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Controller Discretisation: A Gap Metric Framework for
Analysis and Synthesis

Michael Cantoni and Glenn Vinnicombe

Abstract— Although techniques for directly synthesising sampled-data
(SD) compensators are available in the literature, feedback controller
design is perhaps best understood in a purely continuous-time setting.
As such, a feedback controller is often designed in the continuous-time
domain and then discretised for digital implementation. It is important
for the discretisation step involved to yield a SD approximation which
captures the essential features of the original controller from the per-
spective of closed-loop behaviour. In this paper, a gap metric framework
is developed for studying the controller discretisation problem for linear
time-invariant (LTI) plants and controllers. Importantly, knowledge of a
gap metric distance between an LTI controller and a SD approximation
permits explicit characterisation of the possible difference in closed-loop
performance, with any LTI plant for which the LTI controller is known
to work well, accounting for inter-sample behaviour. The central result
of the new framework gives rise to an algorithm for computing a gap
metric measure of the distance between an LTI controller and a given
discretisation, and a technique for synthesising a SD approximation which
is optimal with respect to this metric.

Index Terms— Controller Discretisation, Digital Redesign, Sampled-
Data, Approximation, Gap Metric, Robustness, Periodic, Time Varying

I. INTRODUCTION

The dynamics of many engineering systems naturally evolve in
continuous time. Correspondingly, control system design is typically
carried out, and perhaps most well-understood, in the continuous-time
domain. This results in control laws with continuous-time dynamics.
It is often the case, however, that the implementation of such control
schemes will involve a digital computer, which can only process
information discretely in time. Accordingly, system discretisation (in
time) has been studied for many years [1], [2], [3], [4], [5].

Motivated by established gap-metric robust performance results
for LTI feedback system [6], [7], [8], [9], a new framework for
studying the feedback controller discretisation problem is developed
in this paper. Central to the framework is the use of a gap-like
metric to measure the difference between an LTI controller and a
SD approximation. Indeed, knowledge of this measure of distance
permits characterisation of the possible degradation of closed-loop
performance with any LTI plant for which the LTI controller is known
to work well, accounting for intersample behaviour.

A variant of the following LTI result [9], [10], which permits one
of the systems to be a periodic SD controller, is established in this
paper as a cornerstone of the framework described above:

Proposition 1.1: [9] Given LTI systems C and C1, and a
number β, there exists an LTI system R (dependent on C
and β only) such that δν(C,C1) ≤ β ⇔ F`(R

−1, C1) ∈
H∞ and ‖F`(R

−1, C1)‖∞ ≤ 1, where δν(C,C1) denotes the ν-
gap distance between C and C1, and F`(·, ·) denotes the standard
lower-linear fractional transformation (LFT).
A result of this kind is suggestive of an algorithm for computing the
distance between an LTI controller C and a given discretisation Csd,
and a technique for synthesising a SD approximation; i.e. synthesise
Csd so that F`(R

−1, Csd) is stable and contractive (for some small
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β). Indeed, this paper is by and large devoted to establishing that
F`(R

−1, Csd) is stable and contractive if, and only if, Csd:
(i) lies within a pointwise gap metric distance, closely related to

the ν-gap metric, from C; and
(ii) stabilises any LTI plant with which C achieves a certain level

of closed-loop performance.
Importantly, testing if F`(R

−1, Csd) is stable and contractive for a
given Csd, or synthesising a Csd so that it is, can be achieved via
established methods [11], [12], [13].

The paper develops along the following line. First, a generalised
frequency domain framework for studying the controller discretisation
problem is established (cf. Sec. II). As part of this, a motiva-
tional gap metric robust performance result is also discussed within
the generalised frequency domain framework. Subsequently, a new
signal-based characterisation of a pointwise gap-metric measure of
distance is developed. This characterisation is inspired by the so-
called “strong-necessity” of a robustness result associated with the
ν-gap metric for LTI systems [8], [9], by which the distance between
two LTI controllers can be expressed in terms of a stability condition
being satisfied for one of the controllers in closed-loop with any LTI
plant for which the other controller achieves a certain level of closed-
loop performance (cf. Sec. III and Sec. IV). A simple numerical
example is presented to demonstrate the tools developed.

II. PRELIMINARIES

A. Basic operator theoretic notation

Throughout, the symbols R, Z, C, C+, C−, T, D, jR and H
denote the real, integer and complex numbers, the open right-half,
open left-half, unit circle and open unit disc of the complex plane,
the imaginary axis, and the interval [0, h)⊂R for h>0, respectively.

Let V1 and V2 be Hilbert spaces over either R or C. The inner
product on V1 is denoted by 〈·, ·〉V1 , and ‖ · ‖V1 denotes the norm
induced by the inner product. Let X : dom(X) ⊂ V1 → V2

be a linear operator, where dom(X) is called the domain of X.
The graph of X, taken with respect to the ambient space V2 × V1

(resp. V1×V2), is defined to be the subspace gr(X) := ( X
I ) dom(X)

(resp. gr(X) := ( IX ) dom(X)).
The Banach space B(V1,V2) is the set of linear operators

X : V1 → V2 for which dom(X) = V1 and the induced
norm ‖X‖ := supu∈V1,u 6=0

‖Xu‖V2
‖u‖V1

< ∞. Occasionally, the space
B(V1,V1) may be denoted by B(V1) for convenience. The Hilbert
adjoint of an operator X ∈ B(V1,V2) is denoted by X∗ ∈ B(V2,V1).
If X∗X = I then X is called an isometry. On the other hand, if X∗

is an isometry then X is called a coisometry. Two Hilbert spaces V1

and V2 are said to be isomorphic if there exists a bijective isometry
Y ∈ B(V1,V2) such that V2 = YV1. Moreover, two operators
X1 : dom(X1) ⊂ V1 → V2 and X2 : dom(X2) ⊂ V3 → V4

are said to be equivalent if gr(X1) is isomorphic to gr(X2).

B. Signal and system representations

In this section various aspects of the frequency-domain setting of
[11], [14] are reviewed. A signal is simply considered to be a function
mapping from some domain of definition into a Hilbert space. Of
particular interest are the signal spaces L2

jR(Cq) and L2
T(L2,p

H ), of
square integrable functions on jR and T, that take values in Cq and
L2

H(Cp) (which denotes the space of square integrable functions on
the interval [0, h)), respectively. For convenience, the space in which
signals take their values may often be dropped. Note that L2

jR(Cp) and
L2

T(L2,p
H ) are isomorphic, via the Fourier transform (by which L2

jR is
isomorphic to the time-domain signal space L2

R of square integrable
functions on R), the W-transform (which decomposes functions on R



2

into segments of length h according to f
k
(θ) = (Wf)k(θ) := f(θ+

kh) for θ ∈ H) and the Z-transform (Zf)(ϕ) :=
∑
k∈Z ϕ

kf
k

.
Also of interest are H2

C+
, the subspace of all f ∈ L2

jR which can be
continued analytically into C+ so that they are uniformly bounded
in the usual way, and H2

D, the subspace of all f ∈ L2
T which can

similarly be continued analytically into D. H2
C+

and H2
D are also

isomorphic via the Fourier-, W- and Z-transforms. The intermediate
time-domain signal space involved in this case is L2+

R := {f ∈ L2
R :

f(t) = 0 for t < 0}.
Characterising systems as multiplication operators on the spaces

defined above, is adequate to address the SD approximation prob-
lem outlined in the introduction. Most would be familiar with the
equivalence (via the Fourier transform isomorphism) between a time-
domain representation of a finite-dimensional LTI state-space system
and multiplication by a corresponding transfer function in:

(i) Rp,m, defined to be the set of functions P : jR→ B(Cm,Cp)
(a.e.) of the form P (ϕ) = C(ϕI −A)−1B+D for (almost) all
ϕ ∈ jR, with A ∈ Rn×n.

It is also true, that a time-domain representation of a finite-
dimensional linear periodically time-varying state-space system (in-
cluding LTI systems) is equivalent to multiplication by a correspond-
ing frequency-domain symbol in:

(ii) Dp,m, defined to be the set of functions P : T →
B(L2,m

H ,L2,p
H ) (a.e.) of the form P (ϕ) = ϕC(I−ϕA)−1B+D

with P (ϕ) for (almost) all ϕ ∈ T, and A ∈ Rn×n.
In particular, given a finite-dimensional LTI filter F : u 7→ uF ,
governed by the system of differential equations ẋF = AFxF +BFu
and uF = CFxF , with spec(AF ) ⊂ C− (where spec(·) denotes the
spectrum of an operator), and an h-periodic SD system S : uF 7→
y, governed by the difference equations xS(k + 1) = ASxS(k) +
BSuF (kh) and y(kh + θ) = CSxS(k) + DSuF (kh) for θ ∈ H, it
follows, by considering the evolution of these equations over intervals
of time of duration h, that the L2

R-graph (resp. L2+
R -graph) of the pre-

filtered periodic SD system Csd := SF is isomorphic (via W and
Z) to the L2

T(L2
H)-graph (resp. H2

D(L2
H)-graph) of multiplication by

Csd(ϕ) =


(

ÀF 0
BSCF AS

) (
B̀F
0

)
(
C̀1 C̀2

)
0

 ∈ D,
where ÀF : x 7→ exp(hAF )x, B̀F : u 7→

∫ h
0

exp((h −
τ)AF )BFu(τ) dτ , C̀1 : x 7→ DSCFx, C̀2 : x 7→ CSx and(

A B

C D

)
denotes a realisation ϕC(I − ϕA)−1B + D ∈ D. Similarly,

multiplication by any P ∈ R is equivalent (via the Fourier transform,
Z-transform and W-transform isomorphisms), to multiplication by a
P ∈ D. Throughout, an underline is used to denote the “time-lifted”
equivalent of a transfer function in R.

Given P ∈ R (resp. D), LP denotes the Laurant operator defined
by (LPu)(ϕ) := P (ϕ)u(ϕ) for all u ∈ dom(LP ) ⊂ L2

jR (resp. L2
T)

and ϕ ∈ jR (resp. T). Similarly, the multiplication operator MP is
defined by (MPu)(ϕ) := P (ϕ)u(ϕ) for all u ∈ dom(MP ) ⊂ H2

C+

(resp. H2
D) and ϕ ∈ jR (resp. T). The space of functions P ∈ R that

satisfy ‖P‖∞ := supϕ∈jR ‖P (ϕ)‖ <∞, is denoted by RL∞jR. The
symbol RH∞C+

denotes the Hardy space of all P ∈ RL∞jR that can
be continued analytically into C+.1 Similarly, the space of functions
P ∈ D that satisfy ‖P‖∞ := supϕ∈T ‖P (ϕ)‖ < ∞, is denoted by
DL∞T , and DH∞D denotes the Hardy space of all P ∈ DL∞T that can
be continued analytically into D.2 When P ∈ RL∞jR (resp. DL∞T ),

1Note that this corresponds to those P ∈ R for which a realisation(
A B

C D

)
, with spec(A) ⊂ C−, exists.

2Note that DH∞D corresponds to those P ∈ D for which a realisation(
A B

C D

)
, with spec(A) ⊂ D, exists.

LP ∈ B(L2
jR,L2

jR) (resp. B(L2
T,L2

T)), dom(LP ) = L2
jR (resp. L2

T)
and ‖LP ‖ = ‖P‖∞. Moreover, when P ∈ RH∞C+

(resp. DH∞D ),
MP ∈ B(H2

C+
,H2

C+
) (resp. B(H2

D,H2
D)), dom(MP ) = H2

C+

(resp. H2
D) and ‖MP ‖ = ‖P‖∞ [15].

If a (transfer) function P ∈ RH∞C+
(resp. DH∞D ) is such that

P (ϕ) is an isometry for all ϕ ∈ jR (resp. T), then P is called
inner. On the other hand, if P ∈ RH∞C+

(resp. DH∞D ) is such that
P (ϕ) is a coisometry for all ϕ ∈ jR (resp. T), then P is called
coinner. Henceforth, P ∗ is used to denote the function that satisfies
P ∗(ϕ) = P (ϕ)∗ for (almost) all ϕ ∈ jR (resp. T).

C. Feedback systems

In this subsection, and the next, attention is directed towards
systems represented by transfer functions in D. Recall that this
includes all transfer functions in R.

Consider the standard feedback configuration, shown in Fig. 1.
When it exists (in an appropriate sense), the transfer function from
(d1, d2) to (yc, uc, yp, up) is denoted by [P,C]. Now suppose that

k k- k
k

- - - -

?

6

-
? ?

-

6

C P
uc up yp

d1 d2

yc

n

r

Fig. 1. Standard feedback configuration

P ∈ Dm,p and C ∈ Dp,m. When (I − PC) and (I − CP ) are
invertible in Dm,m and Dp,p respectively (i.e. [P,C] is well-posed),
the transfer function from the signals

(
d1
d2

)
to ( ucyc ) is

T1(P,C) =

(
C
I

)
(I − PC)−1(−P I

)
(1)

and the transfer function from
(
d1
d2

)
to
( up
yp

)
is T2(P,C) :=

T1(P,C)− I . Note that T1(P,C) and T2(P,C) capture all closed-
loop transfer functions commonly employed in robustness and per-
formance analysis [16], [9]. When [P,C] ∈ DL∞T (resp. DH∞D ), it
can be shown that

b(P,C) := ‖T1(P,C)‖−1
∞ = ‖T2(P,C)‖−1

∞ ≤ 1.

If [P,C] /∈ DL∞T (resp. DH∞D ) then b(P,C) := 0. In the so-called
H∞ loop-shaping paradigm for feedback compensator design [16],
[9], b(P,C) is used as a generic measure of closed-loop performance
and robust stability.

Using the geometric framework of [17], the following proposition
(which is used in the proof of Thm. 4.1) is readily established:

Proposition 2.1: Given P ∈ Dm,p and C ∈ Dp,m, let G :=
gr(LP ) (resp. gr(MP )) and K := gr(LC) (resp. gr(MC)), where
the graphs here are taken with respect to the ambient space L :=
L2

T(L2,p
H )×L2

T(L2,m
H ) (resp. H2

D(L2,p
H )×H2

D(L2,m
H )). Then [P,C] ∈

DL∞T (resp. DH∞D ) if, and only if, K ∩ G = {0} and K + G = L.
Furthermore, given Q ∈ Dm̂,p̂ and F ∈ Dp̂,m̂, with p̂ + m̂ =
p + m, such that LRK = gr(LF ) (resp. MRK = gr(MF )) and
LRG = gr(LQ) (resp. MRG = gr(MQ)), for some R,R−1∈DL∞T
(resp. DH∞D ), where the graphs here are taken with respect to the
partitioning L2

T(L2,p̂
H )×L2

T(L2,m̂
H ) (resp. H2

D(L2,p̂
H )×H2

D(L2,m̂
H )) of

L, the following equivalence holds:
[P,C] ∈ DL∞T (resp. DH∞D ) ⇔ [F,Q] ∈ DL∞T (resp. DH∞D ).
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D. A key gap metric robustness result

Important feedback system robustness results, which provide sub-
stantial motivation for using a gap metric to quantify approximation
error, are now established in the frequency domain framework
developed thus far. Recall that the L2

T-gap between two systems
C1, C2 ∈ D is defined to be the gap (or aperture [18]) between
K1 := gr(LC1) and K2 := gr(LC2) [9], [19]:

gap(K1,K2) := ‖ΠK1 −ΠK2‖,

where ΠK denotes the orthogonal projection onto K. Using the
fact (see Appendix A) that the L2

T-graph of any C ∈ D can be
characterised as the range (resp. kernel) of a multiplication operator
with (i) inner (resp. coinner) symbol, and (ii) left (resp. right) inverse
corresponding multiplication by transfer functions in DH∞D , it can
be shown (see Appendix B) that

gap(K1,K2) = sup
ϕ∈T

κ(C1(ϕ), C2(ϕ)),

where for any X,Y ∈ B(V1,V2),

κ(X,Y ):= sup
x∈gr(X)
x 6=0

inf
y∈gr(Y )
y 6=0

‖x− y‖V
‖x‖V

= sup
x∈gr(X)
x 6=0

inf
y∈gr(Y )
y 6=0

‖x− y‖V
‖y‖V

(2)

and V = V1 × V2. The final equality in (2) is established in [20,
Appendix]. As such, it follows from the central results of [21, Sec.
III], that given [P,C1] ∈ DL∞T (resp. DH∞D ) and [P,C2] ∈ DL∞T
(resp. DH∞D ),

δ(C1, C2)≤‖T1(P,C1)−T1(P,C2)‖∞≤
δ(C1, C2)

b(P,C1) · b(P,C2)
, (3)

where δ(C1, C2) := supϕ∈T κ(C1(ϕ), C2(ϕ)). Furthermore,
arcsin b(P,C2) ≥ arcsin b(P,C1) − arcsin δ(C1, C2), which is
important from the perspective of robust stability in the face of plant
uncertainty. These results clearly indicate that κ(·, ·) is a sensible
pointwise measure of distance, from the perspective of capturing the
difference between two closed-loop systems.

III. SIGNAL-BASED CHARACTERISATION OF THE POINTWISE GAP

The ν-gap distance between two LTI controllers can be charac-
terised in terms of a stability condition being satisfied for one of
the controllers in closed-loop with any LTI plant for which the other
controller achieves a certain level of closed-loop performance [9]. In
this section, a variation of this result is established, by which one
of the controllers can be periodically time-varying. This is achieved
in two steps. The first step involves a new characterisation of “plant
signals” that would be consistent with a specified level of closed-loop
performance for a given C ∈ R. This, in turn, leads to the required
characterisation of the pointwise gap.

Central to the development of the first step is an inner-coinner-
outer factorisation that is implicitly established in [22]. Before
this can be presented, some additional notation is required. Given
H =:

(
H11 H12
H21 H22

)
∈ R (resp. D) and Q ∈ R (resp. D), if (I −

H22Q)−1 ∈ R (resp. D), the lower linear fractional transformation
(LFT) F`(H,Q) := H11 +H12Q(I −H22Q)−1H21. Furthermore,
given Θ =:

(
Θ11 Θ12
Θ21 Θ22

)
∈ R (resp. D), the Redheffer star product

Θ ? H :=
(

F`(Θ,H11) Θ12(I−Θ22H11)−1H12

H21(I−H11Θ22)−1Θ21 Fu(H,Θ22)

)
,

where Fu(H,Q) :=H22 + H21Q(I −H11Q)−1H12, provided the
required inverses exist in R (resp. D).

Now, for a given controller with transfer function C ∈ R, let

H :=

 0 C C
0 I I

−I C C

 .

Then for a system with transfer function P ∈ D, it follows that

F`(H,P ) =

(
C
I

)
(I − PC)−1(−P I

)
∈ D,

provided (I − PC) is invertible in D.3 Given a β > 0,
note that [P,C] ∈ DL∞T and b(P,C) > β ⇔
F`(H,P ) ∈ DL∞T and ‖F`(H,P )‖∞ < 1

β
. In fact, defining

Hβ :=
(
I 0
0 1
β
I

)
H
(
βI 0
0 βI

)
, it follows that [P,C] ∈ DL∞T and

b(P,C)>β⇔F`(Hβ , P ) ∈ DL∞T and ‖F`(Hβ , P )‖∞<1. For a
given controller C ∈ R, it can be shown by following an argument
presented in [22, Sec. VI], that for β<bopt(C):=supP∈Rb(P,C),

Hβ = M ? M̃ ? R, (4)

where M ∈ RH∞C+
is inner with M21,M

−1
21 ∈ RH∞C+

, M̃ ∈ RH∞C+

is coinner with M̃12, M̃
−1
12 ∈ RH∞C+

, and R is invertible in R with
R−1

12 , R
−1
21 ∈ RH∞C+

. Details of this factorisation are in Appendix C.
Remark 3.1: The factorisation (4) can be used, as is done

implicitly in [22], to characterise all P ∈ R that satisfy
F`(Hβ , P ) ∈ RL∞jR (resp.RH∞C+

) and ‖F`(Hβ , P )‖∞<1. Indeed,
Q := F`(R,P )∈RL∞jR (resp. RH∞C+

) and ‖Q‖∞< 1, for all such
P ∈ R. This parametrisation can be combined with the so-called
“strong-necessity” LTI ν-gap robustness results described in [9], to
obtain the characterisation of the ν-gap given in Prop. 1.1. A different
approach, however, is needed here, since the “standard” proof (cf. [22,
Lemma 15]) of the required parametrisation fails to carry through at
several points. In light of this, a new signal-based framework, which
may also be useful in contexts beyond the discretisation problem
considered here, is established below. ♣

�
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u Hβ �

�

-
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�

-

-
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w

ź

ẃ

y

u

s

t Rch

M̃ch

Mch

Fig. 2. Chain-Scattering representation of Hβ

By virtue of the of properties M , M̃ and R described above, it is
possible to interpret the factorisation (4) within the chain-scattering
formalism [23] – see Fig. 2. Define

Mch :=

(
M12 −M11M

−1
21 M22 M11M

−1
21

−M−1
21 M22 M−1

21

)
∈ R,

M̃ch :=

(
M̃−1

12 −M̃−1
12 M̃11

M̃22M̃
−1
12 M̃21 − M̃22M̃

−1
12 M̃11

)
∈ R

and

Rch :=

(
R12 −R11R

−1
21 R22 R11R

−1
21

−R−1
21 R22 R−1

21

)
∈ R,

noting that R−1
ch ∈ R. Since M−1

21 ∈ RH∞C+
and M̃−1

12 ∈ RH∞C+
,

it follows that Mch ∈ RH∞C+
and M̃ch ∈ RH∞C+

. Moreover, it can
be shown that Rch, R

−1
ch ∈ RH

∞
C+

– see Appendix C. Using the fact
that M is inner and that M̃ is coinner, it also follows that

M∗ch(ϕ)J1Mch(ϕ) = J2 and M̃ch(ϕ)J2M̃
∗
ch(ϕ) = J3, (5)

3Recall that an underline is used to denote the “time-lifted” equivalent.
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for all ϕ ∈ jR, where J1, J2 and J3 are signature matrices of the
form

(
I 0
0 −I

)
, partitioned conformably with Mch and M̃ch, as ap-

propriate. To summarise, Mch is J-inner, M̃ch is J-coinner and Rch

is outer. Now, given any signals y, u ∈ L2
jR, define ( st ) :=Rch( yu ).

Since multiplication by M̃ch is surjective, there exists at least one
pair of signals ź, ẃ ∈ L2

jR, such that ( st ) = M̃ch( źẃ ). Furthermore,
the corresponding signals ( zw ) :=Mch( źẃ ) ∈ L2

jR satisfy ( zu ) =
Hβ (wy ), as illustrated in Fig. 2.

k k? ?
- - --- -

? ?

? ?

C

ββ

β
upyp uy

d2 d1

w2 w1

z2 z1

-
1/β

yc uc

Fig. 3. Signals in the standard feedback configuration

Fig. 3 shows the relationship between the signals w, z, u and y
introduced above, and the signals in the standard feedback configu-
ration of Fig. 1. Note, in particular, that

β(w1
w2 )=( d1d2 )=(

up
yp )−( ucyc ), ( z1z2 )=( ucyc ) and ( uy )=

1

β
(
up
yp ). (6)

With this, the properties of Mch, M̃ch and Rch, give rise to the fol-
lowing characterisation of “plant signals” consistent with a specified
level of closed-loop performance for a given C ∈ R.

Theorem 3.2: Given C ∈ R and 0 < β < bopt(C), let R ∈ R
(and correspondingly Rch ∈ RH∞C+

) be as defined above. Then for
any

( up
yp

)
∈ L2

T and any ϕ ∈ T, the following are equivalent:4

(i)

∥∥∥(
up
yp )(ϕ)−(

uc
yc

)(ϕ)
∥∥∥
L2H

‖(ucyc )(ϕ)‖L2H
> β for all ( ucyc ) ∈ gr(LC);

(ii) 〈Rch

( yp
up

)
(ϕ), J3Rch

( yp
up

)
(ϕ)〉L2

H
< 0, where J3 is a matrix

of the form
(
I 0
0 −I

)
, partitioned conformably with Rch.

Proof: (i)⇒(ii): Let ( st ) :=Rch( yu ) and ( źẃ ) := J2M̃
∗
chJ3( st ),

where ( uy ) = 1
β

(
up
yp ). Then M̃ch( źẃ ) = ( st ), and using (5), it follows

that

〈( źẃ )(ϕ), J2( źẃ )(ϕ)〉L2
H

= 〈J2M̃
∗
chJ3( st )(ϕ), M̃

∗
chJ3( st )(ϕ)〉L2

H

= 〈( st )(ϕ), J3( st )(ϕ)〉L2
H
.

Now note that ( zw ) = Mch( źẃ ) satisfies ( zu ) = Hβ(wy ). Hence, in
view of (5),

〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2
H

=〈( źẃ )(ϕ),M∗chJ1Mch( źẃ )(ϕ)〉L2
H

=〈( zw )(ϕ), J1( zw )(ϕ)〉L2
H
< 0,

since (i) may be rewritten as ‖z(ϕ)‖2L2
H
< ‖w(ϕ)‖2L2

H
– see (6).

Finally, note that

〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2
H
< 0

⇔ 〈Rch

( yp
up

)
(ϕ), J3Rch

( yp
up

)
(ϕ)〉L2

H
< 0. (7)

(ii)⇒(i): Fix z = ( ucyc ) ∈ gr(LC) and let w = 1
β

[
(
up
yp )− ( ucyc )

]
,

( uy ) = 1
β

(
up
yp ) and ( st ) = Rch( yu ). Then, ( zu ) = Hβ(wy ) and it

follows that there exists a pair of signals ( źẃ ) ∈ L2
T such that ( zw ) =

Mch( źẃ ) and ( źt ) = M̃( ẃs ) – see Figures 2 and 3. Now, since M̃
is coinner it follows that ‖ź(ϕ)‖2L2

H
+ ‖t(ϕ)‖2L2

H
≤ ‖ẃ(ϕ)‖2L2

H
+

4Recall that the underline denotes “time-lifted” equivalent in D.

‖s(ϕ)‖2L2
H

and hence, in view of (5), that

〈( zw )(ϕ), J1( zw )(ϕ)〉L2
H

= 〈( źẃ )(ϕ), J2( źẃ )〉L2
H

≤ 〈( st )(ϕ), J3( st )〉L2
H

= 〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2
H
< 0,

where the final inequality holds because of (7) and the hypothesis
that (ii) holds. Therefore,

‖( ucyc )(ϕ)‖2L2
H
=‖z(ϕ)‖2L2

H
<‖w(ϕ)‖2L2

H
=

1

β
‖( upyp )(ϕ)−( ucyc )(ϕ)‖2L2

H
,

as required.
Corollary 3.3: Given C ∈ R and 0 < β < bopt(C), let R ∈ R

(and correspondingly Rch ∈ RH∞C+
) be as defined above. For C1 ∈

D, the following are equivalent:
(i) 〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2

H
≥ 0, for all ϕ ∈ T and all

( uy ) ∈ gr(LC1);
(ii) supϕ∈T κ(C(ϕ), C1(ϕ)) ≤ β.

Proof: For any fixed ϕ ∈ T, it follows by Theorem 3.2, that
〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2

H
≥0 is equivalent to the existence of

a ( ucyc ) ∈ gr(LC) satisfying

‖( uy )(ϕ)− ( ucyc )(ϕ)‖L2
H

‖( ucyc )(ϕ)‖L2
H

≤ β.

Thus, the result holds by the definition of κ(·, ·) – see (2).

IV. SD APPROXIMATION IN THE POINTWISE GAP

This section serves to present the main result of the paper. This
result leads directly to a procedure for computing the gap between a
given LTI controller and a particular discretisation, and a procedure
for synthesising an optimal SD approximation. Note that the main
result does take into account the “standard” requirement of closed-
loop stability (i.e. all closed-loop transfer functions in H∞).

Theorem 4.1: Given C ∈ R, a pre-filtered, periodic SD controller
with corresponding transfer function Csd ∈ D,5 and 0<β<bopt(C),
let R ∈ R (and correspondingly Rch ∈ RH∞C+

) be as defined in
Sec. III and Appendix C. Then for any P ∈ R, that satisfies [P,C] ∈
RH∞C+

and b(P,C) > β, the following are equivalent:6

(i) F`(R
−1, Csd) ∈ DH∞D and ‖F`(R

−1, Csd)‖∞ ≤ 1;
(ii) supϕ∈T κ(C(ϕ), Csd(ϕ)) ≤ β and [P ,Csd] ∈ DH∞D .

Proof: (i)⇒(ii): Let Fsd := F`(R
−1, Csd) ∈ DH∞D , and given

any ( uy ) ∈ gr(LCsd), let s := ( I 0 )Rch( yu ) ∈ L2
T. Now, since

‖Fsd‖∞ ≤ 1,

〈Rch( yu )(ϕ), J3Rch( yu )(ϕ)〉L2
H
=〈
(
I
Fsd

)
s(ϕ), J3

(
I
Fsd

)
s(ϕ)〉L2

H
≥0,

for all ϕ ∈ T, where J3 is a signature matrix partitioned
conformably with Rch. In view of this, Corol. 3.3 implies that
supϕ∈T κ(C(ϕ), Csd(ϕ)) ≤ β. So it remains to show that [P ,Csd] ∈
DH∞D . To see this, first note that Q := F`(R,P ) ∈ DH∞D and
‖Q‖∞ < 1, since b(P,C) > β (cf. Rem. 3.1). Then using a standard
small gain argument (cf. [24]), observe that [Q,Fsd] ∈ DH∞D .
Finally, since MRch

gr(MCsd) = gr(MFsd) and MRch
gr(MP ) =

gr(MQ) (cf. Fig. 4), it follows by Prop. 2.1, that [P ,Csd] ∈ DH∞D .
(ii)⇒(i): Corol. 3.3 guarantees that MFsd is contractive on

dom(MFsd) ⊂ H2
D. To see this, consult Fig. 4 and note that for any

( st )∈ gr(MFsd) there exists a ( uy ) ∈ gr(MCsd) ⊂ gr(LCsd), such
that ( st ) = Rch( yu ). Now the part of (ii) which ensures [P ,Csd] ∈
DH∞D , is used to show that dom(MFsd) = H2

D, and hence, that
Fsd ∈ DH∞D with ‖Fsd‖∞ ≤ 1. Suppose dom(MFsd) 6= H2

D and

5See the end of Section II-B for details regarding the construction of this
from a time-domain representation.

6Again, recall that an underline denotes the “time-lifted” equivalent.
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define Q := F`(R,P ), noting that Q ∈ DH∞D with ‖Q‖∞ < 1,
since b(P ,C) > β (see Rem. 3.1). Moreover, since gr(MCsd) =
M

R−1
ch

gr(MFsd) and gr(MP ) = M
R−1

ch
gr(MQ), it follows by

Prop. 2.1, that [Fsd, Q] ∈ DH∞D . Accordingly, by the Large Gain

Theorem [25], supx∈dom(MFsd
) ‖QFsdx‖H2

D

/
‖x‖H2

D
≥ 1. This,

however, contradicts ‖Q‖∞ < 1 and MFsd being contractive on
its domain. So dom(MFsd) = H2

D must hold, as required.
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Fig. 4. gr(MCsd
), gr(MFsd

), gr(MP ) and gr(MQ) relationships

Theorem 4.1 provides the required characterisation of the pointwise
gap metric distance between a given LTI controller and a SD ap-
proximation, accounting for closed-loop stability with any LTI plant
for which the LTI controller achieves a certain level of closed-loop
performance. Indeed, it gives rise to the following two procedures
for analysis and synthesis.

Procedure 1: (Analysis) Given a strictly proper LTI controller
C and a pre-filtered periodic SD controller Csd, find the small-
est β < bopt(C) such that F`(R

−1, Csd) ∈ DH∞D and
‖F`(R

−1, Csd)‖∞ ≤ 1, where R is defined in (16) of Appendix C.
By Theorem 4.1, this smallest value for β bounds the gap between
C and Csd. Finding the smallest β can be achieved using established
H∞ SD analysis methods [11], [12], [13].

Procedure 2: (Synthesis) Given a strictly proper LTI controller
C, a fixed sample rate and an anti-aliasing filter F , find the smallest
β < bopt(C), such that there exists a SD controller Csd = H CdSF
satisfying F`(R

−1, Csd) ∈ DH∞D and ‖F`(R
−1, Csd)‖∞ ≤ 1,

where S is an ideal sampler, H is a zero-order hold and R is
defined in (16) of Appendix C. The value for β, and the corresponding
optimal Csd, can be obtained using established H∞ SD synthesis
methods [11], [12], [13]. Note that the state-space dimension of
Cd is at most that of C plus that of F . Finally, observe that the
SD approximation obtained would only be useful if the smallest
β achieved is less than b(P,C). If not, the fixed pre-filter and/or
sampling period should be re-designed.

V. CONCLUDING EXAMPLE

Consider the LTI plant P (s) = 3
s

and an LTI controller C(s) =
−5.25(s+1)2

s(s+1.5)(s+3.5)
, for which b(P,C) = 0.312. Figure 5 shows the

frequency response of the discrete-time component of three SD
approximations of C, for a fixed anti-aliasing filter F = 10

s+10

and sampling frequency of 60rad/sec. The discretisations shown are
the result of: (i) Proc. 2; (ii) Taking the Cayley transform (z =
1+sh/2
1−sh/2 with h the sampling period) of C(s); (iii) Taking the Cayley

transform of Ĉ(s) = −5.25(s+1)2(0.1s+1)
s(s+1.5)(s+3.5)

(i.e. C with F factored
out). The resulting closed-loop characteristics are summarised in
Figure 6 and Table I, in which ∆ := T1(P ,C)−T1(P ,Csd).

It can be seen that the discretisations obtained via approaches (i)
and (iii) are very similar. Of note though, is the slightly lower gain
(cf. Fig. 5) obtained via (i). This seems to result in significantly less
degradation of b(P,C), at the cost of a slightly greater difference
between nominal closed-loop performance, and that achieved with
the SD controller. It would be interesting to investigate the use of
appropriate weights (perhaps related to P ) to direct the gap approxi-
mation procedure, in order to maintain a handle on this phenomenon.
The example also demonstrates that F should be factored out of C
(if possible), before discretising via a bilinear transform. The anti-
aliasing filter is automatically taken into account in approach (i).

The closed-loop characteristics for the discretisations obtained
when the sampling frequency is increased to 500 rad/sec (with the
same fixed F ), are summarised in Table II. Note that near nominal
closed-loop characteristics are recovered via approaches (i) and (iii),
whereas the discretisation obtained via (ii) is still relatively poor. In
fact, for this sampling frequency, the closed-loop step responses for
the discretisations obtained via (i) and (iii) are identical to the LTI
controlled case (see Figure 6).
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Fig. 5. Cd Frequency responses – samp. rate 60 rad/sec: (solid) gap
approximation; (dot) Cayley transform without factoring out the aa-filter;
(dash) Cayley transform first factoring out the aa-filter

Approach supϕ∈T κ(C,Csd) b(P ,Csd) ‖∆‖∞
(i) 0.295 0.276 2.06
(ii) 0.474 0.085 9.34
(iii) 0.306 0.221 1.72

TABLE I
CLOSED-LOOP CHARACTERISTICS – SAMP. RATE 60 RAD/SEC

Approach supϕ∈T κ(C,Csd) b(P ,Csd) ‖∆‖∞
(i) 0.040 0.312 0.306
(ii) 0.316 0.156 3.67
(iii) 0.042 0.302 0.157

TABLE II
CLOSED-LOOP CHARACTERISTICS – SAMP. RATE 500 RAD/SEC

APPENDIX A
NORMALISED COPRIME FACTORISATIONS AND GRAPH SYMBOLS

Given a realisation
(

A B

C D

)
of a function C ∈ Rp,m (resp. Dp,m),

that is stabilisable and detectable,7 there exists (by definition) an

7Such realisations can be constructed from any realisation in the usual way
via a Kalman Decomposition – see [24, Sec. 3.3] for C ∈ Rp,m and [26,
Sec. 2.4.1] for C ∈ Dp,m.
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Fig. 6. Closed-Loop step responses: (solid) gap approximation; (dot) Cayley
transform without factoring out the aa-filter; (dash) Cayley transform first
factoring out the aa-filter; (star) Continuous-time LTI control

F ∈ B(Rn,Rm) (resp. B(Rn,L2,m
H )) and an L ∈ B(Rp,Rn) (resp.

B(L2,p
H ,Rn)), such that spec(A+BF) ⊂ C− (resp. spec(A+BF) ⊂

D) and spec(A + LC) ⊂ C− (resp. spec(A + LC) ⊂ D). Defining(
D −Y
N X

)
:=

 A + BF BV −LS−1

F V 0
C + DF DV S−1

 ∈ RH∞C+
(8)

(resp. DH∞D )

and (
X̃ Ỹ

−Ñ D̃

)
:=

 A + LC −(B + LD) L

V−1F V−1 0

SC −SD S

∈ RH∞C+
(9)

(resp. DH∞D ),

for invertible S ∈ B(Rp,Rp) (resp. S ∈ B(L2,p
H ,L2,p

H )) and
V ∈ B(Rm,Rm) (resp. V ∈ B(L2,m

H ,L2,m
H )), it follows that P =

ND−1 = D̃−1Ñ are coprime factorisations, in that(
X̃ Ỹ

−Ñ D̃

)(
D −Y
N X

)
=

(
I 0
0 I

)
.

Moreover, an appropriate choice of F, L,V, S yields normalised
factors, in the sense that (ND ) is inner and

(
−D̃ Ñ

)
is coinner.

In particular, let R := (I + D∗D) and R̃ := (I + DD∗), and define
F :=−R−1(B∗X+D∗C) (resp. F :=−(R+B∗XB)−1(B∗XA+D∗C))
and L := − (BD∗ + YC∗)R̃−1 (resp. L := − (BD∗ + AYC∗)(R̃ +
CYC∗)), where 0 ≤ X = X∗ ∈ B(Rn,Rn) is the stabilising solution
to the continuous-time algebraic Riccati equation

(A− BR−1D∗C)∗X + X(A− BR−1D∗C)

− XBR−1B∗X + C∗R̃−1C = 0,

which satisfies spec(A+BF) ⊂ C− by definition (resp. the stabilising
solution to the discrete-time algebraic Riccati equation8

X = (A− BR−1D∗C)∗X(I + BR−1B∗X)−1(A− BR−1D∗C)

+ C∗R̃−1C,

which satisfies spec(A+BF) ⊂ D by definition), and 0 ≤ Y = Y∗ ∈
B(Rn,Rn) is the solution to the continuous-time algebraic Riccati

8Note that this is a standard finite-dimensional Riccati equation, since
(A − BR−1D∗C) ∈ B(Rn,Rn), BR−1B∗ ∈ B(Rn,Rn) and C∗R̃−1C ∈
B(Rn,Rn).

equation

(A− BD∗R̃−1C)Y + Y(A− BD∗R̃−1C)∗

− YC∗R̃−1CY + BR−1B∗ = 0,

that satisfies spec(A+ LC) ⊂ C− (resp. the solution to the discrete-
time algebraic Riccati equation

Y = (A− BD∗R̃−1C)Y(I + C∗R̃−1CY)−1(A− BD∗R̃−1C)∗

+ BR−1B∗,

that satisfies spec(A + BF) ⊂ D).9 Finally, setting V := R−
1
2 (resp.

V := (R+B∗XB)−
1
2 ) and S := R̃−

1
2 (resp. S := (R̃+CYC∗)−

1
2 ) it

follows that (ND ) and
(
−D̃ Ñ

)
, defined in (8) and (9), are inner

and coinner, respectively – See [24, Corol. 13.29] for C ∈ Rp,m and
[26, Lemma 5.4] for C ∈ Dp,m.

Given coprime factorisations C = ND−1 = D̃−1Ñ ∈ Rp,m
(resp. Dp,m), defining

K :=

(
N
D

)
∈ RH∞C+

(resp.DH∞D )

and

K̃ :=
(
−D̃ Ñ

)
∈ RH∞C+

(resp.DH∞D ),

it follows that gr(MC) = ran(MK) = ker(MK̃) ⊂ H2
C+

(resp. H2
D) and gr(LC) = ran(LK) = ker(LK̃) ⊂ L2

jR
(resp. L2

T). Similarly, for almost all10 frequencies ϕ ∈ jR (resp. T),
ran(K(ϕ)) = ker(K̃(ϕ)) ⊂ Cm+p (resp. L2,m+p

H ). The functions
K and K̃ are called right and left graph symbols, which are said to
be normalised if K∗K = I and K̃K̃∗ = I . When K and K̃ are
normalised, (

K∗

K̃

)(
K K̃∗

)
=

(
I 0
0 I

)
. (10)

Correspondingly, ran(
(
K∗(ϕ)

K̃(ϕ)

)
) = Cm+p (resp. L2,m+p

H ) at any
ϕ ∈ jR (resp. T). Moreover, for almost all ϕ ∈ jR (resp. T),
ker(

(
K∗(ϕ)

K̃(ϕ)

)
) = ker(K(ϕ)∗) ∩ ker(K̃(ϕ)) = ran(K(ϕ))⊥ ∩

ran(K(ϕ)) = {0}, where ⊥ denotes the orthogonal complement
of a Hilbert space.11 So

(
K∗(ϕ)

K̃(ϕ)

)
is bijective for almost all ϕ ∈ jR

(resp. T), and hence, in light of (10), it follows that(
K(ϕ) K̃∗(ϕ)

)(K∗(ϕ)

K̃(ϕ)

)
= I. (11)

In fact this is true for all ϕ ∈ jR (resp. T), since K and K̃ are
continuous on jR (resp. T).12

APPENDIX B
EQUIVALENCE OF THE POINTWISE AND L2

T-GAPS

Given Hilbert space V and bounded operator X ∈ B(V,V), let
µ(X) = sup‖u‖V1=1 ‖Xu‖V2 denote the induced norm, and

τ (X) := inf
‖u‖V1=1

‖Xu‖V2

denote the minimum modulus.

9The required solutions X and Y exist since (A,B,C,D) is a stabilisable
and detectable realisation. See [24, Corol. 13.8] for C ∈ Rp,m and [26,
Prop. 2.20] for C ∈ Dp,m.

10Except for possibly finitely many points at which D(ϕ) (or D̃(ϕ)) may
not be boundedly invertible; i.e. at poles of C on jR (resp. T).

11Note that cl(ran(K(ϕ))) = ran(K(ϕ)) since K(ϕ) is left-invertible.
12In the C ∈ R case, such delicate arguments are not required, since at

each frequency
(
K∗(ϕ)

K̃(ϕ)

)
is square and finite-dimensional, which combined

with (10) is enough to imply that it is unitary.
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Lemma 1: If ( A
B ) ∈ B(V,V × V) is an isometry, then µ(B)2 =

1 − τ (A)2. Similarly, if (Ã B̃) ∈ B(V × V,V) is a coisometry
and τ (Ã) = τ (Ã∗), then µ(B̃)2 = 1− τ (Ã)2.

Proof: If ( A
B ) is an isometry, it follows that for any u ∈ V ,

〈u, u〉V = 〈Bu,Bu〉V + 〈Au,Au〉V , (12)

by which it is immediate that µ(B)2 = 1− τ (A)2. The coisometry
case follows similarly, on noting that

(
Ã∗

B̃∗

)
is an isometry and

µ(B̃∗) = µ(B̃).
Given C1 and C2 ∈ D, with normalised right and left graph

symbols K1 and K2, and K̃1 and K̃2, respectively, define

κ(C1(ϕ), C2(ϕ)) := µ(K̃1K2(ϕ))

= µ(K̃2K1(ϕ))

=: κ(C2(ϕ), C1(ϕ)). (13)

The second equality follows by Lemma 1, since the operator
K∗1 (K2 K̃∗2 )(ϕ) is a coisometry and

(
K∗1
K̃1

)
K2(ϕ) is an isometry

(see (10) and (11)) for all ϕ ∈ T,13 and therefore,

µ(K̃2K1(ϕ)) = µ(K∗1 K̃
∗
2 (ϕ))

=
√

1− τ (K∗1K2(ϕ))2

= µ(K̃1K2(ϕ)). (14)

Moreover, since the Ki(ϕ) and K̃i(ϕ) are isometries and coisome-
tries, respectively,

κ(C1(ϕ), C2(ϕ)) := µ(K̃1K2(ϕ))

= µ(K̃∗1 K̃1K2K
∗
2 (ϕ))

= ‖Πgr(C1(ϕ))⊥Πgr(C2(ϕ))‖

= sup
x∈gr(C1(ϕ))

x 6=0

inf
y∈gr(C2(ϕ))

y 6=0

‖x− y‖L2
H

‖x‖L2
H

.

It can be shown that κ(C1(ϕ), C2(ϕ)) = 0 if, and only if,
C1(ϕ) = C2(ϕ), and that κ(C1(ϕ), C3(ϕ)) ≤ κ(C1(ϕ), C2(ϕ)) +
κ(C2(ϕ), C3(ϕ)) for any other C3 ∈ D [8], [9]. As such, with (2),
it follows that κ(·, ·) is a metric pointwise in frequency.

The relationship between the pointwise metric just described and
the L2

T-gap can now be established. In particular, recall that the L2
T-

gap between two systems with transfer functions C1 and C2 ∈ D is
defined to be the gap (or aperture – see [18] for example) between
K1 := gr(LC1) and K2 := gr(LC2) [9], [19]:

gap(K1,K2) := ‖ΠK1 −ΠK2‖
= max

i,j∈{1,2}
~gap(Ki,Kj), (15)

where ΠKi denotes the orthogonal projection onto Ki and

~gap(Ki,Kj) := ‖ΠK⊥j ΠKi‖ = sup
x∈Ki,x 6=0

inf
y∈Kj

‖x− y‖L2
T

‖x‖L2
T

.

Now, since KiK
∗
iKiq = Kiq for any q ∈ L2

T and KiK
∗
i +

K̃∗i K̃i = I see (10) and (11)) it follows that the projections required
to calculate the directed gaps can be expressed in terms of the
normalised right and left graph symbols Ki and K̃i, respectively,

13To have τ (K∗1K2(ϕ)) = τ (K∗2K1(ϕ)), it is sufficient for the D-
terms of C1 and C2 to be compact operators. In view of the realizations in
Appendix A, this implies K∗2K1(ϕ) is Fredholm with index 0 (as a compact
perturbation of an invertible operator), and therefore, it is injective iff it is
surjective, whereby the minimum modulus equality holds. The compactness
property is satisfied in the case of W-transformed transfer functions from R,
and the transfer fuction of a sampled-data controller shown in Section II-B.

of Ci. Indeed, ΠKi = LKiK∗i and ΠK⊥i
= LK̃∗i K̃i

. In light of this,
it follows that

~gap(Ki,Kj) = ‖K̃∗j K̃jKiK
∗
i ‖∞

= ‖K̃jKi‖∞
= ‖K̃iKj‖∞
= ‖K̃∗i K̃iKjK

∗
j ‖∞

= ~gap(Kj ,Ki),

where the third equality holds because of (14). Hence, by the
definition of κ(·, ·), and in view of (15), the following relationship
holds:

sup
ϕ∈T

κ(C1(ϕ), C2(ϕ)) = ‖K̃1K2‖∞ = gap(K1,K2).

APPENDIX C
INNER-COINNER-OUTER FACTORISATION

Details of the factorisation (4) are given here in the notation of
[22]. Suppose C ∈ R has a stabilisable and detectable realisation(

A B

C D

)
. Furthermore, let X = X∗ ≥ 0 be the stabilising solution to

the generalised control Riccati equation (GCARE)

A∗X + XA− XBB∗X + C∗C = 0,

and Z = Z∗ ≥ 0 be the stabilising solution to generalised filtering
Riccati equation (GFARE)14

AZ + ZA∗ − ZC∗CZ + BB∗ = 0.

Let γ := 1
β
≥ 1

bopt(C)
=
√

1 + rad(XZ) and define:

(i) M :=


A + BF∞

(
0 1

γ
B
) √

γ2−1
γ

B(
C
F∞

) (
0 0

0 1
γ
I

) (
0√

γ2−1
γ

I

)
(

0

0

) (
I 0

0

√
γ2−1
γ

I

) (
0

− 1
γ
I

)

, where

F∞ := − B∗X;
(ii)

M̃ :=

 Atmp + γLtmpC
(
−Ltmp

1√
γ2−1

B
)

γ√
γ2−1

YtmpF∗∞
−γ√
γ2−1

(
0 0

) (
−I 0

)
γC I 0

,
where Atmp := A− 1

γ2−1
BF∞, Ltmp := −γYtmpC

∗, Ytmp =

Y∞(I − XY∞)−1 ≥ 0, Y∞ := 1
γ2−1

Z; and
(iii)

R :=

 AR −Ltmp B2R
−γ√
γ2−1

F∞ 0 1√
γ2−1

I

γC I 0

 ∈ R, (16)

where AR := Atmp + γ2

γ2−1
YtmpF

∗
∞F∞ and B2R := γ

γ2−1
B−

γ
γ2−1

YtmpF
∗
∞.

That, Hβ = M ?M̃ ?R follows directly by substitution. It is now
shown that:

(i) M ∈ RH∞C+
is inner, with M−1

12 ∈ RH∞C+
;

(ii) M̃ ∈ RH∞C+
is coinner, with M̃−1

21 ∈ RH∞C+
; and

(iii) R−1
12 , R

−1
21 , Rch, R

−1
ch ∈ RH

∞
C+

.
Since X ≥ 0 is the stabilising solution to GCARE, it follows that

spec(A− BB∗X) = spec(A + BF∞) ⊂ C−

14The required stabilising solutions X and Z exist since (A,B,C) is
stabilisable and detectable [24, Corol. 13.8]
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and hence, that M ∈ RH∞C+
. Defining AF∞ := A + BF∞ and

rearranging GCARE to obtain

A∗F∞X + XAF∞ + C∗C + F∗∞F∞ = 0, (17)

it also follows that X is the Observability Gramian of M . Further-
more,

(
0 0
0 1
γ
I

) (
I 0

0

√
γ2−1

γ
I

)
(

0

√
γ2−1

γ
I

)
( 0 1

γ
I )

(( C
F∞

)
( 0

0 )

)
+

 (
0

1
γ
B∗

)
√
γ2−1

γ
B∗

X=0,

and therefore, by [24, Lemma 13.29], M is inner. Finally, note that

M−1
21 =

(
A + BF∞ •
• •

)
,

and hence, that M−1
21 ∈ RH∞C+

.
Now consider

W :=


A∗tmp + γC∗L∗tmp

−γ√
γ2−1

F∗∞ γC∗(
−L∗tmp

1√
γ2−1

B∗

) (
0

0

) (
−I
0

)
γ√
γ2−1

F∞Ytmp I 0


and note that W is inner if, and only if, M̃ is co-inner, since W ∈
RH∞C+

⇔ M̃ ∈ RH∞C+
and W (ϕ̄)∗W (ϕ̄) = M̃(ϕ)M̃∗(ϕ) for

any ϕ ∈ jR, where the bar denotes complex conjugate. Now define
Y∞ = 1

γ2−1
Z and rearrange GFARE to obtain

AY∞ + Y∞A∗ +
1

γ2 − 1
BB∗ − (γ2 − 1)Y∞C∗CY∞ = 0. (18)

Applying the similarity transformation
(
I −X
0 I

)
to the Hamiltonian(

A∗ −(γ2 − 1)C∗C
−1
γ2−1

BB∗ −A

)
,

associated with the algebraic Riccati equation (18), yields the Hamil-
tonian (

A∗tmp
γ2

γ2−1
F∗∞F∞ − γ2C∗C

−1
γ2−1

BB∗ −Atmp

)
,

which may be associated with the algebraic Riccati equation

AtmpYtmp + YtmpA
∗
tmp +

1

γ2 − 1
BB∗

+Ytmp(
γ2

γ2 − 1
F∗∞F∞ − γ2C∗C)Ytmp = 0. (19)

Since γ >
√

1 + ρ(XZ), Ytmp = Y∞(I − XY∞)−1 ≥ 0 is thus a
solution of (19) and hence (cf. [24, Thm. 13.5]),

spec(A∗tmp +
γ2

γ2 − 1
F∗∞F∞Ytmp − γ2C∗CYtmp) ⊂ C−. (20)

From this one can deduce that ( γ√
γ2−1

F∞Ytmp,A
∗
tmp∞) is de-

tectable, where A∗tmp∞ := A∗tmp + γC∗L∗tmp = A∗tmp− γ2C∗CYtmp,

and thus, that
((

B∗1tmp∞
γ√
γ2−1

F∞Ytmp

)
,A∗tmp∞

)
is detectable, where

B1tmp∞ :=
(
−Ltmp

1√
γ2−1

B
)

. Indeed, rearranging (19) to be-
come

Atmp∞Ytmp + YtmpA
∗
tmp∞

+B1tmp∞B∗1tmp∞ +
γ2

γ2 − 1
YtmpF

∗
∞F∞Ytmp = 0,

it follows that Ytmp ≥ 0 is the Observability Gramian of W and
hence that W ∈ RH∞C+

– see [24, Lemma 3.19]. In fact,( (
0 0

)
I(

−I 0
)

0

)(
B∗1tmp∞
γ√
γ2−1

F∞Ytmp

)
+

( −γ√
γ2−1

F∞

γC

)
Ytmp = 0.

So by [24, Lemma 13.29], it also follows that W is inner, and thus,
that M̃ is coinner, as required. Furthermore,

M̃−1
12 =

(
Atmp − γ2YtmpC

∗C + γ2

γ2−1
YtmpF

∗
∞F∞ •

• •

)
,

which in view of (20), implies that M̃−1
12 ∈ RH∞C+

.
Finally, observe that

R−1
21 =

(
Atmp + γ2

γ2−1
YtmpF

∗
∞F∞ − γ2YtmpC

∗C •
• •

)
,

R−1
ch =

 Atmp + γ2

γ2−1
YtmpF∗∞F∞ − γ2YtmpC∗C • •

• • •
• • •

,
R−1

12 =

(
A + BF∞ •
• •

)
and

Rch =

 A + BF∞ • •
• • •
• • •

.
Hence, in view of (17) and (20), it follows that
R−1

12 , R
−1
21 , Rch, R

−1
ch ∈ RH

∞
C+

, as claimed.
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