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Abstract

It is well-known that linear, periodically time-
varying, continuous-time systems are formally
equivalent to so-called lifted representations that
are shift-invariant, but have spatially infinite-
dimensional inputs and outputs. By shift invari-
ance, corresponding frequency-domain represen-
tations can be constructed. Indeed, it makes sense
to use the H∞ norm of the associated frequency-
domain symbol as a measure of system size. In
fact, this is equal to the L2

[0,∞) induced norm of
the system. As an alternative measure of system
size a generalisation of the H2 norm, which char-
acterises the impulsive response of the system, can
also be defined. The purpose of this paper is to
establish finite-dimensional, algebraic characteri-
sations of these norms, for linear continuous-time
periodic systems.

1 Introduction

The H∞ and H2 norms are widely used in con-
trol and signal processing as measures of per-
formance and robustness [1]. In this paper
finite-dimensional, algebraic characterisations of
these norms are developed for linear, continuous-
time, periodically time-varying, state-space, sys-
tem models. Such models arise in the study and
design of many systems, such as asymmetric ro-
tating machinery [2], systems subject to periodic
loading [3, 4], and systems of orbiting bodies [5, 6].

∗ASCC’02: Paper #1025-6.

The time-lifting technique, introduced by [7, 8,
9] within the context of continuous-time systems,
is central to the development of the main results
of this paper. It is used here to convert the time-
varying, continuous-time norm computation prob-
lems considered into shift-invariant, discrete-time
problems. Standard discrete-time techniques can
then be used to obtain the algebraic characterisa-
tions required. The idea of lifting systems in this
way to obtain shift-invariant equivalent formula-
tions of certain problems can actually be traced
back some forty-five years to the work of Kranc
[10], in which the context was purely discrete-
time.

Algebraic characterisation of the H∞ and H2

norm for periodic systems is also considered in
[11]. Their approach involves skewed truncation
of a lifted frequency response operator and yields
approximate characterisations that improve with
order of truncation. The characterisations here,
on the other hand, are exact.

2 Preliminaries

In this section some notation and elementary re-
sults are collected. The integers, reals and com-
plex numbers are denoted by Z, R and C respec-
tively. The non-negative integers, non-negative
reals, the unit circle and the open unit disc in C
are respectively denoted by Z+, R+, T and D.

Throughout, several function spaces are used
as signal spaces. Given T ∈ (0,∞], the sym-
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bol L2
[0,T )(R

m) denotes the set of square-integrable
functions f : [0, T )→ Rm with inner product

〈x, y〉L2
[0,T )

(Rm) :=
∫ T

0
〈x(t), y(t)〉Rm dt.

The set of square-summable, infinite sequences in
a Hilbert space E is denoted by `2(E) and the
inner product on `2(E) is defined by

〈x, y〉`2(E) :=
∑

k∈Z+
〈xk, yk〉E .

The relationship between L2
R+

(Rm) and
`2(L2

[0,h)(R
m)) via the time-lifting isomorphism

W : L2
R+

(Rm) → `2(L2
[0,h)(R

m)), defined by
[7, 8, 9]

W : u(t) 7→ ûk(τ) := u(τ + kh); τ ∈ [0, h)

for any u ∈ L2
R+

(Rm) and some real h > 0, is cen-
tral to the development of the results that follow.
Using this isomorphism [7, 8, 9], the state-space
realisation

ẋ(t) = A(t)x(t) +B(t)u(t);

y(t) = C(t)x(t) +D(t)u(t), (1)

of a given h-periodic, continuous-time system P :
dom(P) ⊂ L2

R+
(Rm) → L2

R+
(Rp),1 is equivalent

to a shift-invariant, discrete-time, state-space re-
alisation

x̂k+1 = Âx̂k + B̂ûk; ŷk = Ĉx̂k + D̂ûk, (2)

where x̂k = x(kh), ûk = Wu, ŷk = Wy,

Â : Rn → Rn,
B̂ : L2

[0,h)(R
m)→ Rn,

Ĉ : Rn → L2
[0,h)(R

p),

D̂ : L2
[0,h)(R

m)→ L2
[0,h)(R

p),

n = dim(x(t)), m = dim(u(t)) and p = dim(y(t)).
The operators Â, B̂, Ĉ and D̂ can be evaluated by
considering how P evolves over each [kh, (k+1)h)

1i.e. A(t + kh) = A(t), B(t + kh) = B(t), C(t + kh) =

C(t) and D(t+ kh) = D(t) for all k ∈ Z+

interval of time, k ∈ Z. This yields (cf. [7, 8]):

Â := x̂k 7→ ΦA(h, 0)x̂k; (3)

B̂ := ûk 7→
∫ h

0
ΦA(h, η)B(η)ûk(η) dη; (4)

Ĉ := x̂k 7→ C(τ)ΦA(τ, 0)x̂k; (5)

D̂ := ûk 7→ D(τ)ûk(τ) +

C(τ)
∫ τ

0
ΦA(h, η)B(η)ûk(η) dη, (6)

for τ ∈ [0, h), where ΦA(η, τ) is the unique state
transition matrix satisfying

∂

∂η
ΦA(η, τ) = A(η)ΦA(η, τ) and ΦA(τ, τ) = I.

Note that although the operators B̂ and Ĉ are
infinite-dimensional, they have finite rank since
the state dimension is still finite.

By shift-invariance of the discrete-time realisa-
tion (2), it follows (via the standard Z-Transform
isomorphism, Z : uk 7→

∑

k∈Z ukϕ
k) that P can

also be characterised as a multiplication operator
with frequency domain symbol

P (ϕ) = ϕĈ(I − ϕÂ)−1B̂ + D̂. (7)

This fact is central to the development of the main
results that follow.

Before going on, some elementary facts are gath-
ered. These can be found (or easily derived
from results) in any text on linear analysis (e.g.
[12]). Given Hilbert spaces E and F , the set
of bounded linear operators X : E → F is de-
noted by L(E,F ). The induced norm of X ∈
L(E,F ) is denoted by ‖X‖E→F (the subscript
may be dropped when convenient), and the ad-
joint X∗ : F → E is the unique bounded linear
operator satisfying 〈Xu, y〉F = 〈u,X∗y〉E . The
spectrum of X ∈ L(E) := L(E,E) is denoted by
spec(X), which is defined by spec(X):={λ ∈ C :
λI−X is not invertible in L(E)}, and the spectral
radius by rad(X) := supλ∈spec(X) |λ|.

Proposition 2.1 Suppose that Y ∈ L(E,F ) and
X ∈ L(F,E). Then

(i) The operator I −Y X is non-singular if and
only if I −XY is non-singular.
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(ii) If the norm ‖X‖E→F = 1 then I −X∗X is
singular.

Proposition 2.2 Suppose that F (ϕ) is a contin-
uous function on D ∪ T and ‖F (0)‖ < 1. Then
‖F (ϕ)‖ < 1 for each ϕ ∈ D ∪ T if and only if
I−F (ϕ)∗F (ϕ) is non-singular for each ϕ ∈ D∪T.

Proof: (only if): Since rad(F ∗(ϕ)F (ϕ)) ≤
‖F (ϕ)∗F (ϕ)‖ = ‖F (ϕ)‖2 < 1 for all ϕ ∈ D∪T, it
follows that I −F (ϕ)∗F (ϕ) is non-singular for all
ϕ ∈ D ∪ T.

(if): Suppose that for some ϕ ∈ D∪T, ‖F (ϕ)‖ ≥
1. By continuity of F and the fact that ‖F (0)‖ <
1, there exists a ϕ0 ∈ D∪T such that ‖F (ϕ0)‖ = 1.
Hence, using Prop. 2.1, I −F (ϕ0)∗F (ϕ0) must be
singular. This is a contradiction.

3 Characterisation of the H∞ Norm

Recall from Section 2 that an h-periodic
continuous-time system P, with finite-
dimensional state-space realisation (1), is
equivalent (via the W and Z isomorphisms) to
a multiplication operator with frequency domain
symbol P (ϕ), characterised in (7). Indeed,
when P is “stable” (i.e. a bounded operator) its
L2
R+

-induced norm is equal to the infinity norm
of P :

‖P‖∞ = sup
ϕ∈D
‖ϕĈ(I − ϕÂ)−1B̂ + D̂‖.

P “stable” corresponds to spec(Â) ⊂ D, and in
this case P (ϕ) is analytic on D, so that the max-
imum modulus principle applies to give ‖P‖∞ =
supϕ∈T ‖P (ϕ)‖. Note that at each frequency, the
symbol P (ϕ) is an infinite-dimensional operator.
The subsequent result yields a finite-dimensional
equivalent symbol which satisfies the same infin-
ity norm condition as the symbol of interest (note
that the norms may be different, but one will be
less than 1 if and only if the other is less than 1).

Theorem 3.1 Suppose that ‖D̂‖ < 1, and let B
and C be finite-dimensional matrices satisfying

BB∗ = B̂(I − D̂∗D̂)−1B̂∗,

C∗C = Ĉ∗(I − D̂D̂∗)−1Ĉ.

Define A := Â + B̂(I − D̂∗D̂)−1D̂∗Ĉ. Then the
following are equivalent:

(i) spec(Â)⊂D and ‖ϕĈ(I−ϕÂ)−1B̂+D̂‖∞<1;

(ii) spec(A) ⊂ D and ‖ϕC(I − ϕA)−1B‖∞ < 1,

where Â, B̂, Ĉ and D̂ are defined in equations
(3–6).

Remark 3.2 Given formulae for the finite-
dimensional matrices A, B and C (cf. Ap-
pendix A), an algebraic characterisation of the
H∞ norm of P can be obtained via Theo-
rem 3.1, using standard discrete-time state-space
techniques [1]. Testing of the condition ‖D̂‖ < 1
can be carried out as described in [13]. ♣

Proof: The proof is similar to the development
of the main result in [14].

First it is shown that the “stability” of A is re-
lated to that of Â. Suppose that spec(Â) ⊂ D and
that ‖ϕĈ(I − ϕÂ)−1B̂ + D̂‖∞ < 1. Then using
Prop. 2.1, note that

I − λA = I − λÂ− λB̂(I − D̂∗D̂)−1D̂∗Ĉ

non-singular for λ ∈ D
m

I − (I − λÂ)−1λB̂(I − D̂∗D̂)−1D̂∗Ĉ

non-singular for λ ∈ D
m

I − D̂∗Ĉ(I − λÂ)−1λB̂(I − D̂∗D̂)−1

non-singular for λ ∈ D
m

I − D̂∗D̂ − D̂∗Ĉ(I − λÂ)−1λB̂

non-singular for λ ∈ D
m

I − D̂∗(Ĉ(I − λÂ)−1λB̂ + D̂)

non-singular for λ ∈ D.

Since ‖D̂∗‖ < 1 and supλ∈D ‖λĈ(I − λÂ)−1B̂ +
D̂‖ < 1, it follows I − D̂∗(Ĉ(I − λÂ)−1λB̂ +
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D̂) is non-singular for λ ∈ D and hence, that
spec(A) ⊂ D. Similarly, by essentially revers-
ing the argument, if spec(A) ⊂ D and ‖ϕC(I −
ϕA)−1B‖∞ < 1 ⇔ ‖ϕ(I − D̂D̂∗)−

1
2 Ĉ(I −

ϕA)−1B̂(I − D̂∗D̂)−
1
2 ‖∞ < 1, then spec(Â) ⊂ D.

Now consider condition (i). The norm condition
is equivalent to ‖ϕĈ(I−ϕÂ)−1B̂+ D̂‖ < 1 for all
ϕ ∈ D ∪ T. Furthermore, repeated application of
Props. 2.1 and 2.2 yields the following sequence
of equivalent statements:2

‖ϕĈ(I − ϕÂ)−1B̂ + D̂‖ < 1

for all ϕ ∈ D ∪ T ⇔

I− (Ĉ(I − ϕÂ)−1ϕB̂ + D̂)∗ ×
(Ĉ(I − ϕÂ)−1ϕB̂ + D̂)

is non-singular for all ϕ ∈ D ∪ T ⇔

(I − D̂∗D̂)−
(

(ϕB̂)∗ D̂∗Ĉ
)

×
(

(I − ϕÂ)−∗Ĉ∗Ĉ(I − ϕÂ)−∗ (I − ϕÂ)−∗

(I − ϕÂ)−1 0

)

(

ϕB̂

Ĉ∗D̂

)

is non-singular for all ϕ ∈ D ∪ T ⇔
(

(I − ϕÂ)−∗Ĉ∗Ĉ(I − ϕÂ)−1 (I − ϕÂ)−∗

(I − ϕÂ)−1 0

)−1

−
(

ϕB̂

Ĉ∗D̂

)

(I − D̂∗D̂)−1
(

(ϕB̂)∗ D̂∗Ĉ
)

is non-singular for all ϕ ∈ D ∪ T ⇔
(

0 (I − ϕA)
(I − ϕA)∗ −Ĉ∗(I − D̂D̂∗)−1Ĉ

)

−

(

ϕB̂

0

)

(I − D̂∗D̂)−1
(

(ϕB̂)∗ 0
)

is non-singular for all ϕ ∈ D ∪ T ⇔

I − (I − D̂∗D̂)−
1
2

(

ϕB̂

0

)∗

×

(

0 (I − ϕA)
(I − ϕA)∗ −Ĉ∗(I − D̂D̂∗)−1Ĉ

)−1

×
(

ϕB̂

0

)

(I − D̂∗D̂)−
1
2

2In view of the arguments given above, (I−ϕA)−1 exists

for all ϕ ∈ D ∪ T provided spec(Â) ⊂ D and that ‖ϕĈ(I −
ϕÂ)−1B̂ + D̂‖∞ < 1.

is non-singular for all ϕ ∈ D ∪ T ⇔

I − (I − D̂∗D̂)−
1
2

(

ϕB̂

0

)∗

×
(

(I − ϕA)−∗Ĉ∗(I − D̂D̂∗)−1Ĉ(I − ϕA)−1 (I − ϕA)−∗

(I − ϕA)−1 0

)

×
(

ϕB̂

0

)

(I − D̂∗D̂)−
1
2

is non-singular for all ϕ ∈ D ∪ T ⇔

I −

(

ϕB

0

)∗

×

(

(I − ϕA)−∗C∗C(I − ϕA)−1 (I − ϕA)−∗

(I − ϕA)−1 0

)

(

ϕB

0

)

is non-singular for all ϕ ∈ D ∪ T ⇔

‖ϕC(I − ϕA)−1B‖ < 1 for all ϕ ∈ D ∪ T,

as required.

4 Characterisation of the H2 Norm

In this section a useful characterisation of the H2

norm is employed. This characterisation is often
used in time-varying settings (cf. [15] for exam-
ple). Let ei denote the i-th canonical basis vec-
tor in Rm, where m is the dimension of the in-
put space, and gi,τ (t) denotes the response of the
h-periodic system P defined by the state-space
equations (1), to the impulsive input δ(t − τ)ei
for some τ ∈ [0, h). Making the standing assump-
tions that D(t) ≡ 0 and that P is stable (i.e.
spec(Â) ⊂ D), the response gi,τ ∈ L2

R+
(Rp) and

the H2 norm is defined to be

‖P‖22 :=
1
h

∫ h

0

m
∑

i=1

〈gi,τ , gi,τ 〉L2
R+

(Rp) dτ.

Note that as defined here, the H2 norm is the
average energy of the response of the system to
impulses on each of the inputs, occurring some
time within the interval [0, h) (recall that h is the
period of the time-varying behaviour of the sys-
tem). An alternative would be to just consider
the energy of the response to an impulse at 0, in
which case the characterisation of the H2 norm
below would be completely algebraic.



5

Now define

∆D̂,τ :=v∈Rm 7→ (D̂δ(t− τ)v)(t) ∈ L2
[0,h)(R

p)(8)

and

∆B̂,τ :=v ∈ Rm 7→ (B̂δ(t− τ)v) ∈ Rn, (9)

where D̂ and B̂ are defined in equations (6) and
(4). Working in the time-lifted domain, it follows
that

〈gi,τ , gi,τ 〉L2
R+

(Rp) = 〈∆D̂,τei,∆D̂,τei〉L2
[0,h)

(Rp) +

∞
∑

k=1

〈ĈÂk∆B̂,τei, ĈÂ
k∆B̂,τei〉L2

[0,h)
(Rp),

= 〈ei, (∆D̂,τ )
∗∆D̂,τei〉Rm +

∞
∑

k=1

〈ei, (∆B̂,τ )∗(Â∗)kĈ∗ĈÂk∆B̂,τei〉Rm ,

= 〈ei, (∆D̂,τ )
∗∆D̂,τei〉Rm +

〈ei, (∆B̂,τ )∗Lo∆B̂,τei〉Rm ,

where Lo ≥ 0 is the solution to the Lya-
punov equation Â∗LoÂ − Lo + Ĉ∗Ĉ = 0. Note
that the last expression above involves only
finite-dimensional matrices; Â, ∆B̂,τ , Ĉ∗Ĉ and
(∆D̂,τ )

∗∆D̂,τ are all matrices and explicit formu-
lae are given in Appendix B. The following theo-
rem is now immediate.

Theorem 4.1 Given a stable, h-periodic system
P with state-space realisation (1) and D(t) ≡ 0,

‖P‖22 =
1
h

∫ h

0
trace{ (∆D̂,τ )

∗∆D̂,τ +

(∆B̂,τ )∗Lo∆B̂,τ} dτ,

where ∆D̂,τ and ∆B̂,τ are defined in equations (8–
9), and Lo ≥ 0 is the observability gramian that
satisfies

Â∗LoÂ− Lo + Ĉ∗Ĉ = 0,

with Â and Ĉ as defined in equation (3) and (5)
respectively.

A State-Space Formulae for the H∞ Case

In this section, explicit formulae are given for the
following matrices, which appear in Section 3:

A := Â+ B̂(I − D̂∗D̂)−1D̂∗Ĉ;

BB∗ := B̂(I − D̂∗D̂)−1B̂∗;

C∗C := Ĉ∗(I − D̂D̂∗)−1Ĉ.

The formulae can be obtained via a two-point
boundary-value problem approach outlined in
[16], yielding the following. Let

E(t) :=

(

E11(t) E12(t)
E21(t) E22(t)

)

,

where the matrix valued functions Eij(t) are de-
fined by:

E22(t) = −E11(t)∗ :=A(t) +B(I −D∗D)−1D∗C(t);

E12(t) := −C∗(I −DD∗)−1C(t);

E21(t) := B(I −D∗D)−1B(t).

Now define

Q = ΦE(h, 0) :=

(

Q11 Q12

Q21 Q22

)

,

where ΦE(·, ·) denotes the state transition matrix
corresponding to E. Then,

A = Q22 −Q21Q
−1
11 Q12,

BB∗ = Q21Q
−1
11 ,

C∗C = −Q−1
11 Q12.

The matrix Q can be calculated explicitly
by simply integrating the system ẋ(t) =
E(t)x(t); x(0) = I, forward in time up to t = h.
If E were constant this would only involve com-
putation of a matrix exponential.

B State-Space Formulae for the H2 Case

Again, expressions for the finite-dimensional ma-
trices Â, Ĉ∗Ĉ, ∆B̂,τ and (∆D̂,τ )

∗∆D̂,τ , which
appear in Section 4, can be derived using the
two-boundary value problem approach outlined in
[16]. Recall that by assumption D(t) ≡ 0. Let

E(t) :=

(

E11(t) E12(t)
0 E22(t)

)

,
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where the matrix valued functions Eij(t) are de-
fined by:

E22(t) = −E11(t)∗ :=A(t);

E12(t) := −C∗C(t).

Now define

Q(η) = ΦE(h, η) :=

(

Q11(η) Q12(η)
0 Q22(η)

)

,

where ΦE(·, ·) denotes the state transition matrix
corresponding to E. Then,

Â = Q22(0),

Ĉ∗Ĉ = −Q11(0)−1Q12(0),

∆B̂,τ = Q22(τ)B(τ),

∆D̂,τ = −Q11(τ)−1Q12(τ)B(τ).

The matrix Q(η) can be evaluated by integrating
the system ẋ(t) = E(t)x(t); x(η) = I, forward in
time up to t = h.
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