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Abstract— This paper is about the computation of con-
strained optimal controls for series interconnections of hetero-
geneous sub-systems with linear discrete-time dynamics. The
optimal control problem is first formulated in a form that
is amenable to iterative solution by the alternating direction
method of multipliers (ADMM). It is observed that this tech-
nique yields per-iteration computational burden that scales
linearly in the both the number of systems along the cascade
and the length of the time-horizon. Moreover, parallelization
of the computation across a network of processors is possible
with an information exchange architecture that mirrors the
cascade structure of the system. Recent work, which also spatial
structure within the context of interior point methods for the
problem, achieves per-iteration computational cost that scales
linearly in the cascade length, but cubically in the time horizon.
On the other hand, interior point methods will typically take
significantly fewer iterations to converge than the proposed first
order method. With this in mind, convergence of the latter is
explored numerically as the number of sub-systems and time
horizon are varied.

I. INTRODUCTION

Set-point reference planning for decentralized feedback
controllers in water and other resource distribution networks
can be modeled as an inequality constrained finite-horizon
optimal control problem subject to dynamics that arise from
the series interconnection of sub-systems. Clearly the size
of the optimization problem to solve, and therefore the
computational burden, grows with increase in the number
of sub-systems N as well as with increase in the length of
the time horizon T .

In recent work, the scalability of solvers for an equivalent
quadratic programming formulation of the aforementioned
optimal control problem has been studied [1], [2]. Spatial
and temporal structure is exploited therein to show that
the computational cost associated with each Newton step
of an interior point method can be made to scale linearly
in the number of sub-systems (with T fixed). However, the
computational burden grows cubically in the length of the
time horizon (with N fixed).

The developments below pertain to the application of
the so-called alternating direction method of multipliers
(ADMM), see for example [3], [4], to iteratively solve a
quadratic programming formulation of the optimal control
problem. The main observation is that the per-iteration com-
putational burden of such an approach, which involves primal

*This work was supported in part by the Australian Research Council
(LP160100666).

1The authors are with the Department of Electrical and Electronic Engi-
neering, The University of Melbourne, VIC 3010, Australia. Corresponding
author email: cantoni@unimelb.edu.au

and dual iterates for an augmented Lagrangian of a split
variable reformulation obtained by introducing decoupling
variables, can be made to scale linearly in both T and N.
On the other hand, many more iterations may be required
compared to an interior point method. Preliminary numerical
experimentation suggests that when a scaling parameter ρ

in the first-order alternating directions method is fixed, the
number of iterations required to converge can grow linearly
with T when an stopping criterion based on the infinity norm
of the primal and dual residuals is used. What happens as
ρ is adjusted and other stopping criteria are used is the
topic of ongoing work. For other applications of ADMM
within the context of MPC see [5]–[8], for example. None
of these works investigate the exploitation of both spatial
and temporal structure in solving optimal control problems,
which is the focus of the subsequent developments.

The paper is structured as follows. In this next subsection
a first quadratic programming formulation of the optimal
control problem is presented. Through the introduction of
additional decoupling variables for the equality constraints
that represent the system dynamics, and slack variables for
the inequality constraints, this problem is subsequently recast
in a form that is amenable to the ADMM approach. The
structure of the corresponding iterations is then exposed to
establish the aforementioned linear scaling of the computa-
tional burden in both the cascade length and time horizon.
Preliminary numerical investigations on convergence are
then presented, followed by some concluding remarks to
summarize and point to onging work.

A. Quadratic programming formulation

As noted in [1], [2], LQ control problems for the series
interconnection of N sub-systems, with per sub-system sep-
arable penalty function and inequality constraints, can be
written as highly structured quadratic programs. With the
control input u j(t)∈Rm j and state x j(t)∈Rn j of sub-system
j ∈ {1, . . . ,N} at time t ∈ {0, . . . ,T}, related by the cascade
model

x j(t +1) = A jx j(t)+B ju j(t)+E jx j−1(t)

for j = 1, . . . ,N, t = 0,1, . . . ,T −1,

given x j(0) = ξ j ∈ Rn j and E1 = 0, let the per sub-system
inequality constraints be given by M jx j(t) + L ju j(t) ≤ c j
for t = 0,1, . . . ,T , and per sub-system positive definite
penalty be given by

(
∑

T−1
t=0 x j(t)>Q jx j(t)+u j(t)>R ju j(t)

)
+

x j(T )>Pjx j(T ). The corresponding constrained LQ optimal
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control problem can be formulated as the quadratic program

min
û=(û1,...,ûN)∈Rm1T×···×RmN T

x̂=(x̂1,...,x̂N)∈Rn1(T+1)×···×RnN (T+1)

1
2

[
x̂
û

]>
diag(Q̂, R̂)

[
x̂
û

]
subject to

0 =−Â j x̂ j + Ê j x̂ j−1 + B̂ jû j + Ĥ jξ j and

0≥ M̂ j x̂ j + L̂ jû j− ĉ j for j = 1, . . . ,N,

(1)

where

û j =
[
u j(0)> · · · u j(T −1)>

]> ∈ Rm jT ,

x̂ j =
[
x j(0)> · · · x j(T )>

]> ∈ Rn j(T+1),

Â j =



I 0 · · · · · · 0

−A j I
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −A j I


,

Ê j =



0 · · · · · · · · · 0

E j
. . .

...

0 E j
. . .

...
...

. . . . . . . . .
...

0 · · · 0 E j 0


, B̂ j =



0 · · · · · · 0

B j
. . .

...

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 B j


,

Ĥ>j =
[
I 0 · · · 0

]
,

Q̂ = diag(Q̂1, . . . , Q̂N), R̂ = diag(R̂1, . . . , R̂N),

Q̂ j = diag(Q j, . . . ,Q j,Pj) ∈ Rn j(T+1)×n j(T+1),

R̂ j = diag(R j, . . . ,R j) ∈ Rm jT×m jT ,

M̂ j = diag(0,M j, . . . ,M j) ∈ Rν j(T+1)×n j(T+1),

L̂ j =

[
diag(L j, . . . ,L j)

0

]
∈ Rν j(T+1)×m jT

and ĉ j =
[
c>j · · · c>j

]> ∈ Rν j(T+1) for j = 1, . . . ,N.

II. ITERATIVE SOLUTION BY THE ADMM

Defining ẑ j = x̂ j−1 for j = 2, . . . ,N and introducing the
slack variables ŝ j for j = 1, . . . ,N, the quadratic program (1)
can be reformulated as the following split penalty problem:

min
û=(û1,...,ûN)∈Rm1T×···×RmN T

x̂=(x̂1,...,x̂N)∈Rn1(T+1)×···×RnN (T+1)

ẑ=(ẑ2,...,ẑN)∈Rn1T×···×RnN−1T

ŝ=(ŝ1,...,ŝN)∈Rν1×···RνN

1
2

[
x̂
û

]>
diag(Q̂, R̂)

[
x̂
û

]
+I+(ŝ)

subject to (2)

0 =−Â j x̂ j + Ê j ẑ j + B̂ jû j + Ĥ jξ j and

0 = M̂ j x̂ j + L̂ jû j− ĉ j + ŝ j for j = 1, . . . ,N, and
0 = ẑ j− x̂ j−1 for j = 2, . . . ,N,

where I+(·) is the indicator function for the positive orthant
in Rν1×·· ·×Rν j . In particular, problem (2) has the standard
form

min
ξ ,ζ

f (ξ )+g(ζ ) subject to Fξ +Gζ = γ, (3)

where

ξ =
[
x̂> û>

]> and ζ =
[
ẑ> ŝ>

]>
,

f (ξ ) = ξ>Φξ , Φ = diag(Q̂, R̂), g(ζ ) = I+(
[
0 Iν

]
ζ ) with

ν = (T +1)∑
N
j=1 ν j,

F =

−Â B̂
M̂ L̂
Ĩn 0n×m

 and G =

 Ẽ 0n×ν

0 Iν

−In 0


with n = (T + 1)∑

N−1
j=1 n j, m = T ∑

N
j=1 m j,

Ĩn =
[
In 0n×nN(T+1)

]
, Ẽ = Ê

[
0n×n1(T+1) In

]>,
Ê = diag(E1, . . . ,EN), Â = diag(A1, . . . ,AN),
B̂ = diag(B1, . . . ,BN), M̂ = diag(M1, . . . ,MN), L̂ =
diag(L1, . . . ,LN), and finally

γ =
[
(−Ĥ1ξ1)

> · · ·(−ĤNξN)
> ĉ> 01×n

]>
.

The problem (3) is amenable to iterative solution by the
ADMM [3]. In particular, the following iterations, devised
by application of Douglas-Rachford splitting to the (negative)
Fenchel dual problem, converge linearly to the solution of
(3), since f is smooth and strongly convex, and the extended-
real valued function g is convex [4] (ρ > 0 is a tunable
algorithm parameter):

ξ
k+1 = argmin

ξ

(
f (ξ )+

ρ

2

∥∥∥Fξ +Gζ
k− γ +λ

k
∥∥∥2

2

)
; (4a)

ζ
k+1 = argmin

ζ

(
g(ζ )+

ρ

2

∥∥∥Fξ
k+1 +Gζ − γ +λ

k
∥∥∥2

2

)
;

(4b)

λ
k+1 = λ

k +
(

Fξ
k+1 +Gζ

k+1− γ

)
. (4c)

By virtue of the structure of G>G and the characteristics of
the indicator function, these iterations can be rewritten as
follows:(

Φ+ρF>F
)

ξ
k+1 =−ρF>

(
Gζ

k− γ +λ
k
)

; (5a)(
In + Ẽ>Ẽ

)
ẑk+1 =−

[
In 0

]
G>
(

Fξ
k+1− γ +λ

k
)

; (5b)

ŝk+1 = max
{

0, −
[
0 Iν

]
G>
(

Fξ
k+1− γ +λ

k
)}

; (5c)

ζ
k+1 =

[
ẑk+1

ŝk+1

]
; (5d)

λ
k+1 = λ

k +Fξ
k+1 +Gζ

k+1− γ. (5e)

The implementation of (5a) and (5b) involves solving sys-
tems of linear equations. The structure of these linear algebra
problems is explored in the next section.
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III. STRUCTURE OF ADMM ITERATIONS (5)

The matrices (Φ+ ρF>F) and G>G are sparsely struc-
tured. In particular,

(Φ+ρF>F) =

[
diag(Hx̂1, . . . ,Hx̂N) diag(K1, . . . ,KN)
diag(K1, . . . ,KN)

> diag(Hû1, . . . ,HûN)

]
and

G>G = diag(In + Ẽ>Ẽ, Iν)

= diag(In1(T+1),diag(Hẑ2, . . . ,HẑN), Iν),

where

Hx̂ j = Q̂ j +ρ(Â>j Â j + M̂>j M̂ j + In j(T+1)) for j = 1, ...,N−1,

Hx̂N = Q̂N +ρ(Â>N ÂN + M̂>N M̂N),

Hû j = R̂ j +ρ(B̂>j B̂ j + L̂>j L̂ j) for j = 1, ...,N,

K j = ρ(−Â>j B̂ j + M̂>j L̂ j) for j = 1, ...,N, and

Hẑ j = Ê>j Ê j + In j(T+1) for j = 2,3, ...,N.

Indeed, the following structural properties can be observed:
• Hx̂ j is block tri-diagonal of dimension n j(T + 1) with

block-width n j;
• Hû j is block diagonal of dimension m jT with block-

width m j;
• Hẑ j is block diagonal of dimension n j(T + 1) with

block-width n j;
• K j is lower block bi-diagonal of dimension n j(T +1)×

m j(T +1) with block-dimension n j×m j.
This can be exploited to achieve per-iteration computational
burden that scales linearly in both the number N of sub-
systems along the cascade and the time horizon T . The
iterations are also amenable to computation on a sub-system
by sub-system basis with direct communication between (the
one or two) immediate neighbours only.

Specifically, the system of equations in (5a) is of the form[
diag(Hx̂1, . . . ,Hx̂N) diag(K1, . . . ,KN)
diag(K1, . . . ,KN)

> diag(Hû1, . . . ,HûN)

][
x̂
û

]
=

[
α

β

]
.

Suppose that H−1
û j is available for j = 1, . . . ,N; n.b., if sub-

system control inputs are scalar valued then Hû j is scalar.
Using this, one can compute

α̃ = α−diag(K1H−1
û1 , . . . ,KNH−1

ûN )β ,

and then solve

diag(H̃1, . . . , H̃N)x̂ = α̃, (6)

where the Schur complement H̃ j = Hx̂ j − K jH−1
û j K>j is a

block tridiagonal matrix of dimension n j(T +1) and block-
width n j, for j = 1, . . . ,N. Thus solving (6) involves com-
putational burdern that scales linearly in N, as it decouples
into N block tridiagonal problems to solve (i.e., H̃ j x̂ j = α̃ j),
which incurs a computational burden that scales linearly in
the dimension T by virtue of the tridiagonal structure [9],
[10]. Indeed, the computation could be parallelized across a
processor network with local information exchange architec-
ture mirroring the cascade structure of the dynamics. Once
x̂ j is known, it is possible to comptue û j = H−1

û j (β +K>j x̂ j)
for j = 1, . . . ,N, which can again be decoupled across N

processors (without further information exchange between
neighbours).

Similarly, the block diagonal structure of In + Ẽ>Ẽ,
with block diagonal blocks In1(T+1), In2(T+1) +

Ê>2 Ê2, . . . , InN(T+1) + Ê>N ÊN , can be exploited to
subsequently solve (5b) for ẑk+1 in an scalable fashion,
which given (5c), leads to the iterate ζ k+1. In particular,
the computational burden involved scales linearly with N
(the number of diagonal blocks in In + Ẽ>Ẽ) and linearly
with T (one less than the number of diagonal blocks in
In j + Ê>j Ê j). The computations could also be distributed
across a line network of processors by virtue of the block
diagonal structure of (5b) and (5c).

IV. PRELIMINARY NUMERICAL INVESTIGATION OF
CONVERGENCE CHARACTERISTICS

While the preceding developments show that it is possible
to achieve per-iteration computational cost that scales lin-
early in both cascade and time horizon length, the ADDM
approach can take many iterations (e.g. 100s) to converge;
as noted above, the convergence is only linear. By contrast,
primal-dual interior point methods, based on Newton iter-
ations to solve the KKT conditions are quick to converge;
convergence is quadratic and typically only a small number
(e.g. 10-20) of iterations is needed [11]. In recent work [1],
[2], it was shown how to exploit the spatial structure of
the cascade problem at hand within the context of interior
point methods, to achieve per-iteration computational burden
that also scales linearly with the number of sub-systems.
However, the approach involves computational cost that
scales cubically in the length of the time horizon.

Preliminary numerical results regarding the convergence
properties of the iterations (5) are presented below. The
problem considered involves dynamics corresponding to an
automated irrigation channel, as also considered in [1],
[2]. During experimentation, the following residual based
stopping criterion is used: With

rk
P = Fξ

k +Gζ
k− γ and (7)

rk
D = ρ(F>G(ζ k+1−ζ

k)), (8)

where rP is the primal residual, and rD is the dual
residual, the iterations terminate when ‖rP‖∞ < τp =
10−3 and ‖rD‖∞ < τd = 10−3. The algorithm parameter ρ

is kept constant at ρ = 5. The rational for using an infinity-
norm based stopping criterion is two-fold: (a) computation of
these residuals can also be distributed; and (b) it is a better
indicator that the original equality constraints are satisfied
than use of a 2-norm.

Figure 1 shows the overall computation time required for
iterations (5) to converge, and the time for execution of 16
Newton steps of the interior point method in [2], with N
and T held equal across the range 2 to 40. It can be seen
that iteration of (5) is computationally advantageous. Figure
2 shows the objective value at the solutions obtained by
the two approaches. Both yield similar solutions from this
perspective. Figure 3 shows the number of iterations required
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Fig. 1. Computation time for iterations of (5) to convergence – ADMM;
and computation time for 16 Newton steps of the structured interior point
method in [2] – IPM.

for convergence of (5). This appears to grow linearly with T ,
at least for values greater than 20. As such, it may be that
the overall computational burden scales quadratically with
T (for fixed N). Nonetheless, as already noted above, the
overall computation time to convergence is less than the time
taken to complete 16 structured Newton steps in an interior
point method. It is well known that the algorithm parameter
ρ can have a strong influence on the convergence properties
of alternating direction method of multiplier. In the results
presented above it is held at a constant value. The role or
ρ and the convergence properties for problems with cascade
structures is the topic of ongoing work.
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Fig. 2. Objective value at solution reached by the following two methods:
iteration of (5) – ADMM; the structured interior point method of [2] – IPM.

V. CONCLUSION

An ADMM approach is explored for solving constrained
LQ control problems with cascade dynamics, separable
penalty function, and separable inequality constraints. It is
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100
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700

It
e
r

Iterations of ADMM

Fig. 3. Iterations of (5) required to converge.

shown that the special temporal and spatial structure can
be exploited to achieve linear scaling of the per-iteration
computational burden in both the length of the cascade
and the length of the time horizon. Further investigation is
underway to better understand the convergence properties as
a function of these aspects of the problem data. The introduc-
tion of additional decoupling variables that simultaneously
split the problem across both space and time is also under
investigation. So is the application of these methods to water-
level reference planning problems for irrigation channels.
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