
Optimization of XSLT by Compact Specialization and
Combination

Ce Dong James Bailey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne
{cdong, jbailey}@cs.mu.oz.au

Abstract. In recent times, there has been an increased utilization of server-
side XSLT systems as part of e-commerce and e-publishing applications. For
the high volumes of data in these applications, effective optimization tech-
niques for XSLT are particularly important. In this paper, we propose two
new optimiza-tion approaches, Specialization Combination and Specialization
Set Compac-tion, to help improve performance. We describe rules for com-
bining specialized XSLT stylesheets and provide methods for generating a
more compact speciali-zation set. An experimental evaluation of our methods
is undertaken, where we show our methods to be particularly effective for
cases with very large XML in-put and different varieties of user queries.

1 Introduction

The standardized, simple and self describing nature of XML makes it a good choice
for arbitrary data sources representation, exchange and storage on World Wide Web
[15]. The eXtensible Stylesheet Language Transformation (XSLT) standard [5] is a
primary language for transforming, reorganizing, querying and formatting XML
data. In particular, use of server-side XSLT is an extremely popular technology [27]
for processing and presenting results to user queries issued to a server-side XML da-
tabase (e.g. google map, google search, Amazon web services, and the ebay devel-
oper program).

Although faster hardware can of course be used to improve transformation speed,
server-side XSLT transformations can still be very costly when large volumes of
XML and large size XSLT stylesheets are involved (e.g. an XSLT transformation
based on a 1000MB XML document and a relatively simple XSLT stylesheet can
take up to 128 minutes [23]). Techniques for the optimization of such transforma-
tions are therefore an important area of research [12].

In previous work [9], we proposed an optimization method for XSLT programs
based on the well known technique of program specialization [1, 18, 20], called
XSLT Template Specialization (XTS) [9]. The underlying idea is that server-side

XSLT programs are often written to be generic and may contain a lot of logic that is
not needed for execution of the transformation with reference to given user query
inputs (such inputs are passed as parameters to the XSLT program at run-time, often
using forms in web browser). For example, a customer of an online XML based de-
partment store might pass a query with several query terms to an XSLT program, re-
ferring to a ‘Computer’ with particular requirement of ‘CPU’. The department store
server-side XSLT program may contain logic which is designed to present other dif-
ferent kinds of merchandise (e.g. ‘Desk’), but they are not needed for this user
query. Given knowledge of the user input space, it is instead possible to automati-
cally (statically) create different specialized versions of the Original XSLT program,
that can be invoked in preference to the larger, more generic version at runtime. Im-
portant savings in execution time and consequently response time improvement
were clearly shown by the experimental results [9].

The effectiveness of the XTS optimization technique is restricted to generating
specializations only for strong interconnection queries [6], which are queries whose
terms refer to XML tags that are ‘close’ to each other in the XML-tree (we further
describe the concept of interconnection in section 2.1). In this paper, we present a
new method, that is able to handle weak interconnection queries, whose query terms
refer to XML tags that can be ‘far apart’ from each other in the XML-tree. Such
weak interconnection queries are common in the real world [6]. Our method is
called Specialization Combination (SC) and intuitively, it constructs specializations
that cover disconnected sub-graphs of the DTD.

An additional challenge faced by specialization based optimization, is the poten-
tially large number of specializations that may need to be created to cover the an-
ticipated user queries (e.g. based a 100 template Original XSLT, hundreds, or even
thousands of specializations might be generated). Such a large specialization set can
increase the cost of searching for and finding an appropriate specialization, when the
server-side system responds to the user query at run-time. In this paper, we also pre-
sent an approach called Specialization Set Compaction (SSC), that balances the
user query coverage, search cost and transformation cost for sets of specializations,
and generates a more Compact Specialization Set (CSS), that is more suitable for
use at run-time.

Our contributions in this paper are two optimization methods suitable for use with
specialized XSLT programs:
z Specialization Combination (SC), which combines XSLT specializations to-

gether in order to handle Weak Interconnection Queries.
z Specialization Set Compaction (SSC), which produces a Compact Specializa-

tion Set, that reduces the specialization search space and allows quicker selec-
tion of a specialization run-time.

Experimental results demonstrate the ability of these techniques to yield speedups
of up to 40%. We are not aware of any other work, which uses similar concepts to
Specialization Combination (SC) and Specialization Set Compaction (SSC), for im-
proving the performance of XSLT programs.

The remainder of this paper is as follows. We first review some basic concepts in
section 2. Then, in section 3 we describe the process of Specialization Combination

(SC). Next, in section 4, we propose the approach of Specialization Set Compaction
(SSC) and in section 5 overview the optimization processes of SC and SSC. In sec-
tion 6, we present and discuss our experimental evaluation of the techniques. Re-
lated work is surveyed in section 7 and in section 8, we conclude and discuss future
work.

2 Background

We begin by briefly reviewing some useful concepts. We assume basic knowledge
of XML and XSLT [5, 21, 22].

2.1 DTDs, DTD-Graph and Interconnection of Query Terms

A DTD provides a structural specification for a class of XML documents and is used
for validating the correctness of XML data. A DTD-Graph is a data structure that
summarizes the hierarchical information within a DTD. It is a rooted, node-labeled
graph, where each node represents either an element or an attribute of the DTD, and
the edges indicate element nesting [9, 14]. The nodes in a DTD-Graph can be
thought of as corresponding to either XML tags, or XSLT template selection pat-
terns, or user query terms. An example of a DTD and its corresponding DTD-Graph
is shown in Fig.1.

Level 0

n2

n4 n6

n1

n0

n3 n5

n10n8n7 n9

(b)DTD-Graph

Level 3

Level 2

Level 1

(a)DTD

<!ELEMENT n0 (n1, n2+)>

<!ELEMENT n1 (n3|n4*)>

<!ELEMENT n2 (n5, n6)>

<!ELEMENT n3 (n7, n8?)>

<!ELEMENT n5 (n10*)>

<!ATTLIST n3 n9 CDATA #REQUIRED>

<!ELEMENT n4 (#PCDATA)>

<!ELEMENT n6 (#PCDATA)>

<!ELEMENT n7 (#PCDATA)>

<!ELEMENT n8 (#PCDATA)>

<!ELEMENT n10 (#PCDATA)>

Fig. 1. DTD and corresponding DTD-Graph

Based on the kinds of different DTD-Graph structures, XML documents can be
classified into four types [17]: i) Broad-Deep XML, ii)Narrow-Deep XML
iii)Broad-Shallow XML and iv)Narrow-Shallow XML. Our new techniques (SC and
SSC) will be evaluated on XML datasets having these different kinds of structures
(discussed in section 6).

A user query for a server-side XSLT system consists of one or more query terms
(modeled as nodes in the DTD-Graph). It can be expressed as q = {term1, term2, …
termn} (n>=1). A query, which consists of terms (nodes) such that every pair of

terms is separated by at most 2 edges in the DTD-Graph, is defined as a strong in-
terconnection query. Otherwise, it is a weak interconnection query. In our online
department store example, query q1 (expressed as q1={Computer, CPU}), would be a
strong interconnection query if ‘CPU’ was a child node of ‘Computer’ in the DTD-
Graph. Whereas, query q2 (expressed as q2={Computer, CPU, Desk}), would be a
weak interconnection query if, additionally, ‘Computer’ and ‘Desk’ were sibling
nodes under a ‘Merchandise’ node (the ‘Desk’ node is 3 edges far from ‘CPU’ node)
in the DTD-Graph.

Weak interconnection queries are reasonably prevalent when the user asks for
data from different sub-structures of the XML tree, and they cannot be ignored in
the real-world [6]. According to our online department store example, a customer
may quite possibly buy a desktop ‘Computer’ (i.e. with Pentium IV ‘CPU’) and a
matched ‘Desk’ together in one purchase. Many other similar examples exist.

2.2 XSLT Templates, Server-Side XSLT

An XSLT program consists of a set of templates. Execution of the program is by re-
cursive application of individual templates to the source XML document [22].
XSLT stylesheets can be designed using three principal styles [22]: i)Push style,
ii)Pull style and iii) Hybrid style. We will use these different styles of XSLT when
constructing test cases in our experimental evaluation (described in section 7).

Server-side XSLT is a popular solution for data exchange and querying on the
Web. It is often deployed for e-commerce, e-publishing and information service ap-
plications. A problem that can occur in the use of server-side XSLT is that, when a
generic XSLT program is designed, it is able to handle a broad range of possible
user inputs. At run-time, given specific user query inputs, much of the logic of this
generic XSLT program may not be required. This results in increased run-time,
since extra logic may be required for XPath evaluation and template matching [22].

2.3 XSLT Template Specialization Technique (XTS)

Our previous work, using the XSLT Template Specialization (XTS) technique, auto-
matically creates a set of specializations offline and selects an appropriate minimum
cost XSLT from the specialization set at run-time, to respond to the user query in-
put.

The XTS technique is not effective at generating specializations for weak inter-
connection queries. This is because the specialization principles for the XTS tech-
nique, generate an XSLT specialization by grouping together templates (represented
as nodes in DTD-Graph), that correspond to a collection of nodes in a connected
sub-graph of the DTD-Graph. This connected sub-graph can obviously be big, if two
existing nodes (query terms) that need to be covered are 'far apart' (weakly con-
nected) to each other. Specializations generated based on this sub-graph can conse-
quently be 'overweight', since they can contain templates that need not be involved
in answering the weak interconnection query. Consequently, the transformation

time is potentially slower. Therefore, instead of forming specializations that corre-
spond to a (potentially large) connected sub-graph of the DTD-Graph, we would like
to form specializations that correspond to a smaller, disconnected sub-graph of the
DTD-Graph. This is the motivation behind our method of Specialization Combina-
tion (SC). Small (connected) specializations are combined together to form a new
(disconnected) specialization, instead of using ‘overweight’ specializations or even
the Original XSLT, to execute the transformation for the weak interconnection
query.

Another problem which can arise, is that the number of specializations that are
generated as a result of specialization combination may be very large. This enlarged
specialization set takes more time to search, when a given specialization needs to be
identified at run- time in response to a user query. To resolve this problem, we have
developed the method of Specialization Set Compaction (SSC), to reduce the size of
the specialization set.

3 Specialization Combination

Assume we have a log file mechanism associated with the server-side XSLT system,
which, at run-time, can record information about user queries and the corresponding
specializations that can be used to answer them. If using the XTS technique, it is
likely that the log file will indicate that some queries (weak interconnection queries)
need to be handled by the Original XSLT or ‘overweight’ specializations. In other
words, the optimization effectiveness of the XTS technique is degraded when weak
interconnection queries are passed to the system. In this section, we propose a
method called Specialization Combination (SC), to combine pertinent specializa-
tions together, instead of using the Original XSLT or ‘overweight’ specializations, to
deal with the weak interconnection queries. This saves execution time. Suppose we
already have the specialization set that was generated based on the XTS technique.
Call this the Primary Specialization Set (PSS). The process of combining the spe-
cializations for a specific weak interconnection query, can now be described as fol-
lows (we demonstrate using an example across all steps):
z Step_1: For each query term of a weak interconnection query, we list all

specializations in the Primary Specialization Set (PSS), which can handle
this query term. Suppose q is a weak interconnection query which consists
of query terms t1 and t2, (expressed as q={t1,t2}) and term t1 can be handled
by specializations s1 or s2 and term t2 can be handled by specializations s3 or
s4. We generate the specialization set list as: {s1 or s2}•t1, {s3 or s4}•t2.

z Step_2: Generate all possible specialization combinations which can ‘cover’
all query terms for a specific weak interconnection query. Based on the ex-
ample above, we generate the combinations {s1s3}, {s1s4}, {s2s3} and {s2s4}.
At a high level, the details of the generation process are: 1) place templates
from different specializations into one <xsl:stylesheet> element, 2) place the
contents from all repeated templates into one template and delete the redun-
dant templates; 3)delete the redundant content in each template.

z Step_3: Re-calculate the cost for each combined specialization according to
some cost model (any cost model is permitted here. We use a simple one,
details not included due to space restrictions)

We add all the generated combined specializations to the Primary Specialization
Set (PSS) to form the new Refined Specialization Set, (hereafter referred to as RSS).

4 Specialization Set Compaction

A RSS may turn out to be very large, if the XTS technique and SC techniques are
applied to an Original XSLT having many templates. The server-side XSLT system
may therefore take a lengthy time to search and select an appropriate specialization
in answer to a given user query. Even though indexing methods can be applied to
speed up the specialization searching, many specializations that have never been
useful for answering any user query, might still have to be scanned at run-time. De-
leting the non-invoked specializations from the RSS is not necessarily a good idea
for forming a more compact specialization set. This is because non-invoked spe-
cializations may still be good candidates for inclusion, since even though they may
not have the smallest cost, they can still cover a relatively large number of query
terms. Accordingly, we propose a novel approach, Specialization Set Compaction
(SSC), to produce a compact specialization set which has the minimum total cost,
given an expected query set with some estimated distribution.

4.1 Query Set and Refined Specialization Set

Assuming the existing query log has the records of queries issued to the server,
then, we can generate summary data listing the distinct queries and their correspond-
ing probabilities. This related data is shown in Fig.2.(a), where QS denotes the
query set, each qi denotes a distinct query, and each pi denotes its corresponding
probability of being issued. The Refined Specialization Set (RSS) generated by the
Specialization Combination (SC) technique is shown in Fig.2.(b), where s is used to
denote an individual specialization and sorig denotes the Original XSLT, which is se-
lected by the specialized server-side XSLT system to process any queries that can-
not be handled by any single specialization.

QS = {q1, q2, q3...qi….qn}

p1, p2, p3…pi…pn

(a)Query Set

RSS = {sorig, s1, s2, s3...sm-1}

(b)Refineded

Specialization Set
Fig. 2. Query Set and Refined Specialization Set

4.2 Time Cost Analysis

There are two aspects that determine the runtime cost of answering a user query:
i)searching and selecting the appropriate specialization from RSS (this time cost is
denoted as Ts), ii) executing the XSLT transformation to generate the answer (this
time cost is denoted as Te). Hence, the total processing time T is equal to Ts + Te.

The average Ts depends on the size of the RSS. It can be described as Ts=d|RSS|
(|RSS| denotes the cardinality of Refined Specialization Set (RSS) and d represents
the relationship between |RSS| and Ts, which varies according to the specialization
search strategy).

T
e
 is defined as T

e
=Time_Exe(q,s) (s∈ RSS and the function Time_Exe() is

used to measure the transformation time for query q using specialization s). If
s is a single specialization, which can cover all query terms in q, then the
value for Time_Exe(q,s) is expected to be finite . However, if s can not cover
all query terms in q, the value of Time_Exe(q,s) is considered to be ∞ . Addi-
tionally, s

orig is the Original XSLT, which can cover all possible legal queries
and the value of Time_Exe(q, s

orig
) is always finite.

4.3 The Compact Specialization Set

The Compact Specialization Set (CSS) is a subset of RSS and is required to be
small, so it does not take too much time to search through. Also, each element in
the CSS should have relatively low cost and be applicable to a lot of situations
(query terms). We wish to choose a CSS that minimizes the value of the following
formula:

Formula_1:
Total_Time(CSS) =Total_Searching_Time(CSS)+Total_Execution_Time(CSS)

=

∑
=

n

i 1
pi * [d|CSS| + Mins∈ CSS (Time_Exe(qi,s))]

z d|CSS|:: Ts, the time spent on finding a minimum cost specialization from
CSS to handle qi

z Mins∈ CSS (Time_Exe(qi,s)):: Te, the minimum time spent on executing s (s∈
CSS) to answer qi.

z d|CSS| + Mins∈ CSS (Time_Exe(qi,s)):: T, the total time for processing qi based
on CSS

z pi * [d|CSS| + Mins∈ CSS (Time_Exe(qi,s))] :: The time spent for processing the
distinct query qi, which has the probability pi, based on CSS.

z ∑
=

n

i 1
pi * [d|CSS| + Mins∈ CSS (Time_Exe(qi,s))] :: the total time for processing

all distinct queries (q1,q2,…qn) in QS based on the CSS

4.4 Generate the Approximation of Compact Specialization Set

In generating the CSS, if the RSS is not too large, we can generate all subsets of it
and choose the one which has the minimum Total_Time according to Formula_1.
However, this method is impossible if the RSS is a large set. For example, a RSS
with 100 specializations has 2100 subsets.

It is well known that the query distribution of Web based searching applications
is asymmetrical [15]. A small number of distinct queries account for most searches
(i.e. have high summed probability (sum(pi))). Using this knowledge, we can dra-
matically reduce the search space. Our method is related to the well known problem
of computing the transversals of a hypergraph or the vertex cover problem [11]. It
consists of the following steps:
z Step_1: Sort the distinct queries in QS according to descending probabilities

and create a list of specialization sets (LSS), where each specialization set in
LSS consists of all specializations which can cover the corresponding query qi
in QS. Also, for each specialization set of LSS, we order the elements in as-
cending cost from left to right. Step_1 is described in Fig.3.(a)

q1 = {S1, S 3, S5, S }
q2 = {S2, S 4, S6, S12, S }
q3 = {S7 , S }
...
 qn = {..., S }

QS SSL

Descending
by p

Ascending

by cost

q1 = {S1, S3, S5,Sorig}
q2= {S2, S4, S6 , S12,S }

...

q i= {S7, S }
 ...
 qn= {..., S }

90%

5%

...

Sum(P)

3%

Apply
Cartesian
Product
respectively
to each
group

(1)Step_1 (b)Ste_2 and Step_3

orig

orig

orig

orig

orig

orig

orig

Fig. 3. Steps of Specialization Set Compaction

z Step_2: Slice the LSS horizontally into different groups, according to a prede-

fined threshold list of descending sum (pi). Specifically, we slice the LSS into 5
groups and define the required values of sum (pi) for each group respectively as
90%, 5%, 3%, 1.5% and 0.5%. This predefined threshold list of sum(pi) is de-
fined based on analysing the user query set and must obey the following two
policies : i) distinct queries with high probability must be grouped in the first
slice and ii) sum(pi) of the first slice should be big enough to cover most of
user queries (e.g. 90%). For the groups with small sum (pi), we only keep sev-
eral (e.g. 1 or 2) of the leftmost specializations of each specialization set and
omit (delete) other the other relatively bigger cost specializations, since they
have low probabilities and only have a small impact on the final result.

z Step_3: Apply a Cartesian-Product operation, to each sliced group of speciali-
zation sets and generate new specialization sets such that every set can cover
all the distinct queries in that group. Step_2 and step_3 are illustrated in
Fig.3.(b).

z Step_4: For each group, select the set which has the minimum value of To-
tal_Time, by evaluating all candidates using Formula_1.

z Step_5: Combine all of the specialization sets selected by step_4 into one set
and delete the redundant specializations. Thus, we obtain the final approxima-
tion of Compact Specialization Set (CSS).

If we want to obtain a more accurate result, we can also make a second round
Cartesian-Product on the specialization sets generated by step_3. Then test the re-
sult sets one by one based on Formula_1 to choose the minimum set as final CSS.

 5 The Overview of Compact Specialization and Combination

After applying the optimization approaches of Specialization Combination (SC) and
Specialization Set Compaction (SSC), we obtain a compact specialization set (we
will see later, in the experimental results, there exist about 70-80% fewer specializa-
tions in the RSS after compaction) as output to handle the user queries at the run-
time. We overview our techniques in Fig.4.

User Query

SP

Search_Index

SP

XSLT
Processor

XML
Output
Doc

Compact Specialization and Combination

Specializer
Specialization Set
Compaction (SSC)

Specialization
Combination(SC)

(a)Static Environment (b)RunTime

Original

XSLT

Specialization Set

(SS)
Specialization Set

(SS)

Primary
Specialization Set

(PSS)

Specialization Set
(SS)

Specialization Set
(SS)
Refined

Specialization (RSS)

Specialization
Set (SS)

Specialization
Set (SS)

Compact
Specialization

Set(CSS)

Specialization Set

(SS)
Specialization Set

(SS)
Compact Specialization

Set(CSS)+Original XSLT

Query Set Compact

Specialization
Combination

Fig. 4. Overview of Compact Specialization and Combination

From Fig.4, we see that in the static environment, the system generates the Pri-
mary Specialization Set (PSS) based on the Original XSLT using the specialization
principles of the XTS technique and then applies the approach of Specialization
Combination (SC) to generate the RSS. Next, the Specialization Set Compaction
(SSC) technique produces the Compact Specialization Set (CSS) as the final output.
At runtime, our server-side XSLT system uses an XSLT specialization index to se-
lect the best (lowest cost) individual specialization in the Compact Specialization
Set (CSS) for responding to the user query (The Original XSLT is retained as a
member of the Compact Specialization Set (CSS) for handling any new queries
which can not be handled by any specialization). We can repeat the process of
Compact Specialization and Combination (SC plus SSC), based on the latest data of
the query set (QS) (e.g. every month), to increase the accuracy of the Compact Spe-
cialization Set.

6 Experimental Results

We choose XSLT and XML test cases by considering the different XSLT design
styles [22] and different XML DTD-Graph structures [17] (mentioned in section 2.1
and 2.2). Specifically, shakespeare.xml (Broad-Deep structure), is used as the XML
input data source for XSLBench1.xsl (Push style XSLT), XSLBench2.xsl (Pull style
XSLT) and XSLBench3.xsl (Hybrid style XSLT). The brutal.xml (Narrow-Deep
structure) is the XML input data source of brutal.xsl, and db8000.xml (Broad-
Shallow structure) is the XML input of db.xsl.

Experimental results were generated for two different XSLT processors: i)Xalan-j
v2.6, ii) Saxon v8.3, and two different system environments (hardware&OS): i) Dell
PowerEdge2500 (two P3 1GHz CPU and 2G RAM running Solaris 8(X86)), ii) IB-
MeServer pSeries 650 (eight 1.45GHz CPU, 16GB RAM, running AIX5L 5.2).

To simulate the user query inputs, we stipulate that each query should consist of
1-3 terms [15]. Then, based on the possible query term space for each XSLT, we
randomly generate three different query sets, QS1, QS2, and QS3, each containing a
specific percentage of weak interconnection queries.

Also, in order to simulate the asymmetrical query distribution of Web applica-
tions [15] (mentioned in section 4.4), we stipulate that 10% of the queries cover
90% of the probability space.

The following is a description of our testing methodology for each XSLT:
z Generate the Primary Specialization Set (PSS) based on the Original XSLT

stylesheet, using different specialization principles (described in section 2.3)
with possible values of parameter k being (1, 2, 3…).

z Test the Primary Specialization Set (PSS) using the XTS technique for dif-
ferent query sets (QS1, QS2 and QS3) respectively and record the average
processing time for each.

z Generate the Refined Specialization Set RSSi (i=1,2,3), based on the Pri-
mary Specialization Set (PSS) and the query set QSi (i=1,2,3), using the
technique for Specialization Combination (SC)

z Test the Refined Specialization Set RSSi (i=1,2,3), using the query set QSi
(i=1,2,3) and record the average processing time across RSS1, RSS2 and
RSS3.

z Generate the Compact Specialization Set CSSi (i=1,2,3), based on the Re-
fined Specialization Set RSSi (i=1,2,3) and corresponding query set QSi
(i=1,2,3), using the technique of Specialization Set Compaction (SSC).

z Test the Compact Specialization Set CSSi (i=1,2,3) based on the correspond-
ing query set QSi (i=1,2,3) and record the average processing time among
CSS1, CSS2 and CSS3.

The optimization performance of our new techniques is effective and encourag-
ing. We provide the comparison of processing time and corresponding time saving
(compared to Original XSLT) between different optimization approaches (XTS, CS
and SSC) in Table.1.

The value under column ‘Orig’ is the average transformation time using the
Original XSLT stylesheet, the value under column ‘Te’ is the XSLT execution time;

the value under column ‘Ts’ is the time used to search for an appropriate specializa-
tion from the relevant specialization set (PSS, RSS or CSS); the value under column
‘T’ is the total processing time, T=Te+Ts; the value under column ‘S%’ is the per-
centage of processing time saved for the optimization approach compared with the
Original XSLT, S%=(((Orig-T)/Orig)*100)%. All processing time in Table.1 is ex-
pressed in seconds and computed based on 1000 user queries.

Table 1. The processing time(seconds) and time saving(%)

Te Ts T S% Te Ts T S% Te Ts T S%

QS1 3010 372 3382 32% 2312 536 2848 43% 2422 236 2658 47%

QS2 3248 372 3620 27% 2374 887 3261 35% 2478 193 2671 47%

QS3 3519 371 3890 22% 2349 1266 3615 28% 2499 229 2728 45%

Avg 27% 35% 46%

QS1 3831 515 4346 24% 2414 686 3100 46% 2530 195 2724 52%

QS2 4081 512 4593 20% 2889 1030 3918 32% 2892 186 3078 46%

QS3 4252 513 4766 17% 2672 1351 4023 30% 2726 250 2976 48%

Avg 20% 36% 49%

QS1 3580 461 4041 26% 2492 651 3143 43% 2604 143 2747 50%

QS2 3827 460 4287 22% 2623 1030 3652 33% 2717 150 2868 48%

QS3 4156 463 4619 16% 2550 1373 3923 28% 2598 179 2777 49%

Avg 21% 35% 49%

QS1 1803 272 2075 23% 1388 408 1796 33% 1468 135 1603 40%

QS2 1979 278 2257 16% 1403 601 2004 25% 1517 157 1674 37%

QS3 2164 269 2433 9% 1394 837 2231 17% 1502 164 1666 38%

Avg 16% 25% 38%

QS1 2110 300 2410 25% 1608 450 2058 36% 1819 150 1969 39%

QS2 2287 302 2590 20% 1627 672 2299 29% 1837 143 1980 39%

QS3 2474 298 2773 14% 1590 894 2484 23% 1794 167 1961 39%

Avg 20% 29% 39%

db 3228

XSLBench1 4993

brutal 2678

XSLBench2 5735

XSLBEnch3 5467

SC (based on RSS) SSC (based on CSS)
Orig

Query
Set

XTS (based on PSS)

These results illustrate that, firstly, that our new approaches, Compact Specializa-

tion Combination (SC+SSC), can effectively improve the server-side XSLT process-
ing time compared to the Original XSLT and the XTS optimization technique (our
previous work). The saving of processing time is due to i) the use of combined spe-
cializations, instead of the Original XSLT or ‘overweight’ specializations, to handle
weak interconnection queries and consequently save XSLT execution time (Te) and
ii) the use of Compact Specialization Set (CSS) to reduce the search space and save
the specialization searching time (Ts) at runtime.

Secondly, the Specialization Combination (SC) technique is more effective for
improving the XSLT execution time (Te) for query sets which have a higher number
of weak interconnection queries. Moreover, Specialization Set Compaction (SSC)
inherits the advantage of dealing with weak interconnection queries from the SC

technique and is more effective at reducing the specialization search time (Ts) for
the larger specialization set.

Thirdly, our new technique, Compact Specialization and Combination (SC+SSC),
can be applied to XSLT designed in the three different styles (Push style, Pull style
and Hybrid style) and XML documents designed in different structures (Broad-
Deep, Narrow-deep and Broad-Shallow DTD-Graph structures). It is more effective
for XML designed in the Broad-Deep DTD-Graph structure, since i) the query
terms of a weak interconnection query for a Broad-Deep XML database might be
more ‘far apart’ than Narrow or Shallow XML and the specialization (generated
with our previous XTS technique) used to handle the weak interconnection query
might be more ‘overweight’ and so the combined specialization can save relatively
more execution time; ii)the larger specialization set might be generated based on the
Broad-Deep XML database compared with Narrow or Shallow XML, and the tech-
nique of Specialization Set Compaction (SSC) can prune relatively more search
space. Compact Specialization and Combination is not applicable for small XSLT
stylesheets and the Narrow-Shallow XML, since too few specializations are able to
be generated.

We conducted all the above tests using the Xalan XSLT processor as well. The
experimental results were similar to that for Saxon (Table.1).

7 Related Work

To the best of our knowledge, there is no other previous work, which considers Spe-
cialization Combination or Specialization Set Compaction for optimizing server-side
XSLT programs. Extensive study has been done specialization for various kinds of
programs [1, 18, 20]. The main difference on specialization between XSLT scenario
and functional or logic programs is that XSLT is data intensive and, usually, a data
schema (DTD or XML-schema) is provided. XSLT and XQuery based optimization
have been considered in [16, 19, 28, 31]. Our optimization method, differs from [16,
19, 28, 31], since it focuses on XSLT stylesheets and uses statistics from query logs.
It can be applied regardless of XSLT processor and hardware&OS platform. XPath
or XML index based query optimization has been considered in a large number of
papers [2, 8, 26]. The DTD-Graph mentioned in this paper is similar to the Data-
guide structure described by Goldman and Widom in 1997 [14].

8 Conclusion and Future Work

In this paper, we have proposed two new approaches: XSLT Specialization Combina-
tion (SC) and XSLT Specialization Set Compaction (SSC), for the task of optimizing
server-side XSLT transformations. We have shown that Compact Specialization and
Combination (SC +SSC) significantly outperform the Original XSLT transformation
and the method of our previous work (XTS). Based on the technique of SC, the sys-

tem can process and optimize not only strong interconnection queries, but also an-
other very important class of user queries, weak interconnection queries. Moreover,
based on the technique of Specialization Set Compaction (SSC), we reduce the size
of the Refined Specialization Set (RSS) and, practically, generate an approximate
Compact Specialization Set (CSS) to further improve performance.

Our experimental results showed that these new approaches provide more effec-
tive optimization (saving about 40-50% in processing time compared with the
Original XSLT) for server-side XSLT transformation. As part of our future work, we
plan to investigate extending our methods and algorithms to handle further XSLT
syntax, such as the wider use of built-in templates, and functions within construction
patterns.

References

[1]M. Alpuente and M. Hanus.: Specialization of inductively sequential functional logic pro-
grams. In Proceedings of the fourth ACM SIGPLAN international conference on Func-
tional programming table of contents. (1999) 273 – 283.

[2]S. Abiteboul and V. Vianu.: Regular path queries with constraints. In the 16th ACM
SIGACT-SIGMOD-SIGSTART Symposium on Principles of Database Systems, AZ (1997)
122–133

[3]T. Bray, J. Paoli, and C. M. Sperberg-McQueen, and E. Maler.: W3C Recommendation.
Extensible Markup Language (XML) 1.0 (2000)

[4]C.Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi.: Efficient Filtering of XML Docu-
ments with XPath Expressions, Proceedings of Intl' Conference on Data Engineering, San
Jose, California (2002) 235-244

[5]J. Clark.: W3C recommendation. XSL Transformations (XSLT) version 1.0. (1999)
[6]S. Cohen, Y. Kanza and Y. Sagiv.: Generating Relations from XML Documents. In Pro-

ceedings of the 9th International Conference on Database Theory (ICDT), Siena (Italy)
(2003) 285-299

[7]A. Deutsch and V. Tannen.: Containment and integrity constraints for XPath. In Proc.
KRDB 2001, CEUR Workshop Proceedings 45 (2003)

[8]A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu.: A query language for
XML. In Proc.of 8th Int’l. World Wide Web Conf. Toronto, Canada (1999) 1155-1169

[9]C. Dong and J. Bailey.: Optimization of XML Transformations Using Template Speciali-
zation. In Proc.of The 5th International Conference on Web Information Systems Engineer-
ing (WISE 2004), Brisbane, Australia (2004) 352-364

[10]C. Dong and J. Bailey.: The static analysis of XSLT programs. In Proc.of The 15th Aus-
tralasian Database Conference, Vol.27, Pages 151-160, Dunedin, New Zealand (2004)

[11] T. Eiter and G. Gottlob. Identifying the Minimal Transversals of a Hypergraph and Re-
lated Problems. SIAM Journal of Computing 24(6) (1995) 1278-1304.

[12]W. Fan, M. Garofalakis, M. Xiong, X. Jia.: Composable XML integration grammars. In
Proceedings of Thirteenth ACM conference on Information and knowledge management.
Washington, D.C., USA (2004) 2-11

 [13]M. Gertz, J. Bremer.: Distributed XML Repositories: Top-down Design and Transparent
Query Processing. Technical Report CSE-2003-20, Department of Computer Science, Uni-
versity of California, Davis, USA (2003)

[14]R. Goldman and J. Widom.: Enabling query formulation and optimization in semi-
structured database. Proc. Int’l Conf on VLDB, Athens, Greece (1997) 436-445

[15]Google Gulde. http://www.googleguide.com
[16]Z. Guo, M. Li, X. Wang, and A. Zhou.: Scalable XSLT Evaluation, In Proc. of APWEB

2004, HangZhou, China (2004) 137-150
[17]http://www.datapower.com/xmldev/xsltmark.html
[18]S. Helsen and P.Thiemann.: Polymorphic specialization for ML. ACM Transactions on

Programming Languages and Systems (TOPLAS) archive. Volume 26, Issue 4 (July 2004)
652-700

[19]S. Jain and R. Mahajan and D. Suciu (2002): Translating XSLT Programs to Efficient
SQL Queries. Proc. World Wide Web 2002, Hawaii, USA (2002) 616-626

[20]N. Jones.: An Introduction to Partial Evaluation. ACM Computing Surveys. (1996) 28(3)
480-503

[21]M. Kay.: Saxon XSLT Processor. http://saxon.sourceforge.net/
[22]M. Kay.: Anatomy of an XSLT Processor. http://www-

106.ibm.com/developerworks/library/x-xslt2/ (2001)
[23]P. Kumar.: XML Processing Measurements using XPB4J (2003)
[24]C. Laird.: XSLT powers a new wave of web.

http://www.linuxjournal.com/article.php?sid=5622 (2002)
[25]D. Lee, W. Chu.: Comparative analysis of six XML schema languages. ACM SIGMOD

Record archive Volume 29, Issue 3. ACM Press, New York, NY, USA (2000) 76–87
[26]Q. Li, B. Moon.: Indexing and querying XML data for regular path expressions. In Proc.

Int’l Conf on VLDB, Roma, Italy (2001) 361-370
[27]S. Maneth and F. Neven.: Structured document transformations based on XSL. In Pro-

ceedings of DBPL'99, Kinloch Rannoch, Scottland (2000) 80-98
[28]L. Villard, N. Layaida.: An incremental XSLT transformation processor for XML docu-

ment manipulation. Proc. World Wide Web 2002, Hawaii, USA (2002) 474-485
[29]World Wide Web Consortium. XML Path Language(XPath) Recommendation.

http://www.w3.org/TR/xpath
[30]M. Weiser: Programmers use slices when debugging. In Communications of ACM, Vol-

ume 25, Issue 7, 446 – 452 (1982)
[31] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech, M Mulchan-

dani, L. Ding and E. A. Rundensteiner.: RainbowII: multi-XQuery optimization using ma-
terialized XML views. In Proceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data, San Diego, California, USA (2003) 671-685

