Sj

∫
Sj

nj · uj dS

⇒ celldiv(dot(<u[l=:]>,<facenorm[l=:]>))

where Vi and Sj are the volume and total surface area of the cell i and face j, respectively,
N i,j is a unit normal pointing outward from cell i but located at face j, nj is a normal
associated with face j, and the sum is conducted over the set of all face elements that
surround cell i, denoted by Jnobcellfaces,i. In the equivalent coding the face centred vector
uj is represented by the three component variables <u[l=1]>, <u[l=2]> and <u[l=3]>,
and the unit normal associated with the face j, nj, is given by the system component
variables <facenorm[l=1]>, <facenorm[l=2]> and <facenorm[l=3]>. Note that as
the divergence of a vector results in a scalar, the above operation produces a scalar for
each cell it is performed in.

The region used by arb in performing the above sum as represented by Jnobcellfaces,i
is <nobcelljfaces> (‘no-boundary-cell-faces’). This relative region specifies all faces
that surround a given cell, unless that cell is a boundary cell. As boundary cells are not
fully surrounded by faces Gauss’ theorem can not be applied. Hence, if the operator
celldiv is used at a boundary cell then the region <nobcelljfaces> is taken relative
(moved) to the closest domain cell that is adjacent the boundary cell, so this is where
celldiv becomes evaluated. Physically it is inadvisable to use an equation that involves
a divergence at a boundary cell anyway.

Options:

• noderivative: No derivatives with respect to the unknown variables for the
Newton-Raphson Jacobian are calculated for this operator (and its contents).

Examples:

CELL_EQUATION <continuity > "celldiv(<u_f >)" ON <domain > #

continuity equation

CELL_EQUATION <momentum[l=1]> "celldiv(<J_f[l=1]>)" ON <

domain > # momentum conservation in direction l=1

CELL_EQUATION <momentum[l=2]> "celldiv(<J_f[l=2]>)" ON <

domain > # momentum conservation in direction l=2

41

5.1.3 cellgrad or facegrad: Gradient

S
ea
rc
h

re
f:

ce
llg
ra
d
,
re
f:

fa
ce
gr
ad

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lSummary: Calculates a scalar component of a gradient over a cell or face.

Statement:

cellgrad[options](expression=<expression>)

facegrad[options](expression=<expression>)

Centring:

cellgrad is context cell centred and facegrad is context face centred. In both cases
<expression> is cell centred.

Details:

To calculate the gradient of a cell centred scalar φi in coodinate direction 2 in cell i,

1

Vi

∫
Vi

e2 ·∇φdV ⇒
∑

i′∈Icellcells,i

•
k
(2)

i,i′φi′ ⇒ cellgrad[l=2](phi)

where e2 is a unit vector in coordinate direction 2,
•
k
(2)

i,i′ is a predetermined kernel for this
operation, and Icellcells,i is the set of all cells in the vicinity of cell i that are used by this
kernel. Kernels to calculate the cell gradient in the other coordinate directions, that is
•
k
(1)

i,i′ and
•
k
(3)

i,i′ also exist.

A gradient of a cell centred quantity evaluated at a face can be calculated similarly, for
example

1

Sj

∫
Sj

e3 ·∇φdS ⇒
∑

i∈Ifacecells,j

◦
k
(3)

j,i φi ⇒ facegrad[l=3](phi)

Gradients taken in directions relative to the face orientation are also available using the
facegrad operator. Index 4 gives the gradient relative to the face’s normal, that is

1

Sj

∫
Sj

nj ·∇φdS ⇒
∑

i∈Ifacecells,j

◦
k
(4)

j,i φi ⇒ facegrad[l=4](phi)

In computational terms the face normal is represented by (<facenorm[l=1]>,<facenorm[l=2]>,
<facenorm[l=3]>). Indices 5 and 6 give gradients in the directions of the first and sec-
ond tangents for each face, respectively, that is

1

Sj

∫
Sj

t
(1)
j ·∇φdS ⇒

∑
i∈Ifacecells,j

◦
k
(5)

j,i φi ⇒ facegrad[l=5](phi)

and
1

Sj

∫
Sj

t
(2)
j ·∇φdS ⇒

∑
i∈Ifacecells,j

◦
k
(6)

j,i φi ⇒ facegrad[l=6](phi)

42

Computationally t
(1)
j is represented by (<facetang1[l=1]>,<facetang1[l=2]>, <facetang1[l=3]>)

and t
(2)
j by (<facetang2[l=1]>,<facetang2[l=2]>, <facetang2[l=3]>), respec-

tively. If the face has one dimension then t
(1)
j will be directed along the face, and

t
(2)
j will be normal to both t

(1)
j and vecti[j]n. If the face has no or two dimensions (a

point or a plane) then there are no preferential directions for these tangents. If no index
is specified on the facegrad operator then l=4 is assumed.

Options:

• l=1, l=2, etc: This index specifies the direction that the gradient will be taken
in. For cellgrad this index represents the dimension the gradient is taken in and
must be specified. For facegrad if the index is specified and is ≤ 3, this specifies
the dimension the gradient is taken in. For an index ≥ 4, the direction is taken
relative to the face orientation. l=4 specifies a gradient taken in the direction of
the face normal, l=5 a gradient taken in the direction of the first tangent to the
face and l=6 in the direction of the second tangent to the face. If the index is not
specified for facegrad then l=4 is assumed — that is, a gradient taken normal
to the face.

• adjacentcells for facegrad only: Gradient is based on adjacent cells only, but
attempts to be in the direction of the face normal (it is only an approximation,
but should be accurate for structured meshes). Note, only works for l=4 direction
— that is, the direction of the face normal.

• dxunit for facegrad only: Similar to option adjacentcells in that it is based
on adjacent cells only, but now it is in the direction of <dxunit[l=:]>, which is
a unit vector pointing from the centre of the cell immediate below the face (in
the face’s normal direction) to the centre of the cell immediately above the face.
Hence, for unstructured meshes, this gradient is not precisely in the same direction
as the true <facenorm[l=:]>.

• reflect=1, reflect=2, etc: This specifies that the contained expression is a
component of a vector, and that over any glued reflection boundaries, must be
reflected in this direction. These options only need to be specified if the operator
is going to be acting over (or next to) a glued, reflection boundary that is reflected
in a direction that is the same as the vector’s component direction.

• noderivative: As previously.

Examples:

FACE_DERIVED <T flux > "-<D>* facegrad(<T>)" ON <all faces > #

some type of heat flux occuring across each face

CELL_DERIVED <dpdx[l=1]> "cellgrad[l=1](<p>)" # gradient of

pressure in first dimension

43

5.1.4 cellave: Interpolation to cell centring

S
ea
rc
h
re
f:

ce
lla
ve

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lSummary: Interpolates or averages an expression from (mainly) face centring to cell

centring.

Statement:

cellave[options](expression=<expression>)

Centring:

cellave is context cell centred and generally takes a face centred expression (see
othercell option however).

Details:

Without any options, predefined kernels are used to interpolate the face centred expres-
sion from the faces that surround a cell to the centroid of that cell.

Options:

• lastface: Evaluates <expression> at the last face that was referenced in the
context of the operator’s position, but treats the result as having cell centring.

• lastfacenoglue: As above, but moves through glued boundaries to the actual
last face that was used (if it was glued).

• othercell: Evaluates <expression> at the cell that is adjacent to the last face
that was referenced in the context of the operator’s position. In this (exception)
case <expression> is cell centred. For this case only reflect=1 etc options
may be used/necessary as the cell may be on the other side of a glued reflection
boundary.

• noderivative: As previously.

5.1.5 faceave: Interpolation

S
ea
rc
h
re
f:

fa
ce
av
e

in
s
e
t
u
p
e
q
u
a
t
i
o
n
s
.
p
lSummary: Interpolates or averages an expression from cell to face centring.

Statement:

faceave[options](expression=<expression>)

faceave[advection,options](expression=<expression>,flux=<flux>,

limiter=<limiter>)

Centring:

faceave has face context centring. <expression> is cell centred. <flux> is face
centred. <limiter> is cell centred.

44

Details:

TODO

Options:

• harmonic:

• advection:

• lastcell:

• noderivative: As previously.

5.1.6 cellsum or facesum: Sum

Summary: Performs a sum over a region of either cell or face elements.

Statement:

cellsum[options](cell centred expression)

cellsum[options](cell centred expression,<cell centred region>)

facesum[options](face centred expression)

facesum[options](face centred expression,<face centred region>)

Centring:

Operators may be cell, face or none centred. Contents of cellsum is cell centred,
contents of facesum is face centred.

Details:

This operator sums the contained expression over a region of cell or face elements. If
no region is specified, then default regions are applied, defined by:

Operator centring Expression centring Default region
cell face <celljfaces>

cell cell <adjacentcellicells>

face cell <adjacentfaceicells>

all else <noloop>

Options:

• noderivative: As previously.

45

5.1.7 celldivgrad: Gradient evaluated at a cell calculated via a divergence

5.1.8 celllimiter: Gradient limiter for ensuring advection stability

5.1.9 cellif, faceif or noneif: If conditional statement

5.1.10 cellproduct or faceproduct: Product performed over a region of
elements

5.1.11 cellmin/max, facemin/max or nonemin/max: Picks the minimum/max-
imum from a region of elements

5.1.12 celldelta or facedelta: A delta function to identify specific regions

5.1.13 celllink or facelink: Link to other regions

46

6 Code structure

47

	1 What is arb?
	2 Installation
	2.1 No-nonsense setup on ubuntu 10.04 or 12.04:
	2.2 No-nonsense setup on OsX:
	2.3 Installing prerequisit software (in more detail)
	2.3.1 Maxima
	2.3.2 A fortran compiler and the blas/lapack libraries
	2.3.3 Pardiso
	2.3.4 UMFPACK
	2.3.5 Perl
	2.3.6 Harwell Subroutine Library
	2.3.7 Numerical Recipes in Fortran 77
	2.3.8 Gmsh
	2.3.9 ParaView
	2.3.10 Tecplot

	2.4 Installing arb
	2.4.1 Unpacking the code
	2.4.2 The working directory and file structure
	2.4.3 Packing the code

	3 Running simulations
	3.1 A super-quick example: A heat conduction simulation
	3.2 Other examples:
	3.3 The arb run script:
	3.4 A more detailed guide: Newtonian fluid flow

	4 Simulation setup reference
	4.1 Meshes
	4.1.1 Cell and face element specification
	4.1.2 Data and mesh file rereading
	4.1.3 Mesh read and write options

	4.2 Regions
	4.2.1 Defining regions via gmsh
	4.2.2 Defining regions within the constants.in file
	4.2.3 System generated regions

	4.3 Variables
	4.3.1 Constant type variable defined in equations.in
	4.3.2 Constant type variable defined in constants.in
	4.3.3 Constant type variable defined per region in constants.in
	4.3.4 Transient type variable defined in equations.in
	4.3.5 Derived type variable defined in equations.in
	4.3.6 Unknown type variable defined in equations.in
	4.3.7 Equation type variable defined in equations.in
	4.3.8 Output type variable defined in equations.in
	4.3.9 Condition type variable defined in equations.in
	4.3.10 Local type variable defined in equations.in
	4.3.11 System variables

	4.4 Simulation options
	4.5 Include statements and string replacements
	4.6 Kernel options
	4.7 Glued boundaries
	4.8 Simulation Info

	5 Expression language reference
	5.1 Operators
	5.1.1 General Notes
	5.1.2 celldiv: Divergence
	5.1.3 cellgrad or facegrad: Gradient
	5.1.4 cellave: Interpolation to cell centring
	5.1.5 faceave: Interpolation
	5.1.6 cellsum or facesum: Sum
	5.1.7 celldivgrad: Gradient evaluated at a cell calculated via a divergence
	5.1.8 celllimiter: Gradient limiter for ensuring advection stability
	5.1.9 cellif, faceif or noneif: If conditional statement
	5.1.10 cellproduct or faceproduct: Product performed over a region of elements
	5.1.11 cellmin/max, facemin/max or nonemin/max: Picks the minimum/maximum from a region of elements
	5.1.12 celldelta or facedelta: A delta function to identify specific regions
	5.1.13 celllink or facelink: Link to other regions

	6 Code structure

