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Abstract
The results of simulations of dilute suspensions of mono-
disperse Stokesian spheres are reported and validated
against available experimental data. The equations and
method of solution appear to be capable of capturing the
often unstable suspension/clear fluid interface present in
these systems.
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1 INTRODUCTION

Sedimentation describes a process whereby solid parti-
cles are separated from a fluid, usually under the action
of gravitational forces. In industrial processes sedimenta-
tion is often performed in arrays of inclinded settlers. As
shown in Figure 1, an inclinded settler is a simple ves-
sel which has its longest dimension inclined slightly away
from vertical. Such vessels are popular as the production
rate of clarified fluid is generally higher than the produc-
tion rate of fluid from equivalently sized vertically orien-
tated settlers, primarily because the particles have less dis-
tance to travel before impacting a wall.

For the past eight decades the performance of inclined
settlers has been described using the Ponder-Nakamura-
Kuroda (PNK) theory (see Davis and Acrivos, 1985). The
PNK theory is a kinematic theory which gives the rate of
production of clear fluid per unit depth of a rectangular
vessel as

S = voB [cos θ + (H/B) tan θ] , (1)

where the geometric variables are as shown in Figure 1,
andvo is the hindered settling velocity of a single particle
within the suspension region.

In practice the PNK theory often overestimates the effi-
ciency of an inclined settler as it does not consider the
kinetics of the fluid motion. When a settler is inclined, a
thin layer of clear fluid forms along the underside of the
longer downward facing vessel wall. As the density of
this fluid is smaller than that of the nearby suspension, it
experiences a large buoyancy force, causing it to acceler-
ate upwards. Resisting this upward movement are viscous
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and inertial forces that act between the Clear Fluid Layer
(CFL) and the adjacent wall and suspension regions. If
the velocities within the CFL are large enough, waves can
form along the interface that separates the CFL and sus-
pension regions. These waves may grow and break as they
ascend the vessel, entraining suspension into the CFL and
decreasing the efficiency of the settler. Thus, to predict
the performance of an inclined settler, we must be able
to describe the formation and subsequent growth of these
instabilities.

Past papers concerned the operation of inclinded settlers
can be loosely classified as either analytical or numerical
in nature. Studies published prior to 1985 are reviewed
in Davis and Acrivos (1985) while more recent theoretical
developments are outlined in Ungarish (1993).

Current analytical theories to describe the operation of in-
clinded settlers are generally based on the analysis pre-
sented by Acrivos and Herbolzheimer (1979) who exam-
ined the process using a simplified set of ‘mixture’ equa-
tions. A set of mixture equations consists of a continuity
equation for each phase (ie, one for the solid and one for
the fluid), a mixture averaged momentum equation to de-
scribe the movement of the suspension as a whole, and
a relationship between the velocities of each phase. By
neglecting inertial effects and assuming that the suspen-
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Figure 1: Sketch of an inclinded settler.



sion region had a uniform solids concentration, Acrivos
and Herbolzheimer were able to employ a boundary layer
analysis to find expressions for the geometry and flow ve-
locities within the CFL. Further, they found that the over-
all sedimentation rate would be predicted by the PNK the-
ory provided that the interface between the suspension
and clear fluid regions remained stable. Finally, they de-
termined that the kinetics of the sedimentation process are
described by two dimensionless groups, a vessel Reynolds
number and the ratio of a sedimentation Grashof number
to the Reynolds number given by

R =
Hvoρf

µf
andΛ =

H2g(ρs − ρf)φo

µfvo
, (2)

respectively, whereφo is the assumed uniform solid vol-
ume fraction within the suspension region.

The neglect of inertia forces in Acrivos and Her-
bolzheimer (1979) dictates that the analysis is limited to
vessels whereΛ � 1 and RΛ−1/3 � 1 (RΛ−1/3 in-
dicates the magnitude of inertial terms in the momentum
equation relative to viscous terms). Shaqfeh and Acrivos
(1986) later included bulk inertial effects extending the
theory to all values ofRΛ−1/3. Comparisons between
experimental results and analytical CFL geometries pre-
dicted by these theories have generally been good, partic-
ularly so for the most viscous cases where theRΛ−1/3 is
small.

While the above works are able to describe the operation
of inclinded settlers when the CFL interface remains sta-
ble, they do not define under what conditions this is true.
Companion studies by Acrivos and co-workers have ap-
plied linear stability theory to the region surrounding the
CFL interface to see under what conditions small pertur-
bations in the position of the interface will grow. Her-
bolzheimer (1983) performed this analysis for low as-
pect ratio vessels operating under ‘viscous’ conditions
(RΛ−1/3 � 1) and compared his findings to experimental
observations of wave inception position along the inter-
face. While the theory did not provide quantitative values
of the wave inception position, he found that it did quali-
tatively predict trends in this parameter. In particular, his
theoretical findings that wave growth was most vigorous
at an inclinded angle of around10◦ and that growth in-
creases with decreases in fluid viscosity were supported
by the experiments. The analysis was later applied to
lower viscosity systems.

As the analytical theories apply only when the CFL inter-
face is stable, and as the linear stability theories cannot
provide quantitative information regarding this, it is evi-
dent that to predict the performance of a given settler we
must turn to numerical analysis, namely Computational
Fluid Dynamics (CFD). Hillet al. (1977) appears to have
published the first CFD treatment of the settling process
by simulating the settling of a very dilute suspension of
mono-disperse spheres beneath an upward pointing cone.
Implicit in the treatment was that the concentration within
suspension region was uniform, allowing the movement

of the suspension to be calculated by tracking only its in-
terface. Hillet al. validated the simulations by perform-
ing experiments of the system and found good agreement
between overall sedimentation times and fluid velocities,
however some the aspects of the interface behaviour were
poorly predicted.

More recently Laux and Ytrehus (1997) used a set of
‘multi-fluid’ equations to simulate the behaviour of mod-
erately viscous sedimentation systems. Multi-fluid means
that rather than using a single momentum equation to de-
scribe the average suspension movement, both fluid and
solid phases use separate momentum equations. Good
agreement between experimentally observed and pre-
dicted steady CFL geometries was found. Snideret al.
(1998) used a novel Eulerian-Lagrangian method employ-
ing a set of inviscid multi-fluid equations to simulate sev-
eral of the Acrivos and co-workers experiments. A sim-
ulation of one of the Herbolzheimer (1983) experiments
showed the formation of waves along the CFL interface,
however in contrast with the experiments, the simulations
predicted that the amplitude of these waves decreased with
time leading to an eventual stabilisation of the interface.

In this study we use a finite volume CFD method to sim-
ulate a variety of the mono-disperse suspension settling
experiments performed by Acrivos and co-workers. The
analysis is based on a set of dilute multi-fluid equations,
modified to account for the small but finite solid volume
fractions present in the experiments. The main emphasis
of the study is on capturing the behaviour of the CFL in-
terface, so crucial to predicting the overall performance of
practical settling devices. Validation of the simulations is
provided by comparing the CFL geometries observed in
the experiments with those found by the model.

2 CONSERVATION EQUATIONS

Although equations describing the microscale physics of
a suspension are known, due to the small local scales and
shear number of particles present in such systems these
equations are not useful in an engineering sense. Rather,
equations in terms of averaged variables are required.

There have been several works concerned with averaging
the microscale equations, however generally closure of the
resulting mathematical system cannot be made without re-
sorting to heuristic arguments. An exception to this is for a
suspension of Stokesian mono-disperse spheres, where if
interactions between neighbouring particles are neglected
(ie, the suspension is dilute), a closed equation set can be
found. Two recent studies have presented such sets. Jack-
son (1997), used volume averaging of the Navier-Stokes
equations for the fluid phase and volume averaging of a
particle momentum equation for the solid phase to derive
one such set, while Zhang and Prosperetti (1997) used en-
semble averaging of the same equations to find a very sim-
ilar set. The minor differences between the two equation
sets result from slight differences in the interpretation of
the stress field surrounding an isolated particle in a Stoke-
sian fluid, as applied to a suspension system.



Continuity Equations

∂φf

∂t
+ ∇ · φfuf = 0 and

∂φs

∂t
+ ∇ · φsus = 0 (3)

Momentum Equations

ρfφf
Dfuf

Dt
= −φf∇p + 2φf∇µmDm −

3φsµf

4
∇2uf −

3µf

4
∇2[φs(uf − us)]−

9φsµf

2a2F (φf)
(uf − us) + φfρfg (4)

ρsφs
Dsus

Dt
= −φs∇p− φs∇ps + 2φs∇µfDf +

3φsµf

4
∇2uf −

9φsµf

2a2F (φf)
(us − uf) + φsρsg (5)

Supplementary Equations

φf + φs = 1 ; um = φfuf + φsus ; Di =
1
2
[∇ui + (∇ui)†] for i = f,m ; µm = µf(1 +

5
2
φs)

Table 1: Conservation equations employed in this study.

The simulations performed here are based on the equa-
tions of Zhang and Prosperetti (1997), however to account
for the small but finite volume fractions present in the ex-
periments some minor modifications have been made. The
equations are given in Table 1. They have a similar form
to the single phase Navier-Stokes equations, however ex-
tra fluid stress, Faxen force and drag terms are present in
each momentum equation. The modifications made to the
Zhang and Prosperetti set are:

1. Hindered Settling Function: Experiments have
shown that even for moderately dilute suspensions
individual particles settle at speeds significantly
slower than in otherwise pure fluid. A hindered set-
tling function F (φf) has been introduced in such a
manner that one-dimensional uniform concentration
settling rates will be correctly predicted. The spe-
cific function employed is taken from Barnea and
Mizrachi (1973).

2. Rotational Viscous Stress:The Zhang and Pros-
peretti equations include an addition viscous stress
term, proportional in magnitude to the rotational
‘slip’ velocity between the solid and liquid phases.
This stress has been neglected here as given the small
moment of inertia of the particles, it is unlikely that
this stress would be significant.

3. Solid Packing Pressure:Although modeling the sed-
iment layer is not the primary concern of this study, it
has been necessary to introduce a solid packing pres-
sure (ps) to support the sediment layers above the up-
per facing walls of the vessel. The solid pressure is
taken to be a simple function ofφs, negligible below
φs = 0.58, but increasing sharply above this.

3 NUMERICAL METHOD

The above equations are discretised on a structured, stag-
gered, non-uniform mesh and solved using a finite vol-
ume method. Implicit Euler time discretisations are used,

0 0.2 0.4
x (m)

0

1

2

3
δ 

(m
m

)

0 0.2 0.4
0

Sim: Mesh 160x40U
Sim: Mesh 160x40N
Sim: Mesh 480x40N
Sim: Mesh 200x60N
Acrivos et al. (1979) Theory
Shaqfeh et al. (1986) Theory
Exp. Data

RΛ  = 3.24×10 , θ = 45°, φ = 0.05s

-1/3 -3

Particle Size

Figure 2: CFL width as a function of elevation for the low
concentration Acrivos and Herbolzheimer (1979) test.

while mass and momentum advection fluxes are cal-
culated using a multi-dimensional differencing method
(Harvie and Fletcher, 2001). A Newton method is used
to solve the continuity and dominant momentum terms in
an inner loop, while the viscous stress and momentum ad-
vection terms are converged iteratively in an outer loop.
As the drag terms tend to dominate the momentum equa-
tions in these systems, it was found necessary to solve
both phase equations simultaneously in the inner New-
ton loop. Thus, a linear solver inverts a matrix which has
twice as many terms as would be present during a single
phase simulation.

4 SIMULATION RESULTS

We present simulations based on experiments reported
in Acrivos and Herbolzheimer (1979), Herbolzheimer
(1983) and Shaqfeh and Acrivos (1987). These experi-
ments span a wide range of the inertial parameterRΛ−1/3,



46 47 48 49 50
y (mm)

0

5

10

15

20
u 

(m
m

/s
)

Sim: Mesh 160x40U
Sim: Mesh 160x40N
Sim: Mesh 480x40U
Sim: Mesh 200x60N
Acrivos et al. (1979) Theory

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

v 
(m

m
/s

)

Suspension Region Clear Fluid Layer

u

v

Figure 3: Longitudinal (u) and transverse (v) fluid veloc-
ities in the region of the CFL for the Acrivos and Her-
bolzheimer (1979) test. The position of the CFL interface
is calculated using the Acrivos and Herbolzheimer theory.

from the viscous stable flows presented in Acrivos and
Herbolzheimer to the nearly chaotic unstable flows shown
in Shaqfeh and Acrivos.

Acrivos and Herbolzheimer (1979) Experiments:In con-
trast to the experiments, the simulations were performed
as continuous feed tests. This was to minimise the com-
putational expense as it allowed the effect of any changes
in simulation or physical parameters to be gauged more
quickly than would be the case for a batch feed test.
According to the theory presented in Acrivos and Her-
bolzheimer (1979), for these experiments the CFL geome-
tries for batch and continuous feed tests should be com-
parable. The computational domain used was setup with
three ports. Suspension entered at a initial solid volume
fraction of φo through a large ‘mass source’ port in the
centre of the domain, clear fluid left through a port located
along the entire length of the short upper face of the ves-
sel, and compacted sediment left through a small port at
the base of the vessel, adjacent to the long upward facing
wall. A two-dimensional domain having dimensions of
80 cm×5 cm was employed. A timestep of1×10−3 s was
used in all the simulations based on a series of timestep
sensitively tests.

Figure 2 shows the calculated CFL thickness,δ, as a func-
tion of distance along the vessel wall,x (refer to Fig. 1).
In calculating the simulationδ the CFL interface was ap-
proximated as the point at whichφs = φo/2. One uni-
form (‘U’) and three non-uniform (‘N’) spacing meshes
were tried. The CFL layer thickness converges as the as
mesh is refined, indicating that the solution is for practi-
cal purposes grid independent. The predictions are close
to both the experimental data and the results of the an-
alytical theories, especially when one considers that the
particle size here is relatively large, and that continuum
theory results should only be interpreted over dimensions
larger than those of the particles. Figure 3 shows com-
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Figure 4: CFL geometry as a function of elevation for the
Shaqfeh and Acrivos (1987) ‘1a’ test. The shaded region
has a width of one standard deviation ofδ as it varies with
time, and is centred on the mean ofδ, as indicated by the
solid black line. The data is based on10 s of simulation.

puted fluid phase velocities within and adjacent to the CFL
region atx = 25 cm. There is a difference between the
maximum longitudinal velocity (u) predicted by the sim-
ulations and the Acrivos and Herbolzheimer theory. As
discussed in that paper, the vessel used in the experiments
was on the thinner side of the range of applicability for the
theory. The theory assumes that the boundary layer cre-
ated by the upwardly accelerating clear fluid is unaffected
by the spacing of the plates, and this is the assumption that
is violated when the vessel becomes too narrow. Thus, the
difference between the simulation and analytical results
may reflect the influence the opposite wall has on the CFL
behaviour, however further mesh refinement studies are
required to confirm this.

Figure 5 (a) shows a plot of the solid volume fractionφs

over the domain, computed using a 320x40N mesh. A
thin black line here indicates what the equivalent PNK the-
ory height would be for this test based on the suspension
flowrate. As shown, the flow is very stable, however un-
der close examination there appears to be a small amount
of interface movement high in the vessel, above the PNK
line. The upper suspension interface is not sharp here de-
spite the suspension being mono-disperse.

Shaqfeh and Acrivos (1987) Experiments:Figures 4 and
5 (b) show the results based on the continuous feed ex-
periment ‘1a’ of Shaqfeh and Acrivos. A 320x40N mesh
was employed and unlike previously the suspension en-
tered the fluid domain through an inlet port located along
half of the lower short face of the vessel. As in the experi-
ments, a ‘splitter’ plate was used to prevent the mixing of
the incoming suspension and outgoing sediment streams.
The angle of inclination for this Shaqfeh and Acrivos test
was the same as for the Acrivos and Herbolzheimer test,
however the fluid viscosity here is significantly lower, giv-
ing a higher inertial parameterRΛ−1/3 = 4.76 × 10−1.
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Figure 5: Five inclined sedimentation simulations showing solid volume fractionφs. In Frames (a-d) a black line indicates
the equivalent PNK interface height for each case. Frame (e) shows wave structures observed in the Herbolzheimer
(1983) simulation. The streamlines shown in this frame were calculated by tracing massless particles across the stationary
velocity field for a duration of1 s. The dimension ‘A’ has a length of10 times the one-dimensional hindered settling
velocity,vo and white representsφs = 0.01, blackφs = 0..



The effect of this change is clearly indicated in Figure
5 (b) where interface waves now appear approximately
halfway up the vessel. These disturbances grow to be-
come large structures by the time they reach the top of
the container. The upper suspension interface is now very
poorly defined, and a large distance from the PNK line.

The geometry of the CFL is shown in Figure 4 along with
corresponding analytical and experimental results. Only
experimental results pertinent to the continuous operation
of the settler are shown. The main computational curve
in this figure is the mean of the interface position (δ(x))
while the shaded area gives an indication of the ampli-
tude of the CFL waves. Not surprisingly, the computa-
tional results suggest that the waves grow as they ascend
the vessel. This is in line with the observations reported
by Shaqfeh and Acrivos (1987).

The final two frames of Figure 5 are also based on the
Shaqfeh and Acrivos experiments, namely experiment
‘3a’ for Frame (c) and experiment ‘1d’ for Frame (d). The
Frame (c) experiment has a lower inclination angle than
Frame (b) resulting in a decrease in the thickness of the
CFL over the height of the vessel. The Frame (d) experi-
ment has a lower fluid viscosity than Frame (b). This has
a striking effect of the simulations, with large scale struc-
tures now appearing very low down in the vessel, close to
the inlet port.

Herbolzheimer (1983) Experiments:Figure 5 Frame (e)
shows a detailed plot of wave structures appearing in a
simulation based on a Herbolzheimer experiment, namely
that shown in Figure 2(c) of that paper. Here a 480x40N
1 m × 5 cm mesh was used, and to replicate the experi-
mental setup, the suspension entered the region through a
‘mass source’ port in the centre of the domain. The inertial
parameter here lies between the two sets of experiments
already considered. The interface position found was sta-
tionary for most of the vessel height, however in the dilute
region above the PNK line the displayed waves appeared
and their behaviour was steady with time. The streamlines
shown in this figure indicate the structure of the vortices
produced by the CFL flow, and show how these can en-
train clear fluid back into the suspension region, harming
the efficiency of the sedimenter. Note that in line with the
observations of Hill (1977) the magnitude of the veloci-
ties both in the base flow and vortex regions can be over
an order of magnitude larger than the equivalent hindered
settling velocity for one-dimensional flow.

5 CONCLUSIONS

With the continuing increase in available computational
power, CFD will become more important in the analysis
of suspension flows. This study has shown that the numer-
ics required for such computations are available, and at
least in the case of dilute mono-disperse suspensions, the
currently available equations of motion seem to capture
the physics of these complex systems. For suspensions
that are more industrially relevant, that is for more con-
centrated and polydisperse suspensions, there is presently

little consensus about the pertinent equations, suggesting
that this is where future research should be directed.

NOMENCLATURE

a particle radius
φ volume fraction
µ absolute viscosity
ρ density
θ inclination angle of vessel away from vertical
Subscripts
f fluid
m volume averaged mixture
o uniform concentration
s solid
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