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I. ABSTRACT

There have been a large number of external validity in-
dices proposed for cluster validity. One such class of cluster
comparison indices is the information theoretic measures, due
to their strong mathematical foundation and their ability to
detect non-linear relationships. However, they are devised for
evaluating crisp (hard) partitions. In this paper, we generalize
eight information theoretic crisp indices to soft clusterings, so
that they can be used with partitions of any type (i.e., crisp or
soft, with soft including fuzzy, probabilistic and possibilistic
cases). We present experimental results to demonstrate the
effectiveness of the generalized information theoretic indices.

II. INTRODUCTION

Clustering is one of the most important unsupervised tech-
niques. It aims to divide the data objects into several groups,
so that the objects in the same group are similar whereas the
objects in different groups are dissimilar. Clustering validation,
which evaluates the goodness of a clustering, is a challenging
task. Unlike supervised learning, which can be evaluated
according to the given ground truth labels, for the validation
of clustering, an unsupervised learning task, there is no good
standard solution. On the other hand, clustering validation is a
crucial task. It helps users to select the appropriate clustering
parameters, like the number of clusters, or even the appropriate
clustering model and algorithm. It can be used to compare
clusterings as part of finding a consensus which can reduce
the bias and errors of the individual clusterings [1]. There have
been a large number of clustering validity measures proposed,
which can be generally classified into two categories, internal
clustering validation and external clustering validation [2].
They are distinguished in terms of whether or not external
information is used during the validation procedure. In this
paper, we focus on the external validation measures.

Most external validity indices compare two crisp parti-
tions [2]. However, partitions can also be soft, i.e., fuzzy,
probabilistic or possibilistic partitions [3]. Soft partitions are
usually converted to crisp partitions by assigning each object
unequivocally to the cluster with highest membership (fuzzy
partitions), probability (probabilistic partitions), or typicality
(possibilistic partitions). Then they are evaluated by employing
the crisp external validity indices. However, this kind of
conversion may cause loss of information [4]. For example,
different soft partitions may be converted to the same crisp
partition. Several methods have been proposed for generalizing
some of the crisp indices to non-crisp cases [3]-[6]. The
most general one of these methods in [3] can be utilized to

generalize crisp indices, which are functions of the standard
pair-based contingency table (see Table I), to soft indices.
Subsequently the generalized soft indices can be utilized for
comparing two partitions of any type.

Information theoretic measures form a fundamental class
of measures for comparing pairs of crisp partitions. They have
drawn considerable attention in recent years [1], [7], [8], due
to their strong mathematical foundations and their ability to
detect non-linear relationships. However, they are designed for
comparing crisp clusterings and cannot be used to compare soft
ones. Therefore, in this paper, we generalize eight information
theoretic crisp cluster validity indices (including six similarity
indices and two distance indices) to the soft case using the
technique proposed in [3]. To our knowledge, this is the first
work that generalizes information theoretic crisp indices to soft
indices, i.e., comparing soft clusterings.

Mixture model based clustering methods have been widely
used and have proved be useful in many real applications,
e.g., image segmentation [9], document clustering [10], and
information retrieval [11]. This class of approaches assume the
data comes from a mixture of probability distributions (compo-
nents), each probability distribution representing a cluster. One
of these methods, the well-known expectation maximization
(EM) algorithm has been successfully used for clustering [12].
In this paper, we employ the EM algorithm with Gaussian
mixture to generate the soft partitions (probabilistic partitions).
We employ the Gaussian mixture with EM as it is well
understood, mathematically easy to work with, and has been
shown to produce good results in many instances [13]. We
test the effectiveness of the eight generalized soft information
theoretic indices, in terms of their ability for indicating the
correct number of components in synthetic datasets generated
from various Gaussian mixtures, and real world datasets. Here,
the “correct” number of components refers either to the known
number of components in the mixture from which Gaussian
clusters are drawn, or the number of classes in labeled ground
truth partitions of real data. In this paper, our objective is
to show that the generalized information theoretic measures
of validity can be useful for choosing the best number of
components.

Our contributions can be described as follows:

e  We generalize eight information theoretic crisp cluster
validity indices to soft indices.

e  We demonstrate that the generalized information the-
oretic indices can be useful for choosing the number
of components via experimental evaluation.



e  We analyze the experimental results and recommend
indices for different scenarios.

III. TECHNIQUE FOR SOFT GENERALIZATION

In this section, we introduce the concept of soft clustering
and the technique that we used to generalize the crisp infor-
mation theoretic indices to soft indices.

Let O = {o01,...,0,} denote n objects, each of them
associated with a vector x; € AP in the case of numeric data.
There are four types of class labels we can associate with each
object: crisp, fuzzy, probabilistic and possibilistic. Let ¢ denote
the number of classes, 1 < ¢ < n, we define three sets of label
vectors in R¢ as follows:

Npe ={y e R :Viy; €[0,1],35y; > 0} (1a)

Nie={y € N : Yy _y:i =1} (1b)
=1

Npe = {y S Nfc ) Y;i € {0, 1}} (Ic)

Here, Ny, is the canonical (unit vector) basis of SR¢. The
i-th vertex of Np., ie., e = (0,0,..., 1 ,...,0)7, is the

crisp label for class i, 1 < ¢ < c. The get Ny is a piece
of a hyperplane, and is the convex hull of N.. For example,
the vector y = (0.1,0.2,0.7)7 is a constrained label vector in
Ny3; its entries between 0 and 1 and sum to 1. There are at
least two interpretations for the elements of Ny.. If y comes
from a method such as maximum likelihood estimation in
mixture decomposition, y is a (usually posterior) probabilistic
label, and y; is interpreted as the probability that, given x, it is
generated from the class or component ¢ of the mixture [14].
On the other hand, if y is a label vector for some x € RP
generated by, say, the fuzzy c-means clustering model [15], y
is a fuzzy label for x, and p; is interpreted as the membership
of x in class ¢. An important point for this paper is that Ny, has
the same structure for probabilistic and fuzzy labels. Finally,
Npe = [0,1]°\{0} is the unit (hyper)cube in R, excluding the
origin. As an example, vectors such as z = (0.7,0.3,0.6)7 in
Np3 are called possibilistic label vectors, and in this case, z;
is interpreted as the possibility that x is generated from class
1. Labels in IV, are produced, e.g., by possibilistic clustering
algorithms [16]. Note that Ny, C Ny, C Np..

Clustering in unlabeled data is the assignment of one of
three types of labels to each object in O. We define a partition
of X on n objects as a cxn matrix U = [Uy...Ug...U,] =
[uix], where Uy denotes the k-th column of U and w
indicates the degrees of membership of object k belongs to
cluster ¢. The label vectors in equations (1) can be used to
define three types of c-partitions:

Mpen = {U € R : ¥k Uy, € Ny, Vi Y i >0} (2a)
k=1

Mjen = {U € Myep, : Ve Uy, € Ny} (2b)

Mpen = {U < Mfcn . Vk U, € th} (2¢)

where M., (2a) are possibilistic c-partitions, M., (2b)
are fuzzy or probabilistic c-partitions, and M., (2c) are
crisp (hard) c-partitions. For convenience, we call the set

TABLE 1. CONTINGENCY TABLE AND FORMULAS USED TO COMPARE

CRISP PARTITIONS U AND V

Partition V'
V; =row j of V

Class v Vo - Ve Sums

U, ni1 M1z ... Ml nie
Partition U Uz n21 M2z ... N2 n2e
U; =row i . N = =vuvT
of U :

U, Nyl Np2  oo. TMpe Nre

Sums TNe1l Ne2 - Nec Nee = N

Mpen \ Mpen as the soft c-partitions of O, which contains the
fuzzy, probabilistic and possibilistic c-partitions and excludes
the crisp c-partitions.

The traditional external cluster validity indices are designed
for comparing two crisp partitions [2], among which there are
a number of popular indices [3] that are built upon the standard
pair-based contingency table. Let U € My, and V € Mpp,
the r X ¢ contingency table of two crisp partitions U and V is
shown in Table 1. For soft partitions, work by Anderson et al.
in [3] proposes the formation of the contingency table by the
product N = UV'T. For crisp partitions, this formation reduces
to the regular contingency table. Based on this formation,
Anderson et al. propose generalizations of crisp indices for
use with soft partitions (fuzzy, probabilistic or possibilistic
partitions). These soft generalizations are applicable for any
index that depends only on the entries of the contingency table
and can be described as follows:

N* = oUVT = [n/ Zn} uvT 3)
i=1

where ¢ is a scaling factor, used to normalize the possibilis-
tic indices to the range [0, 1] and n;e = 25:1 nij (see Table I).
Note that in the cases of crisp, fuzzy or probabilistic partitions,
¢ = 1. In this work, we do not discuss the possibilistic case
and leave it for future work. Crisp indices that are based solely
on the entries in the contingency table /N can be generalized
by using the generalized contingency table N*.

IV. CRISP INFORMATION THEORETIC INDICES AND SOFT
GENERALIZATION

Information theoretic based measures are built upon fun-
damental concepts from information theory [17], and are a
commonly used approach for crisp clustering comparison [7],
[8]. This is because of their strong mathematical foundations
and their ability to detect non-linear relationships. We first
introduce some of the fundamental concepts. The information
entropy of a discrete random variable S = {s1,...,,} is

defined as:
H(S) == p(s)logp(s) “
seS
where p(s) is the probability p(S = s). The entropy is a
measure of uncertainty of a random variable. Then, the mutual
information (MI) between two random variables, .S and 7', is
defined as follows:

I(S,T) =) p(st)log % ®

seSteT



TABLE II. INFORMATION THEORETIC-BASED CLUSTER VALIDITY

INDICES

Name Expression Range Find
MI I(U,V) [0, min{H(U), H(V)}] | Max
NMIjoin O [0,1] Max
NMInax % [0,1] Max
NMLum T [0.1] Max
NMI g \/% [0,1] Max
NMInin % 10,11 Max
Variation of In- | H(U,V) —I(U,V) [0,1og n] Min
formation (VI)

Normalized VI 1— ) [0,1] Min
(NVI")

“ NVI is the normalized distance measure equivalent to NMljoin

where p(s,t) is the joint probability p(S = s,T7 = t). The
MI measures the information shared between two variables.
Intuitively, it tells us how similar these two variables are. Next,
we will introduce some theoretic concepts in the clustering
context.

Given one crisp partition U = {uq, ..., u.} with ¢ clusters
on O, the entropy of U is H(U) = —>_¢_, p(u;)log p(u;),
where p(u;) = [l indicates the probability of an object
belonging to cluster u;. Given two crisp partitions U and V,
their entropies, joint entropy and mutual information (MI) can
be defined according to the contingency table built upon U
and V' (Table I) respectively as [1]:

T

Tie TNie

- n
=1
HUV)==>_% ~Zlog-2,
i=1 j=1
NN nij/n
wv)y=>y %" 2 log e
i=1 j=1

Intuitively, the joint entropies measure how similar two
clusterings are, by comparing the distribution of the cluster
assignments of the points across the two clusterings. More
detailed explanations of these concepts can be found in [1],

[8].

Eight popular crisp information theoretic indices based on
the above basic concepts are listed in Table II. The variants of
normalized mutual information (NMI) (NMIy,,; in Table II) are
distinguished in terms of their different normalization factors,
which all aim at scaling MI to range [0, 1]. The variation of
information (VI) [8] has been proved to be a true metric on
the space of clusterings. The normalized version of VI (NVI)
ranges in [0, 1].

In this paper, we generalize the above information theoretic
concepts to compare soft clusterings. We define the entropy of
a soft clustering U, as H(U) = — Y _i_, nie/nlog(nie/n),

where n;, is row sum from the generalized contingency table
N*. In the soft clustering setting, n;, can be regarded as the
probability that a point belongs to the i-th cluster. Similarly,
we define the joint entropy of two soft clusterings, U and
V,as H(U,V) = =31, >5_ nij/nlog(nij/n), where n;
is taken from N*, representing the joint probability that a
point belongs to U; and Vj. Finally, we define I(U,V) =
Y1 25—y nij/n1og ((nij/n)/(niene; /n?)). From this gen-
eralization, all the eight information theoretic indices can be
computed from the generalized contingency table N*.

V. EVALUATION OF THE SOFT COMPARISON INDICES
A. Synthetic data

We evaluate the eight generalized soft indices described in
Table II on several synthetic and real world datasets.

There are many possible settings to generate the synthetic
datasets for testing. It is popular to use Gaussian distributed
data as synthetic data for clustering validation [1], [3]. In
this paper we generate synthetic datasets from a population
whose probability density function is a mixture of ¢ bivariate
normal distributions. We design the datasets in terms of two
factors: overlapping and density (dens). Table III summarizes
the model parameters for data generation, where data3 are the
datasets with ¢ = 3 and data5 are datasets with ¢ = 5. The
total number of objects for each dataset is n = 1000. The
means of different components, {1; }, were distributed on rays
separated by equal angles according to the different number
of clusters, centred equal distances from the origin at various
radii r. For example, at ¢ = 3, there are means, {u;}, on lines
separated by 120°, each r units from (0,0)”. We vary the
overlapping degrees of the clusters by varying the value of r
with fixed priors 7; = 1/c. The density property of the datasets
is considered by altering the prior of the first component 7
(dens) with {¢ = 3,r =5} or {¢ = 5,7 = 6}. After choosing
the prior for the first component, then the other priors are
m = (1 —m)/(c—1), where 1 < ¢ < ¢. The covariance
matrices, {¥;}, are identity matrices. Thus, there are nine
datasets for each c and 18 synthetic datasets in total. Figure 1
shows an example of scatter plots for four datasets, data3 with
{r = 1,dens = 1/3} and {r = 5,dens = 1/3}, and data5
with {r = 2,dens = 1/5} and {r = 6,dens = 1/5}.

B. Real world data

Datasets from the UCI machine learning repository [18]
are a typical benchmark for evaluating validity measures. They
also have known classes which provide the ‘true’ number of
classes. We use seven real datasets from the UCI repository
and their details are shown in Table IV, where n, d and c
correspond to the number of objects, features and classes,
respectively.

C. Computing protocols

We modified a MATLAB implementation of the EM algo-
rithm!, according to our initialization and termination criteria
which are described as follows.

Uhttp://www.dcorney.com/ClusteringMatlab.html
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(a) Scatter plots for data3 with
r =1 and dens = 1/3.

(b) Scatter plots for data3 with
r =5 and dens = 1/3.

(c) Scatter plots for data5 with
r =2 and dens = 1/5.

(d) Scatter plots for data5 with
r =6 and dens = 1/5.

Fig. 1. Four scatter plots for data3 and data5 datasets.

Initialization of EM: we randomly draw c points from the
data X as the initial means of clusters. The initial covariance
matrices for ¢ clusters are diagonal, where the i*" element on
the diagonal is the variance of the ith feature vector of X; the
initial prior probabilities are 1/c.

Termination of EM: We define the termination criterion by
considering the difference between two successive estimates of
the means, ||M; 1 — M| < &, where My = {my, ..., m.},
and ¢ = 1073 the maximum number of iterations is 100.

D. Experimental Design

We test the effectiveness of the eight generalized soft
indices®> by considering their ability to estimate the number
of clusters (components) of the test datasets. Also, we com-
pare these generalized soft indices with one non-information
theoretic index, the soft version of the adjusted Rand Index
(ARD) [3], to provide a comparison with the class of pair-
based measures. The general idea is to run the EM algorithm
over each dataset to generate a set of partitions with different
number of clusters. Then, each of the eight generalized soft
indices is computed for these partitions. The number of clusters
with the partition obtaining the best results is considered as
the predicted ‘true’ number of clusters, ¢, for that particular
dataset. Let ¢4, indicates the number of known clusters in the
Gaussian datasets, or the number of labeled classes in the real
world datasets. If cpre = Cirue, then we believe the prediction
of this index on this dataset is successful. However, sometimes
the number of ‘true’ clusters, ¢y, may not correspond to
the number of “apparently best” clusters, cp.., found by
a computational clustering algorithm. A possible reason is

2as NVI is equivalent to the NMljoip;, we just show and analyze the
performance of NMIjoiy-

that the clustering algorithm failed to detect the underlying
substructure of the data, rather than the inability of the index.
For example, an algorithm, which is designed to look for
spherical clusters, cannot detect elongated clusters. We will
observe this phenomenon in several of the following results.
More specifically, we run the EM algorithm on each dataset
to generate a set of soft partitions with the number of clusters
ranging from 2 to 2 X ¢4 for synthetic datasets, and ranging
from 2 to 3 X ¢4pye for real datasets. In order to reduce the
influence of the random initialization for the EM algorithm,
we generate 100 partitions for each ¢, and evaluate these soft
indices based on these partitions.

We designed two sets of experiments for the evaluation.
In the first set of experiments, we compare the generated
partitions (soft partitions) against the ground truth cluster
labels for synthetic datasets or class labels for real world
datasets (crisp partitions). In detail, for the 100 partitions
generated by the EM algorithm with respect to each ¢, we keep
track of the percentage of the successful predictions (success
rate) achieved by each index (e.g., Figure 3a). The success
means that ¢,.. = Cirye. Alternatively, as another measure,
we also compute the average values over 100 partitions for
each index with respect to each c (e.g., Figure 6b).

In the second set of experiments, we do not consider the
ground truth labels and use the consensus index (CI) [1] to
evaluate the eight generalized soft indices. For some of the
datasets, the gold standard number of clusters ¢y, may not
be the number of clusters that a typical algorithm (or human)
would determine. For example, in data3 with » = 1 and
dens = 1/3 (Figure 1a), visually there only appears to be one
cluster, as the three generated clusters are highly overlapping.
Hence, as an additional measure to give insights about the
performance of these measures in these scenarios, we introduce
the CI measure which does not use the ground truth labels. The
Cl is built on the idea of consensus clustering [7] which aims to
produce a robust and high quality representative clustering by
considering a set of partitions generated from the same dataset.
The empirical observation according to work [1] is that, in
regard to the set U, of candidate partitions for a particular
value of ¢, when the specified number of clusters coincides
with the true number of clusters ctye, U, has a tendency to
be less diverse. Based on this observation, CI, built upon a
suitable clustering similarity(distance) comparison measure, is
used to quantify the diversity of U.. The definition of CI is
described as follows: suppose a set of L clustering solutions
(crisp or soft), U, = {Uy,Us,...,Ur} have been generated,
each with ¢ clusters. The consensus index (CI) of U, is defined
as:

Y AM(ULT)

CIk) L(L—-1)/2

(©)

where the agreement measure (AM) is a suitable clustering
comparison index (similarity index or distance index). In this
paper, we used the six max-optimal similarity indices and
two min-optimal distance indices listed in Table II as the
AM. Thus, the CI quantifies the average pairwise agreement
in U.. The optimal number of clusters, c,.., is chosen as
the number with the maximum CI (as AM is a similarity
index, or the minimum CI as AM is a distance index), i.e.,



TABLE III. SYNTHETIC DATASETS INFORMATION

¢ | Priors {m;} | Means {p;} | {Z;} n Name
™ =1/6 r=1
7 =1/3 r=2
3| m=1/2 r=3 I 1000 | data3
7 =2/3 r=4
71 =5/6 r=>5
T =1/10 r=2
™ =1/5 r=3
5 71 = 3/10 r=4 1 1000 data5
m™ =2/5 r=>5
7 =1/2 r==6
TABLE 1V. REAL WORLD DATASETS INFORMATION
Dataset n d c
sonar 208 60 2
pima-diabetes 768 8 2
heart-statlog 270 13 2
haberman 306 3 2
wine 178 13 3
vehicle 846 18 4
iris 150 4 3
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Fig. 2. Overall success rates on synthetic datasets. The error bars indicate
standard deviation. These indices are shown in descending order in terms of
their success rates.

Cpre = argmax._, . CI(U.), where oz = 2 X Crye for
synthetic datasets, Cpaz = 3 X crye for real world datasets.
Specifically, we compute the CI values for the L = 100
generated soft partitions by the EM algorithm with respect
to each value of c.

E. Simulation results - Success rate

In this set of experiments, we present and analyze the
experimental results with regard to the success rates of these
indices on synthetic and real world datasets.

1) Synthetic datasets: First, to gain an overall comparison
of the measures across the synthetic datasets, we show the
overall success rates for the eight generalized soft indices,
including seven information theoretic ones and ARI, in Fig-
ure 2. The overall success rate for an index is computed as
the total number of successes across the 18 synthetic datasets
divided by the total number of partitions, i.e., 18 x 100.

The indices are sorted in descending order in terms of their
success rates. The graph shows that the first six soft indices,
NMIpax, ARI, NMlgin, NMlgyn, NMlgg and VI perform
similarly well and achieved a success rate of around 70%.
In contrast the soft MI and NMlI,,;;, do not perform well and
only have a success rate of around 10%. We hypothesize
the reason for this is that MI monotonically increases with
the number of clusters ¢ [1]. Hence, MI tends to favour
clusterings with more clusters. For NMl,,;,, we found that
H(U), the entropy of the generated soft partitions, increases
as c increases which is because the distribution of clusters is
more balanced. The entropy of the ground truth labels H (V)
is constant ¢q. At some ¢, H(U) > H(V'), and subsequently,
NMI,n (U, V)= MI(UV)/H(V) = MI/q, which means
NMlin, has became equivalent to the scaled version of MI
and has the same deficiencies as it. Next we show more
detailed experimental results for synthetic datasets with respect
to the overlapping and density factors. For the convenience of
comparison, we will keep the order of the indices shown in
Figure 2 in the following graphs.

We show the results on data3 and data5 with various
overlapping settings in Figure 3. From these graphs, we find
out that the performance of these indices on these datasets is
consistent with their overall performance shown in Figure 2.
The first six generalized soft indices all have similar and good
success rates. In contrast, the soft MI and NMl;, perform
poorly. This observation suggests that the comparison of the
eight generalized soft indices is not affected by the overlapping
factor of the datasets. Furthermore, we can observe that for
the datasets containing clusters with higher overlapping degree
(r = 1 with data3, r = 2 with data5), the success rates of the
first six generalized soft indices are relatively low compared
to the datasets with less overlap, which is not surprising. This
is because the quality of the partitions generated by the EM
algorithm on these higher overlap datasets has poor quality.
The clusters in datasets with » = 1 for data3, or r = 2
for data$5, are highly overlapped and the scatter plots of these
two datasets are just like a big dense cluster (Figure la and
Figure 1c). With the decreasing overlap (increasing r), the first
six indices work better and have similar performance on these
datasets.

Next, we present the results on the datasets with various
density settings in Figure 4. Firstly, we can find out that the
general performance of these indices on the datasets with
various density settings conform with their overall performance
ranking shown in Figures 2 and 3. Thus, the results suggest
that density of the datasets also does not affect the relative
success rate ranking of these indices. In addition, increasing the
imbalance of the clusters in the datasets (increasing the density
of the first cluster), decreases success rates of these indices.
This reflects the fact that EM partitions on these imbalanced
datasets are of poor quality.

2) Real world datasets: The experimental results on the
seven real world datasets are shown in Figure 5. We first
show the overall success rates over all the real datasets in
Figure 5a. The most striking observation from this graph is
that VI works very well compared to all the other seven
indices. In addition, ARI behaves worse than the information
theoretic soft indices. We hypothesize that this is because
the information theoretic measures are good at distinguishing
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(a) Success rates on data3 with various density settings. (b) Success rates on data5 with various density settings.
Fig. 4. Success rates of generalized soft indices on synthetic datasets with various density settings.

clusters with non-linear relationships [1], and real datasets
are more likely to have these. Comparing Figures 2 and 5a
shows that the two worst indices (MI and NMl,,;,) are 6 — 7
times less reliable than the six good ones for the synthetic
datasets, but are essentially not very useful for the real datasets.
The more detailed results with respect to these indices on
different real world datasets are shown in Figure 5b. The
first six indices generally work well on the three datasets
‘haberman’, ‘wine’ and ‘iris’, except ARI perform poorly on
the ‘haberman’ dataset. VI performs well on these datasets,
as well as the three other datasets ‘sonar’, ‘pima-diabetes’
and ‘heart-statlog’. None of the indices responds well to the
‘vehicle’ data, possibly because the labeled subsets do not form
computationally recognizable clusters for the EM algorithm
in the 18 dimensional feature space and are likely to require
appropriate feature selection before clustering.

F. Simulation results - Consensus Index

In this set of experiments, we employ the consensus index
(CD) coupled with the eight generalized soft indices as AM
for testing the effectiveness of these soft indices. For further
confirmation of the effectiveness of these measures, we present
another set of experimental results coupled with CI, which
are the average results of these generalized soft indices over
100 partitions for each c. Notice that the CI experiments
compare pairwise generated soft partitions without the help of
ground truth labels, and the average results compare generated
soft partitions against the ground truth labels. For brevity, we
discuss only a few representative results.

In Figure 6a, we show the CI values for the data3 with
parameter setting {r = 5, dens = 1/6}, with ¢ ranging from 2
to 6. The up-arrow (1) (down-arrow ({)) besides each index in
the legends means that a larger (smaller) value of that index
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Fig. 5. Success Rates on real world datasets.
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(a) The CI results on data3 with dens = 1/6 and (b) The average results on data3 with dens = 1/6
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Fig. 6. The CI results and average results on data3 with dens = 1/6 and r = 5. The dashed line on the x axis indicates the true number of clusters in the
cluster labels. The up-arrow (1) (down-arrow (J.)) besides each index in the legends means that a larger (smaller) value of that index indicates a ‘better’ partition.
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(a) The CI results on data5 with dens = 1/5 and (b) The average results on data5 with dens = 1/5
r=>5. and r = 5.

Fig. 7. The CI results and average results on data5 with dens = 1/5 and r = 5. The dashed line on the x axis indicates the true number of clusters in the
cluster labels. The up-arrow (1) (down-arrow ({)) besides each index in the legends means that a larger (smaller) value of that index indicates a ‘better’ partition.

indicates a ‘better’ partition. As we can see, except MI, all of clusters, i.e., ¢pre = Ctrue = 3. The average results of the
the variants of the NMI indices and ARI achieve maximum eight generalized soft indices are presented in Figure 6b. We
values, and VI get the minimum values at the correct number can see that all the generalized indices, except MI and NMl,y;y,
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Fig. 8. The CI results and average results on wine dataset. The dashed line on the = axis indicates the true number of classes in the class labels. The up-arrow
(1) (down-arrow ({)) besides each index in the legends means that a larger (smaller) value of that index indicates a ‘better’ partition.

find the correct number of components of the data.

Figures 7a and 7b show the CI values and the average
results on data5 with parameter setting {r = 5, dens = 1/5},
respectively. The different observation from that in Figure 6
is that, some of these indices (e.g., NMljyin and VI) may be
confused with the number of clusters at ¢pre = 5 or ¢pre = 6,
and ARI slightly prefer c,,. = 6, while ¢4, = 5. However,
we can tell from these two graphs that both of these two sets of
experiments show this problem. Thus, we may hypothesize that
the partitions generated by the EM algorithm on this dataset
with ¢ = 5 and ¢ = 6 are ambiguous. To sum up, these two
sets of experiments, that is, CI (without ground truth labels)
and average results (compare against the ground truth labels),
show that these indices work well.

The CI values on the real dataset wine are shown in
Figure 8a. Similar to the results shown in Figure 6a, all variants
of the NMI, as well as ARI and VI, successfully discover the
right number of clusters. In Figure 8b, all the indices except
the MI and NMlI,;,, also are able to find the right number of
clusters in the data.

VI. CONCLUSION

In this paper, we generalized eight well known crisp
information-theoretic indices to compare soft clusterings. We
tested the soft generalizations on probabilistic clusters found
by the EM algorithm in 18 synthetic sets of Gaussian clusters
and seven real world data sets with labeled classes, and also
compared them with one non-information theoretic index ARI.
Overall, six of the eight soft indices return average success
rates in the range of 50 — 70% and they have higher success
rates than ARI on the real datasets. Our numerical experiments
suggest that the soft VI index is perhaps the best of the eight
over both kinds of data; and that MI and NMI,,;, should almost
certainly be avoided. Our next effort will be towards expanding
both theory and tests of soft information-theoretic indices in
the direction of the other popular approach to soft clustering-
viz., fuzzy clustering.
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