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1 Introduction

Optimisation-based frameworks for control system design typically involve two
steps: (i) the specification of weights to reflect desired performance and ro-
bustness requirements; and (ii) the synthesis of a controller via the solution
of a correspondingly weighted optimisation problem. It is well-known that the
design of such weights is a non-trivial task. In particular, the desired per-
formance, specified robustness requirements and/or fundamental performance
limitations (e.g. due to right-half plane poles and zeros) may be incompatible.
As such, suitable weights are typically obtained via a trial and error process,
based in large part on engineering judgement and intuition [18,10]. In this
paper, a new optimisation-based approach to weight selection is proposed for
a class of robust performance problems.

A feedback compensator is said to achieve robust performance if a certain level
of closed-loop performance is achieved for all plants in a specified set. Use of
the structured singular value (i.e. µ) to convert the problem of synthesising
a controller that achieves robust performance into one of synthesising a com-
pensator that achieves robust stability, in the face of a structured uncertainty,
is well-known in the case that the measure of closed-loop performance can be
expressed in terms of the H∞-norm of possibly weighted closed-loop transfer
functions [21,17]. Central to this is the linear fractional transformation (LFT)
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Fig. 1. Typical µ-synthesis LFT framework

configuration shown in Figure 1. Here, the linear time-invariant (LTI) system

G =











G11 G12 G13

G21 G22 G23

G31 G32 G33











is a generalised plant. This system is constructed from a nominal model and
appropriate weights, so that:
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(1) The upper LFT

Fu

((

G11 G13
G31 G33

)

,∆
)

:= G33 +G31(I −G11∆)−1G13

describes the uncertain plant set as ∆ varies over some structured set ∆;
and

(2) For a given compensator K, the lower LFT

Fl

((

G22 G23
G32 G33

)

, K
)

:= G22 +G23(I −G33K)−1G32

corresponds to all nominal closed-loop transfer functions by which per-
formance is to be gauged in terms of the H∞-norm.

The unstructured block ∆P is used to convert the corresponding robust perfor-
mance problem into a robust stabilisation problem; i.e. to convert the problem
of synthesising K so that

‖W · Fu (Fl (G,K) ,∆) ‖∞ < 1

for all ∆ ∈ ∆ satisfying ‖∆‖∞ ≤ 1

into the problem of synthesising K so that the structured singular value
µ∆TOT

(( I 0
0 W )Fl (G,K)), taken with respect to the uncertainty structure ∆TOT :=

{diag(∆,∆P ) : ∆ ∈ ∆, ∆P ∈ C
m×n}, is strictly less than unity over all fre-

quency. Usually, the so-called performance weight W would be specified di-
rectly by the designer. In this case, it would be absorbed into G and hence, not
be explicitly visible in the expressions given immediately above. By contrast,
it is proposed here to also synthesise W via an optimisation problem in which
the cost reflects desired performance.

The rationale behind the new approach to robust performance problems de-
veloped herein, is related to that of skewed-µ, whereby worst-case performance
in the presence of uncertainty satisfying a fixed bound on its norm, and with
structure ∆, is determined via a µ-based calculation involving a (constant
across frequency) scaling in the channels corresponding to the performance
block ∆P [3,17]. In particular, the new approach involves optimisation (in an
appropriate sense) of the performance weight W (which is akin to the con-
stant scaling in skewed-µ), over frequency and in each performance channel
direction, so that for a fixed uncertain plant set, a prescribed level of robust
performance is achieved by some controller K. The performance weight W
is optimised with respect to a cost that reflects the desired performance. In
this way, there is a systematic trading-off of desired performance 1 against
the robustness requirements, as specified through the structure of and bound
on ∆, and/or fundamental performance limitations due to plant dynamics.

1 which may in part also include desirable robustness properties not captured
through the uncertainty block ∆.
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In addition to this, potential incompatibilities between the objectives repre-
sented by the n performance channels (cf. Figure 1) are resolved in frequency
regions of relevance. Such conflicts could arise, for example, if one of the per-
formance channels were to correspond to the standard closed-loop sensitivity
function and another to the standard complementary sensitivity function, as
these cannot be simultaneously small at any frequency [11].

In the proposed optimisation-based procedure, the designer is required to
specify the uncertain plant set by prescribing the generalised plant G, the
uncertainty block structure ∆ and an associated norm bound. In addition to
this, the designer must specify an optimisation directionality, which appears
in the cost associated with the optimisation problem by which W and K are
synthesised. The optimisation directionality qualitatively reflects desired per-
formance over all frequency, and should be specified as small (resp. large) at
frequencies and in directions where the performance weight would be required
to be small (resp. large) in order to capture the desired performance objectives.
It would appear to be much easier to specify the optimisation directionality
than the performance weight directly itself, since incompatible specifications
will be resolved through the constrained optimisation. In this sense, the pro-
posed procedure provides an indication of achievable performance, in addition
to a controller achieving robust performance with respect to the suitably op-
timised performance weights and the uncertain plant set.

It is worth noting that it is not a requirement of the new method that specifi-
cation of the weight W be left entirely up to the optimisation procedure and
judicious selection of the optimisation directionality. If the designer knows
that a certain level of performance is achievable and compatible with the ro-
bustness requirements, then the corresponding weight can be absorbed into
the generalised plant G. The optimisation-based synthesis of W can then be
thought of as a systematic mechanism for ‘tuning’ the design.

Briefly, the paper is structured as follows. First, the optimisation problem, by
which both the performance weight W and a robust controller K are synthe-
sised, is formulated. This includes discussion of approximations made to facil-
itate computation (e.g. replacement of µ with an upper bound). A state-space
algorithm based on LMIs is then given for solving the resultant optimisation
problem in a D-K style iteration. Finally, numerical examples are presented
to help illustrate the new approach to robust performance problems presented
in this paper.
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2 Formulation of an Optimisation Problem for Synthesis

Recall the linear time-invariant (LTI) LFT configuration shown in Figure 1,
where G is a generalised plant, ∆ represents the uncertainty in the system
and ∆P is the fictitious uncertainty used only to transform the robust perfor-
mance problem into an equivalent robust stability problem, as outlined in the
previous section. Motivated by the discussion therein, the objective here is to
formulate a problem in which the performance weight W is to be optimised
in terms of a cost that reflects desired performance, subject to the existence
of a feedback compensator K achieving robust performance with respect to
the optimised weight and prescribed uncertain plant set. First the following
definitions are made to facilitate a precise mathematical formulation. For no-
tational convenience, all uncertainty blocks, except those for performance, are
assumed to be square. This can be achieved without loss of generality by
adding dummy inputs or outputs [8].

Definition 1 The sets of allowable perturbations are defined by:

∆ :=

{

f

diag
i=1

(Iαi
⊗ ∆i) : ∆i ∈ C

βi×βi ,
f

∑

i=1

αiβi = r

}

B∆TF :=
{

∆ ∈ RH∞ : ∆(so) ∈ ∆ ∀so ∈ C+, ‖∆‖
∞

≤ 1
}

,

∆TOT :=
{

diag (∆,∆P ) : ∆ ∈ ∆,∆P ∈ C
m×n

}

where ⊗ denotes the standard Kronecker product A ⊗ B := [aijB], RH∞ the
Hardy space of functions analytic and bounded in the open right-half plane C+

of C, and C+ the closure of C+.

Definition 2 The sets of performance weights and directionality matrices are
defined by:

W
TF :=

{

W ∈ RH∞ : W−1 ∈ RH∞,W (so) ∈ Λ ∀so ∈ C+

}

ΥTF :=
{

Υ ∈ RH∞ : Υ(∞) = 0,Υ(so) ∈ Λ ∀so ∈ C+

}

,

where Λ :=

{

diag n
i=1 (`i) : `i ∈ C

}

denotes the set of diagonal complex matri-

ces.
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Definition 3 Given a generalised plant G with (state-space) realisation

G(s) = C(sI − A)−1B +D =:





















A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 D33





















where the partitioning here is conformable with Figure 1, the term “Standard
Assumptions” refers to:

(A1) (A,B3) is stabilisable and (C3, A) is detectable,

(A2) D33 = 0.

Assumption (A1) is necessary and sufficient for the existence of an inter-
nally stabilising output-feedback controller [7, Appendix A.4], whereas as-
sumption (A2) incurs no loss of generality but considerably simplifies calcu-
lations [6,16]. Given a generalised plant G, the set of internally stabilising
output-feedback controllers K ∈ Rp×q for the LFT interconnection Fl (G,K)
is denoted by K

TF

G .

As a first formulation of the weight-optimisation/controller-synthesis problem,
consider the following optimisation problem: Given a generalised plant G(s)
satisfying the standard assumptions in Definition 3 and a specified direction-
ality transfer function matrix Υ(s) ∈ ΥTF,

max
W∈WTF

1

‖ΥW−1‖2

subject to (1)

min
K∈KTF

G

sup
ω

µ∆TOT













Ir 0

0 W (jω)





Fl (G(jω), K(jω))





 < 1,

where ‖·‖2 denotes the H2-norm and µ∆TOT

[

·
]

denotes the structured singular
value taken with respect to uncertainty structure ∆TOT. As formulated, this
problem is not computationally tractable, since the µ constraint is difficult
to handle. Before going on to discuss how this original formulation may be
modified to facilitate computation, a few words of justification are in order.

First, observe that the condition

sup
ω

µ∆TOT













Ir 0

0 W (jω)





Fl (G(jω), K(jω))





 < 1
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is equivalent to [14, Theorem 5.4]

‖W · Fu (Fl (G,K) ,∆) ‖∞ < 1 for all ∆ ∈ B∆TF.

As such, the constraint in optimisation problem (1) ensures that the maximi-
sation of the performance weightW (s) is limited by the requirement that there
exist an internally stabilising controllerK(s) that achieves robust performance
with respect to the optimised weight and uncertainty set B∆TF.

Secondly, note that

∥

∥

∥ΥW−1
∥

∥

∥

2

2
=

∫

∞

−∞

n
∑

i=1

1
∣

∣

∣

wi(jω)

υi(jω)

∣

∣

∣

2 dω,

where wi(jω) (resp. υi(jω)) is the i-th diagonal element of W (jω) (resp.

Υ(jω)). From this decomposition, it is clear that the cost function 1
/

∥

∥ΥW−1
∥

∥

2

is a cumulative measure of the frequency-dependent size of the performance
weights wi(jω). Each performance weight wi(jω) is itself weighted across fre-
quency by an optimisation directionality υi(jω), which reflects desired perfor-
mance in that particular performance channel. Now, since the square of the

cost function 1
/

∥

∥ΥW−1
∥

∥

2
has the form of the reciprocal of a weighted sum of

reciprocals, at any particular frequency the direction of steepest ascent is that

corresponding to the smallest ratio
∣

∣

∣

wi(jω)
υi(jω)

∣

∣

∣
. As such, the designer can direct

the optimisation by choosing υi(jω) to be large (resp. small) where it would be
desirable for the corresponding performance weight wi(jω) to be large (resp.
small). Note that this does not make Υ(jω) a substitute for the performance
weight W (jω), since Υ(jω) only reflects desired performance. The absolute
size of Υ(jω) is completely irrelevant as this only affects the value of the cost
associated with the above optimisation problem. Only the shape across fre-
quency and the relative sizes amongst the different diagonal entries of Υ(jω)
are important. Since the optimisation directionality Υ(jω) only qualitatively
reflects desired performance, inconsistencies between this and the specified
robustness requirements and/or fundamental performance limitations, are re-
solved via the freedom in W and the µ constraint which ensures that robust
performance is achieved by some controller. Of course, a sensible choice of
Υ(jω) is still necessary in order that this approach yields a useful controller.
However, the design of Υ would appear to be much easier than that of the
actual performance weights directly.

In the remainder of this section, the optimisation problem (1) is progressively
modified, to render it amenable to numerical solution.
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2.1 Replacing µ with an Upper Bound

As mentioned previously, the µ constraint above is not computationally tractable
as it stands. As such, it is necessary to modify the original formulation of
the optimisation problem (1). An approach is to replace µ∆TOT

with a com-
putationally tractable upper bound. To this end, the following definition is
required:

Definition 4 Let the scaling sets D and D
TF be defined by:

D :=

{

D =
f

diag
i=1

(Di ⊗ Iβi
) : detD 6= 0, Di ∈ C

αi×αi ,
f

∑

i=1

αiβi = r

}

D
TF :=

{

D ∈ RH∞ : D−1 ∈ RH∞, D(so) ∈ D ∀so ∈ C+

}

.

Note that elements of these sets commute with elements of B∆TF.

Then [14,21],

sup
ω

µ∆TOT













Ir 0

0 W (jω)





Fl (G(jω), K(jω))







≤ inf
D∈DTF

∥

∥

∥

∥

∥

∥

∥







D 0

0 W





Fl (G,K)







D−1 0

0 Im







∥

∥

∥

∥

∥

∥

∥

∞

.

Replacing µ∆TOT
with this upper bound, and replacing the maximisation of

the original weight cost by minimisation of the inverse cost squared, yields the
following modified optimisation problem for synthesis:

min
W∈WTF

∥

∥

∥ΥW−1
∥

∥

∥

2

2

subject to

min
K∈KTF

G

inf
D∈DTF

∥

∥

∥

∥

∥

∥

∥







D 0

0 W





Fl (G,K)







D−1 0

0 Im







∥

∥

∥

∥

∥

∥

∥

∞

< 1.
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Since
∥

∥

∥P
∥

∥

∥

2,(∞)
=

∥

∥

∥P T
∥

∥

∥

2,(∞)
and defining D̄ := D−T ∈ D

TF and W̄ := W−T ∈

W
TF, this optimisation problem may be rewritten exactly as:

min
W̄∈WTF

∥

∥

∥W̄Υ
∥

∥

∥

2

2

subject to (2)

min
K∈KTF

G

inf
D̄∈DTF

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1.

The reasons for considering the dual systems inside the norms rather than
the original systems will become apparent in the proofs of the main results
of this paper. As an indication, note that this transpose operation moves
the performance weights from the left of Fl (G,K) to the right of Fl (G,K)T

without altering the stability properties or size of the systems inside the norms.

2.2 Structural Properties of Realisations for D̄ and W̄

In what follows, state-space realisations are used to develop an algorithm
for solving the optimisation problem (2). Towards this end, the structural
properties required of state-space realisations for the scaling D̄ ∈ D

TF and
weight W̄ ∈ W

TF are now characterised. This requires the following two
technical lemmas:

Lemma 1 Let A, B, P , S, R be real matrices of compatible dimensions such
that P = P T , R = RT and λi(A) 6= −λj(A) ∀i, j. Define the parahermitian
rational matrix function

Γ(s) :=
[

BT (−sI − AT )−1 I

]







P S

ST R













(sI − A)−1B

I





 .

Then, given an arbitrary real matrix P̂ = P̂ T of the same dimensions as P ,
there exists a real matrix Ŝ of the same dimensions as S such that

Γ(s) =
[

BT (−sI − AT )−1 I

]







P̂ Ŝ

ŜT R













(sI − A)−1B

I





 .

In fact, Ŝ is given by Ŝ = S + XB, where the real matrix X = XT is the
unique solution to the Lyapunov equation

XA+ ATX = (P̂ − P ).
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Proof A proof is given in [12]. 2

Lemma 2 Given A ∈ R
n×n and B ∈ R

n×m with A Hurwitz.

(i) For every C ∈ R
m×n and D ∈ R

m×m such that T (s) :=







A B

C D





∈ RH∞

satisfies T−1 ∈ RH∞, there exist Q12 ∈ R
n×m and Q22 = QT

22 ∈ R
m×m

such that

T (jω)∗T (jω) =






(jωI − A)−1B

I







∗ 





0 Q12

QT
12 Q22













(jωI − A)−1B

I







> 0 ∀ω ∈ R ∪ {∞}.

(ii) For every Q12 ∈ R
n×m and Q22 = QT

22 ∈ R
m×m such that







(jωI − A)−1B

I







∗ 





0 Q12

QT
12 Q22













(jωI − A)−1B

I





 > 0 ∀ω ∈ R∪{∞},

there exist C∈ R
m×n and D ∈ R

m×m such that T (s) :=







A B

C D





∈ RH∞

satisfies T−1∈ RH∞ and







(jωI − A)−1B

I







∗ 





0 Q12

QT
12 Q22













(jωI − A)−1B

I





 = T (jω)∗T (jω)

for all ω ∈ R ∪ {∞}.

Proof A proof is given in [12]. 2

Observe that Lemma 2 constitutes a complete parametrisation of frequency
functions of the form T (jω)∗T (jω) where T, T−1 ∈ RH∞. Now, given any
realisations

D̄ :=







AD̄ BD̄

CD̄ DD̄





 ∈ D
TF and W̄ :=







AW̄ BW̄

CW̄ DW̄





 ∈ W
TF,
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with AD̄ and AW̄ Hurwitz, let

T o
D̄(s) :=







(sIsD − AD̄)−1BD̄

Ir







and T o
W̄ (s) :=







(sIsW − AW̄ )−1BW̄

In





.

(3)

By Lemma 2, the frequency function:

1. D̄(jω)∗D̄(jω) can be written as T o
D̄(jω)∗D̆T o

D̄(jω) for some D̆ :=







0 D̆12

D̆T
12 D̆22







with D̆12 ∈ R
sD×r and D̆22 = D̆T

22 ∈ R
r×r,

2. W̄ (jω)∗W̄ (jω) can be written as T o
W̄ (jω)∗W̆T o

W̄ (jω) for some W̆ :=







0 W̆12

W̆ T
12 W̆22







with W̆12 ∈ R
sW×n and W̆22 = W̆ T

22 ∈ R
n×n.

Taking the arbitrary (1,1)-block to be zero in these parametrisations reduces
the number of potential decision variables in an eventual optimisation. Fur-
thermore, these particular parametrisations turn out to be of crucial impor-
tance in determining the sign definiteness of a Lyapunov variable in the proof
of Theorem 5, which appears in Appendix C.

Since it is required that D̄ ∈ D
TF and W̄ ∈ W

TF, it is clear that T o
D̄(jω)∗D̆T o

D̄(jω)

should commute with ∆ and T o
W̄ (jω)∗W̆T o

W̄ (jω) should commute with Λ.
These commuting requirements determine the structure of each parameter in
the above parametrisations. The top level structure is characterised in the
definitions given below. In the interest of space, however, the full structure
will not be stated explicitly here and the reader is referred to [12, Section 4.3]
for further details (see also Section 8.3.4 in [8]).

Definition 5 Define the following sets, which characterise the structure of D̆
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and W̆ :

ΞD̆ :=







D̆ =







0 D̆12

D̆T
12 D̆22





 : D̆12 ∈ R
sD×r, D̆22 = D̆T

22 ∈ R
r×r, and

D̆12, D̆22 have the appropriate structure







,

ΞW̆ :=







W̆ =







0 W̆12

W̆ T
12 W̆22





 : W̆12 ∈ R
sW×n, W̆22 = W̆ T

22 ∈ R
n×n, and

W̆12, W̆22 have the appropriate structure







.

Definition 6 Define the following sets, which characterise the structure of
(AD̄, BD̄) and (AW̄ , BW̄ ):

Ξ(AD̄,BD̄) :=
{

(AD̄, BD̄) : AD̄ ∈ R
sD×sD , BD̄ ∈ R

sD×r, AD̄ is Hurwitz,

and AD̄, BD̄ have the appropriate structure
}

,

Ξ(AW̄ ,BW̄ ) :=
{

(AW̄ , BW̄ ) : AW̄ ∈ R
sW×sW , BW̄ ∈ R

sW×n, AW̄ is Hurwitz,

and AW̄ , BW̄ have the appropriate structure
}

.

2.3 A Convex Approximation

By appropriately restricting attention to a subclass of performance weights
and D-scales in the optimisation problem (2), a convex approximation can
be constructed in terms of state-space data. Since the frequency functions
D̄(jω)∗D̄(jω) and W̄ (jω)∗W̄ (jω) are completely parametrised by T o

D̄(jω)∗D̆T o
D̄(jω)

and T o
W̄ (jω)∗W̆T o

W̄ (jω) respectively, it seems natural to restrict these parametri-
sations by holding the basis functions T o

D̄(jω) and T o
W̄ (jω) fixed. This amounts

to keeping (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) fixed.

It is desirable to fix the values for (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and (AW̄ , BW̄ ) ∈
Ξ(AW̄ ,BW̄ ) sufficiently close to the optimal values that would be obtained if
these were free variables. Towards determining the “close to optimal” values,
observe that for a given G satisfying the standard assumptions stated in Def-
inition 3, a fixed K ∈ K

TF

G and an optimisation directionality Υ ∈ ΥTF, the
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optimisation problem

min
W̄∈WTF

∥

∥

∥W̄Υ
∥

∥

∥

2

2

subject to (4)

inf
D̄∈DTF

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1,

is convex when solved pointwise in frequency. To see this, define the following
set and quantities.

Definition 7 Let the set of strictly-positive vector valued functions be denoted
by:

V :=
{

f : R 7→ R
n
+

}

For ease of notation, define the following vector functions:

v
W

(ω) :=





1

|w1(jω)|2
1

|w2(jω)|2
· · ·

1

|wn(jω)|2





T

∈ V ,

vΥ(ω) :=
[

|υ1(jω)|2 |υ2(jω)|2 · · · |υn(jω)|2
]T

.

Using this notation, optimisation problem (4) can be rewritten as:

min
v

W
∈V

∫

∞

−∞

vΥ(ω)Tv
W

(ω) dω

subject to

∀ω ∈ R ∪ {∞} ∃ continuous Θω ∈ D with Θω > 0 (5)

satisfying

[

Fl (G(jω), K(jω))T
]

∗







Θω 0

0 Im







[

Fl (G(jω), K(jω))T
]

<







Θω 0

0 diag
(

v
W

(ω)
)





 .

The optimisation problem is now clearly convex and can be solved pointwise
in frequency over a finite grid using LMI techniques. Once Θω and v

W
(ω)

have been determined as described in Section 4, D̄ ∈ D
TF and W̄ ∈ W

TF

can be constructed via spectral factorisation. Then, (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and
(AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) can be obtained from appropriate state-space realisa-

tions of D̄ ∈ D
TF and W̄ ∈ W

TF.
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Once “close to optimal” values for (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and (AW̄ , BW̄ ) ∈
Ξ(AW̄ ,BW̄ ) have been found, the optimisation problem (2) can be modified, in
order to focus on the remaining free parameters, as follows:

min
W̄∈WTF

(A
W̄

,B
W̄

)

∥

∥

∥W̄Υ
∥

∥

∥

2

2

such that (6)

min
K∈KTF

G

inf
D̄∈DTF

(A
D̄

,B
D̄

)

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1,

where

Definition 8 Given (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ), define

D
TF

(AD̄,BD̄) :=











D̄ =







AD̄ BD̄

CD̄ DD̄





 : D̄ ∈ D
TF











W
TF

(AW̄ ,BW̄ ) :=











W̄ =







AW̄ BW̄

CW̄ DW̄





 : W̄ ∈ W
TF











3 Solving the Synthesis Problem

Results underpinning the algorithm that will be proposed for solving the op-
timisation problem (2), are established in this section. The results show that
the related optimisation problem (6), although not simultaneously convex in
all parameters, is simultaneously convex in D and W when K is fixed, and K
and W when D is fixed. As such, a D-K style iteration can be formulated for
synthesis.

3.1 The Cost Function

The following theorem establishes that the cost is a linear function of the
weight parameters.

Theorem 3 Given Υ(s) =







AΥ BΥ

CΥ 0





 ∈ ΥTF with AΥ Hurwitz, (AW̄ , BW̄ ) ∈

Ξ(AW̄ ,BW̄ ) and any W̄ (s) ∈ W
TF

(AW̄ ,BW̄ ), define T o
W̄ (s) as in equation (3) and

let W̆ ∈ ΞW̆ be such that T o
W̄ (jω)∗W̆T o

W̄ (jω) = W̄ (jω)∗W̄ (jω) ∀ω ∈ R∪{∞}.
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Then
∥

∥

∥W̄Υ
∥

∥

∥

2

2
= cT vec

(

W̆
)

where

c := −













IsW 0

0 CΥ





 ⊗







IsW 0

0 CΥ













×













AW̄ BW̄CΥ

0 AΥ





 ⊕







AW̄ BW̄CΥ

0 AΥ













−1

×













0

BΥ





 ⊗







0

BΥ











 vec(In).

Proof See Appendix A for proof. 2

It is consequently noted that ‘Minimising
∥

∥

∥W̄Υ
∥

∥

∥

2

2
over W̄ (s) ∈ W

TF

(AW̄ ,BW̄ ) sub-

ject to some constraint’ is equivalent to ‘Minimising cT vec
(

W̆
)

over W̆ ∈ ΞW̆

subject to the same constraint’, provided that T o
W̄ (jω)∗W̆T o

W̄ (jω) > 0 ∀ω ∈
R ∪ {∞} is implicitly guaranteed by the constraint.

3.2 Holding K Fixed in the Constraint

The following theorem shows that for a fixed K ∈ K
TF

G , the constraint of
optimisation problem (6) can be rewritten as a set of LMIs that are also
simultaneously affine in W̆ .

Theorem 4 Given (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) and any W̄ (s) ∈ W
TF

(AW̄ ,BW̄ ), define

T o
W̄ (s) as in equation (3) and let W̆ ∈ ΞW̆ be such that T o

W̄ (jω)∗W̆T o
W̄ (jω) =

W̄ (jω)∗W̄ (jω) ∀ω ∈ R ∪ {∞}. Then given also

Fl (G,K) =















Acl B1cl B2 cl

C1cl D11cl D12 cl

C2 cl D21cl D22 cl















,

where Acl ∈ R
scl×scl is Hurwitz and the partitioning is consistent with Figure 1,

the following two statements are equivalent for any (AD̄, BD̄) ∈ Ξ(AD̄,BD̄):

(i) inf
D̄∈DTF

(A
D̄

,B
D̄

)

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1.
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(ii) ∃ D̆ ∈ ΞD̆, X = XT ∈ R
sD×sD and Y = Y T ∈ R

(scl+2sD+sW )×(scl+2sD+sW )

such that






XAD̄ + AT
D̄X XBD̄

BT
D̄X 0





 + D̆ > 0,







Y À+ ÀTY Y B̀

B̀TY 0





 +







C̀T

D̀T





 Q̀
[

C̀ D̀

]

< 0;

where À, B̀, C̀, D̀ and Q̀ are defined by







À B̀

C̀ D̀





 :=









































































AD̄ 0 0 0 BD̄ 0

0 AW̄ 0 0 0 BW̄

0 0 AD̄ BD̄B
T
1cl BD̄D

T
11cl BD̄D

T
21cl

0 0 0 AT
cl

CT
1cl CT

2 cl

0 0 IsD 0 0 0

0 0 0 BT
1cl DT

11cl DT
21cl

0 0 0 BT
2 cl

DT
12 cl

DT
22 cl

IsD 0 0 0 0 0

0 0 0 0 Ir 0

0 IsW 0 0 0 0

0 0 0 0 0 In









































































,

Q̀ := diag
(

D̆, Im, −D̆, −W̆
)

= diag













0 D̆12

D̆T
12 D̆22





, Im, −







0 D̆12

D̆T
12 D̆22





, −







0 W̆12

W̆ T
12 W̆22











 .

Proof See Appendix B for proof. 2

3.3 Holding D̄ Fixed in the Constraint

The following theorem shows that for a fixed D̄ ∈ D
TF

(AD̄,BD̄), the constraint
appearing in optimisation problem (6) can be rewritten as a set of LMIs that
are also simultaneously affine in W̆ .

Theorem 5 Given scalings D̄(s) ∈ D
TF and a generalised plant G(s) satis-
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fying the standard assumptions stated in Definition 3, define the scaled gener-
alised plant G̃(s) by

G̃(s) :=















D̄(s)−T 0 0

0 In 0

0 0 Iq















G(s)















D̄(s)T 0 0

0 Im 0

0 0 Ip















,

and let





















Ã B̃1 B̃2 B̃3

C̃1 D̃11 D̃12 D̃13

C̃2 D̃21 D̃22 D̃23

C̃3 D̃31 D̃32 D̃33





















be a stabilisable and detectable realisation for G̃(s) with Ã ∈ R
s
G̃
×s

G̃, D̃11 ∈
R

r×r, D̃22 ∈ R
n×m and D̃33 = 0 ∈ R

q×p. Furthermore, given (AW̄ , BW̄ ) ∈
Ξ(AW̄ ,BW̄ ) and any W̄ (s) ∈ W

TF

(AW̄ ,BW̄ ), define T o
W̄ (s) as in equation (3) and

let W̆ ∈ ΞW̆ be such that T o
W̄ (jω)∗W̆T o

W̄ (jω) = W̄ (jω)∗W̄ (jω) ∀ω ∈ R∪{∞}.
Then the following two statements are equivalent:

(i) min
K∈KTF

G

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1.

(ii) ∃P = P T ∈ R
(sW+s

G̃
)×(sW+s

G̃
), R = RT ∈ R

sW×sW , S ∈ R
sW×s

G̃ and T =
T T ∈ R

s
G̃
×s

G̃ such that

P > 0, R > 0, T > 0,




















P





R −S

0 Is
G̃









R 0

−ST Is
G̃









R 0

0 T

























≥ 0,
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ΨT
P .





































P





AW̄ 0

0 ÃT



 +
{

·
}T

P





0 BW̄

C̃T
1 C̃T

2









0 0

B̃1 B̃2





∗





−Ir 0

0 0









D̃11 D̃12

D̃21 D̃22





∗ ∗





−Ir 0

0 −Im









































.ΨP

<

























IsW 0

0 ψT
3









0 0

0 0

























W̆









IsW 0

0 ψ3









0 0

0 0







 ,

and

ΨT
Q .









































R S

−ST T









AW̄ 0

0 Ã



 +
{

·
}T

∗ ∗





0 B̃T
1

0 B̃T
2









IsW 0

ST T









−Ir 0

0 −Im



 ∗





0 C̃1

BT
W̄
C̃2









R −S

0 Is
G̃









D̃11 D̃12

D̃21 D̃22









−Ir 0

0 0









































.ΨQ

<

























IsW 0

0 0









0 0

0 In

























W̆









IsW 0

0 0









0 0

0 In







 ,
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where

ΨP :=







































IsW 0

0 ψ1









0 0

0 0









0 ψ2

0 ψ3









0 0

0 0









0 0

0 0









Ir 0

0 Im







































, ΨQ :=







































IsW 0

0 ψ4









0 0

0 0









0 ψ5

0 ψ6









0 0

0 0









0 0

0 0









Ir 0

0 In







































and the columns of















ψ1

ψ2

ψ3















(resp.















ψ4

ψ5

ψ6















) form bases for the null space of

[

B̃T
3 D̃T

13 D̃
T
23

]

(resp.
[

C̃3 D̃31 D̃32

]

).

Proof See Appendix C for proof. 2

The following corollary gives a necessary and sufficient condition for the ex-
istence of controllers of order s

K
in K

TF

G that satisfy the norm constraint
together with a procedure for constructing such controllers.

Corollary 6 Let the suppositions of Theorem 5 hold. Then there exist con-
trollers K ∈ K

TF

G of order s
K

satisfying

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1

if and only if the LMI constraints given in Part (ii) of Theorem 5 hold for
some P = P T ∈ R

(sW+s
G̃
)×(sW+s

G̃
), R = RT ∈ R

sW×sW , S ∈ R
sW×s

G̃ and T =
T T ∈ R

s
G̃
×s

G̃ that further satisfy

rank













IsW S

0 Is
G̃





P







IsW 0

ST Is
G̃





 −







R 0

0 T−1











 ≤ s
K
.

Such controllers K(s) =







AK BK

CK DK





 can then be constructed by solving

F + UT ΦKV + V T ΦT
KU < 0
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for the controller parameters ΦK :=







AK BK

CK DK





 , where F , U and V are defined

by:

F :=













































X











AW̄ 0 0

0 ÃT 0

0 0 0











+
{

·
}T

X











0 BW̄

C̃T
1 C̃T

2

0 0





















0 0

B̃1 B̃2

0 0











∗





−Ir 0

0 0









D̃11 D̃12

D̃21 D̃22





∗ ∗





−Ir 0

0 −Im

















































−





















































IsW 0

0 0

0 0















0 0

0 In









0 0

0 0















































W̆









IsW 0 0

0 0 0









0 0

0 In









0 0

0 0







 ,

U :=









0 0 IsK

0 B̃T
3 0









0 0

D̃T
13 D̃

T
23









0 0

0 0







 ,

V :=









0 0 IsK

0 C̃3 0



X





0 0

0 0









0 0

D̃31 D̃32







 ,

and X is constructed as follows:

• Define Q :=







IsW 0

ST Is
G̃













R−1 0

0 T













IsW S

0 Is
G̃





.

• Factorise P −Q−1 = HHT with H ∈ R
(sW+s

G̃
)×sK .

• Define X :=







P H

HT IsK





.
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Proof See Appendix D for proof. 2

4 The Synthesis Algorithm

This section serves to outline an iterative algorithm for solving optimisation
problem (2). Recall that the convex approximation made in Section 2.3 relies
on fixed “close to optimal” values for (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) and (AD̄, BD̄) ∈
Ξ(AD̄,BD̄). These “close to optimal” values are constructed in Phase 1 of the
algorithm (i.e. during the first few iterations) by solving optimisation prob-
lem (7) pointwise in frequency followed by a rational approximation of the
results. In Phase 2 of the algorithm (i.e. during the last few iterations), the
state-space characterisations developed in preceding sections are used together
with these fixed “close to optimal” values to solve the weight and controller
synthesis problem.

Observe that in Phase 1 of the algorithm, the problem is over-constrained
(since γi < 1). This is to accommodate the introduction of error when reason-
ably low order rational approximations of the pointwise optimal D-scales and
weights are constructed. In Phase 2, it is no longer necessary to over-constrain
the problem (so γi can be set to 1), because the state-space characterisations
with fixed (AW̄ , BW̄ ) and (AD̄, BD̄) are exact (i.e. there are no approximation
errors).

Inputs to the algorithm:

• Generalised plant G(s) satisfying the standard assumptions stated in Defi-
nition 3,

• Optimisation directionality matrix transfer function Υ(s) ∈ ΥTF.

The solution algorithm:

Phase 1 of the algorithm involves Steps 3 and 5 but not Step 4 whereas Phase 2
of the algorithm involves Steps 4 and 5 but not Step 3.

1. First find a controller K?
0 which robustly stabilises the interconnection

Fu

(

Fl

(

Ĝ,K?
0

)

,∆
)

for all ∆ ∈ B∆TF, where

Ĝ :=















A B1 B3

C1 D11 D13

C3 D31 0















.
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Let γ0 be some number in the interval
(

sup
ω

inf
Dω∈D

σ
[

DωFl(Ĝ,K
?
0 )D−1

ω

]

, 1
)

.

Such a γ0 < 1 always exists if the robust stability problem above admits a
solution. Now set i = 0 (where i denotes the iteration number) and η?

0 = ∞.
2. Increment i by 1.
3. If γi−1 < 1: (i.e. during the first few iterations)

(a) Solve the following convex optimisation problem

min
W̄∈WTF

∥

∥

∥W̄Υ
∥

∥

∥

2

2

subject to (7)

inf
D̄∈DTF

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl

(

G,K?
i−1

)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< γi−1,

pointwise in frequency and on a sufficiently dense, but finite, grid using
the reformulation given in optimisation problem (5), after normalising
the above constraint to unity. Let the optimal values of v

W
(ω) and

Θω at each grid frequency ω = ωk (these are vector/matrix decision
variables in optimisation problem (5)) be denoted by v?

W ,ω
k

and Θ?
ω

k

respectively.
(b) Construct a low order 2 W̄ ? ∈ W

TF by fitting a stable minimum-phase
transfer function to each magnitude function in v?

W ,ω
k
.

(c) Construct a low order2 self-adjoint real-rational unit in RL∞ which
is positive at infinity by fitting real-rational functions to each element
in Θ?

ω
k

and perhaps model reducing afterwards. Denote this unit by

Θ?(s). Then compute a spectral factor 3 D̄?
i ∈ D

TF for this Θ?(s).

(d) Let γi := (1+ε)

∥

∥

∥

∥

∥

∥

∥

∥







D̄?
i 0

0 Im





Fl

(

G,K?
i−1

)T







D̄?
i 0

0 W̄ ?







−1
∥

∥

∥

∥

∥

∥

∥

∥

∞

, for some 0 <

ε� 1.
(e) If γi ≤ 1, then let (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) and (AD̄, BD̄) ∈ Ξ(AD̄,BD̄)

be obtained from the appropriate state-space realisations of W̄ ?(s) and
D̄?

i (s) respectively. Otherwise, go to Step 4(a).
4. If γi−1 = 1: (i.e. during the last few iterations)

(a) Let γi := 1.

2 Low order approximations of the pointwise solutions are used since this is likely
to result in a low complexity (in the sense of [19]) controller in the end. As noted
in [19], given an appropriate bound on the complexity of the controller, significantly
stronger robustness properties can be guaranteed for the corresponding feedback
system. This is in line with the common engineering practice of employing the
lowest complexity controller to do the job.
3 Since spectral factors are not unique and the required spectral factor here has to
have a block-diagonal structure, each individual diagonal block should be spectrally
factored separately.
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(b) Solve the following convex optimisation problem

min
W̄∈WTF

(A
W̄

,B
W̄

)

∥

∥

∥W̄Υ
∥

∥

∥

2

2

subject to

inf
D̄∈DTF

(A
D̄

,B
D̄

)

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl

(

G,K?
i−1

)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1

by making use of Theorem 3 and Theorem 4. Let the optimal value of
D̆ (a matrix decision variable in the LMI constraints of Theorem 4) be
denoted by D̆?

i .
(c) Using the values of (AD̄, BD̄) ∈ Ξ(AD̄,BD̄) and the value of D̆?

i ∈ ΞD̆

just obtained, define

Θ?
i (s) := T o

D̄
∼(s)D̆?

i T
o
D̄(s)

and compute a spectral factor3 D̄?
i ∈ D

TF

(AD̄,BD̄) for Θ?
i (s).

5. (a) Solve the following convex optimisation problem

min
W̄∈WTF

(A
W̄

,B
W̄

)

∥

∥

∥W̄Υ
∥

∥

∥

2

2

subject to

min
K∈KTF

G

∥

∥

∥

∥

∥

∥

∥







D̄?
i 0

0 Im





Fl (G,K)T







D̄?−1
i 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< γi

by making use of Theorem 3 and Theorem 5 after normalising the above
constraint to unity. Let the value of this minimum cost be denoted by
η?

i and let the optimal value of W̆ (a matrix decision variable in the
cost function/LMI constraints) be denoted by W̆ ?

i .
(b) Using the values of (AW̄ , BW̄ ) ∈ Ξ(AW̄ ,BW̄ ) and the value of W̆ ?

i ∈ ΞW̆

just obtained, define

Π?
i (s) := T o

W̄
∼(s)W̆ ?

i T
o
W̄ (s)

and compute a spectral factor3 W̄ ?
i ∈ W

TF

(AW̄ ,BW̄ ) for Π?
i (s).

(c) Using Corollary 6, find a controller that satisfies the constraint of the
above optimisation problem and denote this controller by K?

i (s).
6. Evaluate (η?

i−1 − η?
i ). If this difference (which is always positive) is very

small and has remained very small for the last few iterations, then EXIT.
Otherwise return to Step 2.

Outputs from the algorithm: (after i iterations)
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• The inverse of the largest performance weights obtained by the algorithm
in W̄ ?

i ∈ W
TF,

• The controller K?
i ∈ K

TF

G that achieves robust performance with respect to
these weights,

• The final scalings D̄?
i ∈ D

TF used by the algorithm,
• The value of the minimum cost η?

i obtained.

5 Numerical Examples

In this section, the algorithm proposed in the previous section is illustrated
through several numerical examples. Two different examples demonstrating
the applicability of the proposed algorithm are considered. The first example
is discussed in three parts, each illustrating how the proposed algorithm can
systematically handle particular situations of interest. The second example
involves an experimental MIMO plant. It is used in order to compare our
results with a standard µ-synthesis design which can be found in [1].

5.1 Sensitivity/Complementary Sensitivity reduction problem

Consider the block diagram shown in Figure 2, which captures a typical Sen-
sitivity/Complementary Sensitivity reduction problem.

PoK

WS Wu WT

∆

r ye

Fig. 2. Block diagram for a typical S/T problem

The plant is uncertain but known to belong to the set
{

Po(1 + ∆Wu) : ∆ ∈

RH∞, ‖∆‖
∞

≤ 1
}

, parametrised by ∆ (see the dashed box). Here, the nominal
plant Po and the uncertainty weight Wu are chosen as:

Po =
0.01(s/ω1 − 1)

(s2 + 0.06s+ 0.01)
and Wu =

0.1(s/ω2 + 1)2

(s/(10ω2) + 1)2
.

Different values for ω1 and ω2 are used in each of the following subsections to
illustrate different characteristics of the new approach. The uncertainty weight
Wu represents any ‘a priori’ knowledge about the frequency dependent size of
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the uncertainty. In this example, the chosen Wu allows the magnitude of the
actual plant to differ from that of the nominal plant by as much as 10% in
the low-frequency region (say, below ω2 rad/s) and by as much as 1000% in
the high-frequency region (say, above 10ω2 rad/s).

The objective here is to maximise the performance weights WS and WT ac-
cording to some pre-specified directionality whilst ensuring that there exists
an internally stabilising controller K(s) ∈ K

TF

G that achieves robust perfor-
mance with respect to these maximised weights and the uncertain plant set.
To this end, the optimisation directionality

Υ =







100(s/3+1)2

(s/0.3+1)2(s/105+1)
0

0 (s/0.3+1)2

(s/3+1)2(s/105+1)







is considered – see Figure 3. Note that Υ must be strictly proper in order
that the cost function (a function of an H2 norm) in the proposed optimisa-
tion problem be finite. This directionality basically reflects that the algorithm

10
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D
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ct
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y 
F
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to
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Directionality for W
S
 Directionality for W

T
 

Fig. 3. Desired directionality for the optimisation

should maximiseWS (resp.WT ) in the low-frequency (resp. high-frequency) re-
gion and that it should not bother too much about maximising WS (resp. WT )
in the remaining high-frequency (resp. low-frequency) region. The scale on the
y-axis of this figure is unimportant as it only affects the cost associated with
the optimisation. Only the relative sizes between the different curves and the
shape of each curve across frequency is important. Note that the low-frequency
value of the solid curve in Figure 3 is equal to the high-frequency value of the
dashed curve. This reflects that the maximisation of WS at low-frequency
should be valued as much as the maximisation of WT at high-frequency. At
around 1 rad/s, the solid curve and the dashed curve are also equal. Again
this indicates that around this frequency, the maximisation of WS is as equally
important as the maximisation of WT . However, since S + T = 1, it is not
possible to make both WS and WT large at this frequency. The proposed algo-
rithm systematically determines how much each of these weights can be max-
imised at this frequency, trading-off desired performance against the specified
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plant uncertainty and performance limitations due to plant dynamics. Finally,
note that the magnitude of the directionalities at 1 rad/s is about a decade
less than the magnitude of the directionalities at low and high-frequency. As
such, maximisation of WS and WT in this mid-frequency region is considered
less important than maximisation of WS and WT at low and high-frequency,
respectively. Correspondingly, 1 rad/s can be thought of as the desired band-
width for the closed-loop.

5.1.1 Right half plane zero and high frequency uncertainty imposing no band-
width limitations

In this subsection, ω1 = 100 rad/s and ω2 = 30 rad/s. This gives rise to the
nominal plant Po and uncertainty weight Wu shown in Figure 4. This partic-
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Fig. 4. Plant and uncertainty weight magnitude plots

ular choice of ω1 and ω2 imposes no bandwidth limitations, as the right half
plane zero of the plant and the frequency region where uncertainty becomes
significant lie far beyond the desired bandwidth of 1 rad/s (see Figure 3).
Thus, it is expected that the algorithm will be able to synthesise optimised
weights WS and WT (or rather their inverses) such that the bandwidth is
1 rad/s, as desired.

The proposed algorithm took 4 iterations to converge. The cost η?
i associated

with the proposed optimisation problem took the following sequence of values
{2304, 543, 497, 484}, which is monotonically decreasing as expected. At each
iteration, γi took values in the non-decreasing sequence {0.50, 0.85, 1, 1}, up
to unity where the algorithm uses the exact state space solution, avoiding fre-
quency data fitting and hence, the corresponding approximation errors. The
results of the proposed algorithm are shown in Figure 5. Note that the magni-
tude plot of the sensitivity (resp. complementary sensitivity) function of any

plant in the set
{

Po(1 + ∆Wu) : ∆ ∈ RH∞, ‖∆‖
∞

≤ 1
}

will be below the

|WS(jω)|−1 (resp. |WT (jω)|−1) plot, since robust performance is guaranteed.
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Fig. 5. Clockwise from top left: Magnitude plots of W−1
S (jω) and W−1

T (jω) in solid
line and of 1

1+PK and PK
1+PK in dashed line, Magnitude plot of d−1(jω), Magnitude

plot of controller K

Also note that, as expected, the desired bandwidth of 1 rad/s was achieved,
since the desired performance and uncertainty/plant-limitations were all com-
patible in this example. A controller achieving robust performance with respect
to the maximised performance weights was simultaneously synthesised by the
algorithm and is also shown in Figure 5.

5.1.2 Right half plane zero imposing bandwidth limitations

In this subsection, ω1 = 0.1 rad/s and ω2 = 30 rad/s, giving rise to the
nominal plant Po and uncertainty weight Wu shown in Figure 6. This partic-
ular choice of ω2 imposes no bandwidth limitations, as the frequency region
where uncertainty becomes significant lies far beyond the desired bandwidth
of 1 rad/s (see Figure 3). However, the choice of ω1 imposes a bandwidth lim-
itation, since the right half plane zero of the plant now lies within the desired
bandwidth. Consequently, the desired bandwidth may not be achievable. The
proposed algorithm systematically resolves this by determining appropriate
weights WS and WT , via the optimisation, to yield an appropriate closed-loop
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Fig. 6. Plant and uncertainty weight magnitude plots

bandwidth.

The algorithm took 8 iterations to converge. The cost η?
i associated with the

posed optimisation problem took values in the sequence {43290, 24890, 12923,
9811, 6479, 5251, 4649, 4531}, which is monotonically decreasing as expected.
At each iteration, γi took values in the non-decreasing sequence {0.38, 0.45,
0.62, 0.69, 0.85, 0.93, 1, 1}, up to unity where the algorithm uses the exact
state-space solutions, avoiding frequency data fitting and hence, the corre-
sponding approximation errors. The results of the proposed algorithm are
shown in Figure 7. Note that the weights WS and WT have been maximised in
the appropriate frequency regions. Furthermore, the limitation arising due to
the right half plane zero of the plant has been accounted for, with the achieved
bandwidth being approximately 0.1 rad/s, despite the directionality factors
reflecting a desired bandwidth of 1 rad/s. That is, the proposed algorithm
has systematically traded-off desired performance against a fundamental lim-
itation due to plant dynamics.

The magnitude plot of the sensitivity (resp. complementary sensitivity) func-

tion of any plant in the set
{

Po(1 + ∆Wu) : ∆ ∈ RH∞, ‖∆‖
∞

≤ 1
}

will

be below the |WS(jω)|−1 (resp. |WT (jω)|−1) plot, since robust performance
is guaranteed. A controller achieving robust performance with respect to the
maximised performance weights was simultaneously synthesised by the algo-
rithm and is also shown in Figure 7.

5.1.3 High frequency uncertainty imposing bandwidth limitations

In this subsection, ω1 = 100 rad/s and ω2 = 0.03 rad/s, giving rise to the
nominal plant Po and uncertainty weightWu shown in Figure 8. This particular
choice of ω1 imposes no bandwidth limitations as the plant right half plane
zero lies far beyond the desired bandwidth of 1 rad/s (see Figure 3). However,
the choice of ω2 imposes a bandwidth limitation as the frequency region where
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Fig. 7. Clockwise from top left: Magnitude plots of W−1
S (jω) and W−1

T (jω) in solid
line and of 1

1+PK and PK
1+PK in dashed line, Magnitude plot of d−1(jω), Magnitude

plot of controller K
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Fig. 8. Plant and uncertainty weight magnitude plots

uncertainty becomes significant now lies well within the desired bandwidth.
Consequently, the desired bandwidth may not be achievable. This will be
resolved by the algorithm by synthesising appropriate weights WS and WT (or
rather their inverses) in order that a controller achieving robust performance
with respect to these weights exist.
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The algorithm took 5 iterations to converge. The cost η?
i associated with the

proposed optimisation problem took values in the sequence {444860, 104920,
9438, 4869, 4773}, which is monotonically decreasing as expected. At each it-
eration, γi took values in the non-decreasing sequence {0.35, 0.55, 0.82, 1, 1},
up to unity where the algorithm uses the exact state-space solutions, avoiding
frequency data fitting and hence, the corresponding approximation errors. The
results of the proposed algorithm are shown in Figure 9. Note that the weights
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Fig. 9. Clockwise from top left: Magnitude plots of W−1
S (jω) and W−1

T (jω) in solid
line and of 1

1+PK and PK
1+PK in dashed line, Magnitude plot of d−1(jω), Magnitude

plot of controller K

WS and WT have been maximised in the appropriate frequency regions. Fur-
thermore, observe the trading-off of desired bandwidth (1 rad/s) against the
specified plant uncertainty, as can be seen from the achieved bandwidth of
approximately 0.1 rad/s.

The magnitude plot of the sensitivity (resp. complementary sensitivity) func-

tion of any plant in the set
{

Po(1 + ∆Wu) : ∆ ∈ RH∞, ‖∆‖
∞

≤ 1
}

will

be below the |WS(jω)|−1 (resp. |WT (jω)|−1) plot, since robust performance
is guaranteed. A controller achieving robust performance with respect to the
maximised performance weights was simultaneously synthesised by the algo-
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rithm and is also shown in Figure 9.

5.2 Pitch axis controller design for an experimental highly maneuverable
aeroplane

An example from [1], used therein to illustrate the standard µ-synthesis ap-
proach to design, is now considered in order to facilitate comparison with
the new approach to robust performance problems developed in this paper.
The example involves the design of a pitch axis controller for an experimental
highly maneuverable aeroplane, the HIMAT. A block diagram for the closed-
loop system is shown in Figure 10. The state-space realisations of Po, Wu and

Po

∆

Wu

+
+

+
++

+





d1

d2









e1

e2









d3

d4



Wn

Wp

K

P

Fig. 10. Block diagram of HIMAT and required feedback structure

Wn can be found in [1]. The plant P is uncertain but known to belong to the

set
{

Po(I + ∆Wu) : ∆ ∈ RH∞, ‖∆‖
∞

≤ 1
}

.

The objective in this design example is to maximise the performance weight
Wp in appropriate frequency regions subject to the existence of an internally
stabilising controller K guaranteeing robust performance with respect to this
weight. In standard µ-synthesis based design Wp is fixed by the designer.
By contrast, recall that the new approach proposed in this paper involves
the synthesis of a suitable Wp via a constrained optimisation problem, with
cost reflecting the desired performance through an appropriate directional-
ity function. For a sensible control problem, Wp should be maximised in the
low-frequency region, thereby yielding good disturbance rejection at the plant
output at these frequencies. In order to capture this, the optimisation di-
rectionality Υ = 5

(s+0.005)
I2 is used here. This is consistent with the desired

performance requirements specified in [1].

The results obtained by applying the proposed algorithm are shown in Fig-
ure 11, together with the results obtained via the design presented in [1], in
order to facilitate comparison. Observe that unlike the µ-curve obtained in [1],
the final µ-curve obtained via the new approach is flat across frequency and
very close to unity. This reflects that robust performance has been optimised.
In fact, it can be seen that the inverse performance weights synthesised by
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Fig. 11. Clockwise from top left: Upper bounds for µ-curves, Magnitude plots of
|w11(jω)|−1 and |w22(jω)|−1, Magnitude plot of |d(jω)|, Singular values of controller
K

the proposed algorithm are everywhere less than those used in [1]. That is, a
higher level of robust performance is attained. The final controller synthesised
by the proposed algorithm had 26 states and hence, was of the same order as
the scaled generalised plant, as expected. The magnitude plot of the resulting
controller is also shown in Figure 11.

6 Conclusions

A new approach to robust performance problems is developed in this paper.
The rationale behind the new approach is related to that of using skewed-
µ to determine worst-case performance in the face of prescribed uncertainty,
in that it involves the optimisation of so-called performance weights, which
scale over frequency the performance channels in a standard LFT setup for
robust performance problems. The optimisation is constrained, in terms of
the structured singular value, to ensure the existence of a stabilising feedback
compensator that achieves robust performance with respect to the optimised
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performance weights and the specified uncertain plant set. Optimisation of
the performance weights, with respect to a cost that reflects desired perfor-
mance, in the way proposed here, gives rise to an algorithm for systematically
trading-off the desired performance against specified plant uncertainty and
performance limitations due to plant dynamics. In this sense, an indication of
achievable performance is also provided.

As formulated, the optimisation problem admits a state-space solution in
terms of LMIs. Further LMI constraints could be incorporated to capture
closed-loop objectives in addition to the H∞ performance criterion consid-
ered here, such as pole placement and H2-norm minimisation, for example.

Software has also been developed and can be requested via email from the
first author.
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1995.

33



[9] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
1996.

[10] I. Jovik and B. Lennartson. On the choice of criteria and weighting functions
of an H2/H∞-design problem. In IFAC Symposia Series — Proceedings of the

13th Triennial World Congress, pages 373–378, San Francisco, CA, USA, 1996.

[11] H. Kwakernaak. Robust control and H∞-optimisation — tutorial paper.
Automatica, 29(2):255–273, 1993.

[12] A. Lanzon. Weight Selection in Robust Control: An Optimisation Approach.
PhD thesis, University of Cambridge, United Kingdom, October 2000.
Downloadable from http://www.syseng.anu.edu.au/∼alanzon.

[13] A. Packard. Gain scheduling via linear fractional transformations. Systems and

Control Letters, 22(2):79–92, February 1994.

[14] A. Packard and J. Doyle. The complex structured singular value. Automatica,
29(1):71–109, 1993.

[15] A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems and Control

Letters, 28(1):7–10, 1996.

[16] M. G. Safonov and D. J. N. Limebeer. Simplifying the H∞ theory via loop
shifting. In Proceedings of the 27th IEEE Conference on Decision and Control,
pages 1399–1404, Austin, TX, USA, December 1988.

[17] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and

Design. John Wiley and Sons, 1998.

[18] R. M. Stoughton. Formulation of an improved set of weighting functions for H∞

control of flexible beam-like systems. In Proceedings of the American Control

Conference, pages 1745–1751, San Diego, CA, USA, May 1990.

[19] G. Vinnicombe. The robustness of feedback systems with bounded complexity
controllers. IEEE Transactions on Automatic Control, 41(6):795–803, June
1996.

[20] J. C. Willems. Least squares stationary optimal control and the algebraic
Riccati equation. IEEE Transactions on Automatic Control, 16(6):621–634,
1971.

[21] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, Inc., 1996.

34



A Proof of Theorem 3

First note that

Υ(jω)∗W̄ (jω)∗W̄ (jω)Υ(jω) = Υ(jω)∗T o
W̄ (jω)∗W̆T o

W̄ (jω)Υ(jω)

= ϕ(jω)∗
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ϕ(s) :=
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.

Using the fact that parahermitian rational functions can be split into the sum
of stable and anti-stable transfer functions [4,21,12], it follows that

Υ(jω)∗W̄ (jω)∗W̄ (jω)Υ(jω) = E(jω) + E(jω)∗

where

E(s) :=















AW̄ BW̄CΥ 0

0 AΥ BΥ
(

0 BT
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X 0















and the real matrix X = XT is the unique solution to Lyapunov equation
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Consequently,
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= trace
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by a standard calculus result
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Since the matrix
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 is Hurwitz, Lyapunov equation (A.1) can be

rewritten as
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The required result then follows directly from equations (A.2) and (A.3).

B Proof of Theorem 4

Statements (i) and (ii) in the Theorem will be connected by a sequence of
equivalent reformulations.

(a) inf
D̄∈DTF

(A
D̄

,B
D̄
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(b) ∃ D̄ ∈ D
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for all ω ∈ R ∪ {∞}.
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(c) ∃ D̆ ∈ ΞD̆ such that

T o
D̄(jω)∗D̆T o

D̄(jω) > 0

and ϕ(jω)∗Q̀ ϕ(jω) < 0

for all ω ∈ R ∪ {∞}, where T o
D̄(s) is defined as in equation (3) and

ϕ(s) :=
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0 Im
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0 T o
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,

Q̀ := diag
(

D̆, Im, −D̆, −W̆
)

.

Observe that (b) ⇔ (c) follows from simple algebraic manipulations after
replacing D̄(jω)∗D̄(jω) with T o

D̄(jω)∗D̆T o
D̄(jω) and W̄ (jω)∗W̄ (jω) with

T o
W̄ (jω)∗W̆T o

W̄ (jω).
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for all ω ∈ R∪{∞}, where À, B̀, C̀, D̀ and Q̀ are defined as in Part (ii) of

the Theorem. Then (c) ⇔ (d) easily follows by noting that ϕ(s) =







À B̀

C̀ D̀





.

(e) ∃ D̆ ∈ ΞD̆, X = XT ∈ R
sD×sD and Y = Y T ∈ R

(scl+2sD+sW )×(scl+2sD+sW ) such
that
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< 0.

The equivalence (d) ⇔ (e) follows from the KYP Lemma [20,15].
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C Proof of Theorem 5

Before proving the equivalence between the Theorem’s two statements, some
notation needs to be defined. To this end, let the controller K(s) ∈ K

TF

G have

a state-space realisation







AK BK

CK DK





, where AK ∈ R
sK×sK and DK ∈ R

p×q. The

order s
K

of this controller is not yet known (i.e. s
K

is a variable), as the set
K

TF

G contains all internally stabilising controllers for G of any order. Define





















Â B̂1 B̂2 B̂3

Ĉ1 D̂11 D̂12 D̂13

Ĉ2 D̂21 D̂22 D̂23

Ĉ3 D̂31 D̂32 ΦT
K





















:=













































Ã 0 B̃1 B̃2 0 B̃3

0 0 0 0 IsK 0

C̃1 0 D̃11 D̃12 0 D̃13

C̃2 0 D̃21 D̃22 0 D̃23

0 IsK 0 0 AT
K CT

K

C̃3 0 D̃31 D̃32 B
T
K DT

K













































,

and















Ãcl B̃1cl B̃2 cl

C̃1cl D̃11cl D̃12 cl

C̃2 cl D̃21cl D̃22 cl















:=















Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22















+















B̂3

D̂13

D̂23















ΦK

[

Ĉ3 D̂31 D̂32

]

.

Then Fl

(

G̃,K
)

=















Ãcl B̃1cl B̃2 cl

C̃1cl D̃11cl D̃12 cl

C̃2 cl D̃21cl D̃22 cl















and K ∈ K
TF

G if and only if K ∈ K
TF

G̃ .

Statements (i) and (ii) in the Theorem will now be connected by a sequence
of equivalent reformulations.

(a) min
K∈KTF

G

∥

∥

∥

∥

∥

∥

∥







D̄ 0

0 Im





Fl (G,K)T







D̄−1 0

0 W̄−1







∥

∥

∥

∥

∥

∥

∥

∞

< 1.
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(b) ∃K ∈ K
TF

G̃ such that

[

Fl

(

G̃(jω), K(jω)
)T

]

∗
[

Fl

(

G̃(jω), K(jω)
)T

]

<







Ir 0

0 W̄ (jω)∗W̄ (jω)





 ∀ω ∈ R ∪ {∞}.

This easily follows by using the definition of G̃(s).
(c) ∃K ∈ K

TF

G̃ such that

















Fl

(

G̃(jω), K(jω)
)T







Ir 0

0 T o
W̄ (jω)























∗















Ir+m 0

0







−Ir 0

0 −W̆







































Fl

(

G̃(jω), K(jω)
)T







Ir 0

0 T o
W̄ (jω)























< 0

for all ω ∈ R∪{∞}. Observe that (b) ⇔ (c) follows from simple algebraic
manipulations after replacing W̄ (jω)∗W̄ (jω) with T o

W̄ (jω)∗W̆T o
W̄ (jω).

(d) ∃ s
K
∈ Z+ and ΦK ∈ R

(sK+p)×(sK+q) such that

Ãcl is Hurwitz,






(

jωI − Á
)

−1
B́

I







∗ 





ĆT

D́T





 Q́
[

Ć D́

]







(

jωI − Á
)

−1
B́

I





 < 0 ∀ω ∈ R ∪ {∞},

where Á, B́, Ć, D́ and Q́ are defined by







Á B́

Ć D́





 :=













































AW̄ 0 0 BW̄

0 ÃT
cl

C̃T
1cl C̃T

2 cl

0 B̃T
1cl D̃T

11cl D̃
T
21cl

0 B̃T
2 cl

D̃T
12 cl

D̃T
22 cl

0 0 Ir 0

IsW 0 0 0

0 0 0 In













































,

Q́ := diag





Ir, Im, −Ir, −







0 W̆12

W̆ T
12 W̆22











 .

The equivalence (c) ⇔ (d) follows by noting that K(s) internally sta-
bilises G̃(s) if Ãcl is Hurwitz, and Ãcl is Hurwitz if there is a stabilisable

39



and detectable state-space realisation for K(s) which internally stabilises
G̃(s) [7, Lemma A.4.1].

(e) ∃ s
K
∈ Z+, ΦK ∈ R

(sK+p)×(sK+q) and X = XT ∈ R
(sW+s

G̃
+sK)×(sW+s

G̃
+sK) such

that

X > 0,






XÁ+ ÁTX XB́

B́TX 0





 +







ĆT

D́T





 Q́
[

Ć D́

]

< 0, (C.1)

where Á, B́, Ć, D́ and Q́ are defined as in (d) above. Since inequality (C.1)
implicitly guarantees that XÁ + ÁTX < −ĆTQ́ Ć ≤ 0, a standard Lya-
punov type argument gives X > 0 if and only if Á is Hurwitz. Now Á is
Hurwitz if and only if Ãcl is Hurwitz, as AW̄ is already restricted to be
Hurwitz in the set Ξ(AW̄ ,BW̄ ). Then (d) ⇔ (e) follows from a straightfor-
ward application of the KYP Lemma [20,15].

(f) ∃ s
K
∈ Z+, ΦK ∈ R

(sK+p)×(sK+q) and X = XT ∈ R
(sW+s

G̃
+sK)×(sW+s

G̃
+sK) such

that
X > 0,





































X





AW̄ 0

0 ÃT
cl



 +
{

·
}T

X





0 BW̄

C̃T
1cl C̃

T
2 cl









0 0

B̃1cl B̃2 cl





∗





−Ir 0

0 0









D̃11cl D̃12 cl

D̃21cl D̃22 cl





∗ ∗





−Ir 0

0 −Im









































<









































IsW 0

0 0









0 0

0 In









0 0

0 0









































W̆









IsW 0

0 0









0 0

0 In









0 0

0 0







 .

Note that (e) ⇔ (f) follows by applying Schur Complement Lemma [9]
around the (3,3)-block of the above inequality and then re-arranging to
give inequality (C.1).
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(g) ∃ s
K
∈ Z+, ΦK ∈ R

(sK+p)×(sK+q) and X = XT ∈ R
(sW+s

G̃
+sK)×(sW+s

G̃
+sK) such

that

X > 0,

F + UT ΦKV + V T ΦT
KU < 0,

where the real matrices F , U and V are defined as in Corollary 6. This
equivalence follows by simply extracting ΦK from the closed-loop matrices.

(h) ∃ s
K
∈ Z+ and X = XT ∈ R

(sW+s
G̃
+sK)×(sW+s

G̃
+sK) such that

X > 0,

ΨT
UFΨU < 0 and ΨT

V FΨV < 0,

where F is defined as in (g) and ΨU and ΨV are matrices with columns
that form bases for the null spaces of U and V respectively. One possible
choice of ΨU and ΨV is

ΨU :=



















































IsW 0

0 ψ1

0 0





















0 0

0 0

0 0















0 ψ2

0 ψ3









0 0

0 0









0 0

0 0









Ir 0

0 Im













































and

ΨV :=











X−1 0 0

0 Ir+n 0

0 0 Ir+m





























































IsW 0

0 ψ4

0 0





















0 0

0 0

0 0















0 0

0 0









Ir 0

0 In









0 ψ5

0 ψ6









0 0

0 0













































.
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Here, the columns of















ψ1

ψ2

ψ3















(resp.















ψ4

ψ5

ψ6















) form bases for the null space of

[

B̃T
3 D̃T

13 D̃
T
23

]

(resp.
[

C̃3 D̃31 D̃32

]

). The equivalence (g) ⇔ (h) follows

from the Projection Lemma [5,2].
(i) ∃ s

K
∈ Z+, P = P T ∈ R

(sW+s
G̃
)×(sW+s

G̃
) and Q = QT ∈ R

(sW+s
G̃
)×(sW+s

G̃
)

such that

P > 0, Q > 0,






P I

I Q





 ≥ 0, rank
(

P −Q−1
)

≤ s
K
,

ΨT
P .





































P





AW̄ 0

0 ÃT



 +
{

·
}T

P





0 BW̄

C̃T
1 C̃T

2









0 0

B̃1 B̃2





∗





−Ir 0

0 0









D̃11 D̃12

D̃21 D̃22





∗ ∗





−Ir 0

0 −Im









































.ΨP

<

























IsW 0

0 ψT
3









0 0

0 0

























W̆









IsW 0

0 ψ3









0 0

0 0







 ,
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ΨT
Q .









































AW̄ 0

0 ÃT



Q+
{

·
}T

Q





0 0

B̃1 B̃2









0 BW̄

C̃T
1 C̃T

2





∗





−Ir 0

0 −Im









D̃T
11 D̃

T
21

D̃T
12 D̃

T
22





∗ ∗





−Ir 0

0 0









































.ΨQ

<

























IsW 0

0 ψT
4



Q





IsW 0

0 0









0 0

0 In

























W̆









IsW 0

0 0



Q





IsW 0

0 ψ4









0 0

0 In







 , (C.2)

where ΨP and ΨQ are defined as in Part (ii) of the Theorem. Note that
(h) ⇔ (i) follows after some algebra by exploiting the all-zero rows/columns
and through the application of the Decoupling Lemma [13, Lemma 6.2].

(j) ∃ s
K

∈ Z+, P = P T ∈ R
(sW+s

G̃
)×(sW+s

G̃
), R = RT ∈ R

sW×sW , S ∈ R
sW×s

G̃

and T = T T ∈ R
s
G̃
×s

G̃ such that the LMI constraints given in Part (ii) of
Theorem 5 hold together with

rank













IsW S

0 Is
G̃





P







IsW 0

ST Is
G̃





 −







R 0

0 T−1











 ≤ s
K
.

The equivalence (i) ⇔ (j) follows by observing the following four facts:

• Any Q = QT ∈ R
(sW+s

G̃
)×(sW+s

G̃
) satisfying Q > 0 can be decomposed as

follows:

Q =





IsW 0

ST Is
G̃









R−1 0

0 T









IsW S

0 Is
G̃



 ,

where R = RT ∈ R
sW×sW , S ∈ R

sW×s
G̃ and T = T T ∈ R

s
G̃
×s

G̃ are com-
pletely independent variables which fully parametrise Q. Furthermore,
Q > 0 if and only if R > 0 and T > 0.
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• Using such a decomposition for Q,





P I

I Q



 ≥ 0 ⇔





















P





IsW −S

0 Is
G̃









IsW 0

−ST Is
G̃









R−1 0

0 T

























≥ 0

⇔





















P





R −S

0 Is
G̃









R 0

−ST Is
G̃









R 0

0 T

























≥ 0.

• Again, using the above decomposition for Q,

rank
(

P −Q−1
)

= rank



P −





IsW −S

0 Is
G̃









R 0

0 T−1









IsW 0

−ST Is
G̃









= rank









IsW S

0 Is
G̃



P





IsW 0

ST Is
G̃



 −





R 0

0 T−1







 .

• Finally, the equivalence between inequality (C.2) and the last LMI con-
straint in Part (ii) of Theorem 5 is obtained through the application of
the congruence transformation

























R −Sψ4

0 I



 0

0





Ir 0

0 In

























on inequality (C.2) and some algebra to rearrange the result.
(k) The proof is completed by noting that for any s

K
≥ (s

W
+ s

G̃
), the ‘rank’

constraint in (j) is redundant and the remaining conditions are exactly
those stated in Part (ii) of the Theorem. The controller order s

K
can

be chosen as desired since the set K
TF

G contains all internally stabilising
controllers for G of any order (as stated at the beginning of the proof).
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D Proof of Corollary 6

The additional ‘rank’ condition for the existence of internally stabilising con-
trollers of order s

K
directly follows from Step (j) in the proof of Theorem 5

given in Appendix C, whereas the LMI for the construction of such controllers
follows from Step (g) of the same proof on noting that it is always possible to
construct an X = XT ∈ R

(sW+s
G̃
+sK)×(sW+s

G̃
+sK) satisfying

X =







P �

� �





 > 0 and X−1 =







Q �

� �





 ,

where � denotes “Don’t Care” elements. This is because given

X =







X11 X12

XT
12 X22





 > 0,

it is easy to verify that

X−1 =







(X11 −X12X
−1
22 X

T
12)

−1 �

� �





 .

Consequently, if X11 = P and (X11 −X12X
−1
22 X

T
12)

−1 = Q, then one possible
way of constructing the matrixX using the given P andQ is by lettingX22 = I
and computing X12 from the following factorisation P −Q−1 = X12X

T
12.
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