
Optimization of XML Transformations Using Template
Specialization

Ce Dong James Bailey

Department of Computer Science and Software Engineering
The University of Melbourne

{cdong, jbailey}@cs.mu.oz.au

Abstract. XSLT is the primary language for transforming and presenting XML.
Effective optimization techniques for XSLT are particularly important for appli-
cations which involve high volumes of data, such as online server-side process-
ing. This paper presents a new approach for optimizing XSLT transformations,
based on the notion of template specialization. We describe a number of template
specialization techniques, suitable for varying XSLT design styles and show how
such specializations can be used at run time, according to user input queries. An
experimental evaluation of our method is undertaken and it is shown to be partic-
ularly effective for cases with very large XML input.

1 Introduction

XML is rapidly becoming the de facto standard for information storage, representation
and exchange on the World Wide Web. The eXtensible Stylesheet Language Transfor-
mations (XSLT) standard [3, 16] is a primary language for transforming, reorganizing,
querying and formatting XML data. In particular, use of server side XSLT [15] is an
extremely popular technology for processing and presenting results to user queries is-
sued to a server-side XML database.

Execution of XSLT transformations can be very costly, however, particularly when
large volumes of XML are involved and techniques for optimization of such transfor-
mations are therefore an important area of research. In this paper, we propose a new
method for optimization of XSLT programs, based on the technique of program spe-
cialization. The underlying idea is that server-side XSLT programs are often written to
be generic and may contain a lot of logic that is not needed for execution of the trans-
formation with reference to given user query inputs. Such inputs are passed as parame-
ters to the XSLT program at run-time, often using forms in a Web browser. For exam-
ple, a user reading a book represented in XML might pass a parameter to an XSLT
program referring to the number of the chapter they wish to see presented (i.e. trans-
formed from XML to HTML by the XSLT). The XSLT program may obviously con-
tain logic which is designed for presenting the contents of other chapters, but it will
not be needed for this user query. Given knowledge of the user input space, it is in-
stead possible to automatically (statically) create different specialized versions of the
original XSLT program, that can be invoked in preference to the larger, more generic
version at run-time. In our book example, specialized XLST programs could be creat-

ed for each chapter. Since the specialized versions can be much smaller than the origi-
nal program, important savings in execution time and consequently user response time
are possible.

In the paper, we describe methods for i) automatically creating a set of specialized
XSLT programs (small XSLTs) based on an original generic (big) XSLT program ii)
selecting an appropriate small XSLT at run-time according to a cost analysis of the
user input. Our contributions in this paper are:
 An optimization approach for XSLT Transformations based on template

specialization.
 Four novel principles that can be used for XSLT template specialization: 1)

Branch_Principle, 2)Position_Principle, 3)Kin_Principle, 4)Calling_Principle.
Presentation of experimental results demonstrates the effectiveness of specialization

for XSLT. We are not aware of any other work which uses the concept of specializa-
tion to improve the performance of XSLT programs.

2 Background

We begin by briefly reviewing some concepts regarding DTDs, (server-side) XSLT
and XPath, assuming the reader already has basic knowledge in these areas.

2.1 DTDs and DTD-Graph

An XML DTD [2] provides a structural specification for a class of XML documents
and is used for validating the correctness of XML data (An example is shown in Fig.1
(a)).

Level 0

n2

n4 n6

n1

n0

n3 n5

n10n8n7 n9

(b)DTD-Graph

Level 3

Level 2

Level 1

(a)DTD

<!ELEMENT n0 (n1, n2+)>

<!ELEMENT n1 (n3|n4*)>

<!ELEMENT n2 (n5, n6)>

<!ELEMENT n3 (n7, n8?)>

<!ELEMENT n5 (n10*)>

<!ATTLIST n3 n9 CDATA #REQUIRED>

<!ELEMENT n4 (#PCDATA)>

<!ELEMENT n6 (#PCDATA)>

<!ELEMENT n7 (#PCDATA)>

<!ELEMENT n8 (#PCDATA)>
<!ELEMENT n10 (#PCDATA)>

Fig. 1. The DTD and its corresponding DTD-Graph

Based on the DTD, we can create a data structure to summarize the hierarchical in-
formation within a DTD, called the DTD-Graph. It is a rooted, node-labeled graph,
where each node represents either an element or an attribute from the DTD and the
edges indicate element nesting. We assume that the DTD contains no IDs and
IDREFs, and is acyclic. The DTD-Graph is similar to the Dataguide structure de-

scribed by Goldman and Widom in 1997[8]. It will be used to explain the XSLT Tem-
plate Specialization Principles in section 3. From the example of the DTD-graph in
Fig.1.(b), n0 to n10 (except n9) denote the names of elements which may exist in the
XML document and n9 denotes the name of an attribute of element n3.

2.2 Templates in XSLT

An XML document can be modeled as a tree. In XSLT, one defines templates (speci-
fied using the command <xsl:template>) that match a node or a set of nodes in the
XML-tree[16], using a selection pattern specified by the match attribute of the
<xsl:template> element. We require a matched node to exist in the DTD-Graph. The
content of the template specifies how that node or set of nodes should be transformed.
The body of a template can be considered to contain two kinds of constructs: i) con-
stant strings and ii) <xsl:apply-templates>(or <xsl:for-each>). We ignore the branch
commands <xsl:if> and <xsl:choose>, since they cannot directly trigger the applica-
tion of another template. Constant strings can be inline text or generated XSLT state-
ments (e.g. using <xsl:value-of>). The XSLT instruction <xsl:apply-templates> has
critical importance: without any attributes, it “selects all the children of current node in
the source tree, and for each one, finds the matching template rule in the stylesheet,
and instantiates it”[12]. A construction pattern can optionally be specified using the
select attribute in <xsl:apply-templates>, to select the nodes for which the template
needs to match. Our specialization methods support XSLT programs that make use of
the elements <xsl:template>, <xsl:apply-templates>, <xsl:for-each>, <xsl:if>,
<xsl:choose>, <xsl:value-of>, <xsl:copy-of>, <xsl:param>. This represents a rea-
sonably powerful and commonly used fragment of the language. For the <xsl:param>
element, we assume that the parameters corresponding to the user inputs are declared
at the top level in the XSLT program.

2.3 Server-Side XSLT

Server-side XSLT is a popular solution for data exchange and querying on the Web. It
is often deployed in e-commerce, e-publishing and information services applications. A
typical server-side processing model is sketched in Fig.2 below. Transforming the
content on the server has advantages such as providing convenience for business logic
design and code reuse, cheaper data access and security and smaller client downloads
[13]. A problem that can occur in the use of server-side XSLT, is when a generic
XSLT program is designed so that it can handle many possible inputs from the user. At
run-time, given specific user input values, much of the logic of the generic XSLT
program may not be required. Execution of an XSLT program which is larger than
required may result in increased run-time. The main theme of this paper is to propose
methods for automatically creating smaller XSLT programs, which are specialised to
handle specific combinations of user input values. The user query is modelled as a set
of parameters, each of which corresponds to an element in the DTD. e.g. The input
“Chapter1 Section2’’ might indicate the user wishes to see the contents of section 2 in
Chapter 1 displayed (converted from XML to HTML).

<xsl:stylesheet>
 <t1>
 ...
 <a>
 </t1>

 <t2/>
 …
 <tn/>
</xsl:stylesheet>

(a)Push style XSLT

<xsl:stylesheet>
 <t1>
 ...
 <a select>
 </t1>

 <t2/>
 …
 <tn/>
</xsl:stylesheet>

(b)Pull style XSLT

XML
Database_B

Server Side

XML
Database_A XSLT

Processor

XSLT for XML
Database_A

XSLT for XML
Database_B

User_A

Web
Server

User_B

Fig. 2. The Server-Side XSLT model Fig.3. The XSLT design styles

2.4 XSLT design styles

The simplest way to process an XML source tree is to write a template rule for each
kind of node that can be encountered, and for that template rule to produce the output
required, as well as calling the <xsl:apply-templates> instruction to process the
children of that node [12]. We call this style of processing recursive-descent style or
push style. A skeleton of a push style XSLT is shown in Fig.3.(a). Here, <t> denotes
<xsl:template> and <a> denotes <xsl:apply-template>.

We also can design instructions to explicitly select specific nodes. This makes the
instruction more precise about which node to process. This is pull style design. The
XSLT template instruction <xsl:apply-templates> with the value of select attribute as
the construction pattern, is the normal form of a pull style processing and <xsl:for-
each> is also commonly used. A skeleton of pull style XSLT is shown in Fig.3.(b).
The most general style of XSLT design is the hybrid style. It is a combination of push
and pull styles together.

Our specialization methods can be used for any style of XSLT, though our
experimental results will refer to these design classifications. An example of a hybrid
style XSLT program, XSLBench.xsl, is given in Fig.4. Looking at Fig.4, the template
match for “FM” and “SPEECH” uses <xsl:apply-templates> (push style) as the
implicit instruction to retrieve child nodes in the source tree and the template match for
“PLAY” gives an explicit instruction <xsl:apply-template select=”FM|PERSONAE|
ACT”> (pull style) to retrieve node sets of FM, PERSONAE and ACT in the source
tree. An XSLT (program input) parameter is declared by the <xsl:param> element
with the name attribute indicating the name of parameter. This example is from Kevin
Jones’ XSLBench test suite and it was also used by XSLTMark[4]as a test case for
testing the processing of match and select statements (we have added the parameter
declarations to model user input). The corresponding XML source input to
XSLBench.xsl is a well-known XML document, shakespeare.xml[4], consisting of the
37 plays of Shakespeare. These will be used in examples throughout the remainder of
the paper.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:output encoding="utf-8"/>

 <xsl:param name="p0"/>
 <xsl:param name="p1"/>
 <xsl:param name="p2"/>
 <xsl:param name="p3"/>
 <xsl:param name="p4"/>
 <xsl:param name="p5"/>
 <xsl:param name="p6"/>
 <xsl:param name="p7"/>

 <xsl:param name="p8"/>
 <xsl:param name="p9"/>
 <xsl:param name="p10"/>
 <xsl:template match="PLAY">
 <html>
 <body>
 <xsl:apply-templates
select="TITLE"/>

 <xsl:apply-templates
select="FM|PERSONAE|ACT"/>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="TITLE">
 <xsl:if test="$p0">

 <xsl:value-of select="TITLE"/>

 </xsl:if>
 </xsl:template>
 <xsl:template match="FM">
 <xsl:if test="$p1">
 <i>
 <xsl:apply-templates/>

 <xsl:template match="SPEECH">

 <xsl:if test="$p6">
 <xsl:apply-templates/>
 </xsl:if>
 </xsl:template>

 <xsl:template match="SPEAKER">
 <xsl:if test="$p7">
 <p>

 <xsl:value-of select="."/>
 </p>
 </xsl:if>
 </xsl:template>
 <xsl:template match="LINE">
 <xsl:if test="$p8">
 <xsl:value-of select="."/>

 </xsl:if>
 </xsl:template>
 <xsl:template match="STAGEDIR">
 <xsl:if test="$p9">
 <xsl:value-of select="."/>

 </xsl:if>
 </xsl:template>

 <xsl:template match="SUBHEAD">
 <xsl:if test="$p10">
 <xsl:value-of select="."/>

 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

 </i>
 </xsl:if>
 </xsl:template>
 <xsl:template match="PERSONAE">
 <xsl:if test="$p2">
 <h2>
 Parts - <xsl:value-of select="TITLE"/>

 </h2>
 <xsl:apply-templates select=".//
PERSONA"/>
 </xsl:if>
</xsl:template>
<xsl:template match="PERSONA">
 <xsl:if test="$p3">

 <p><i>
 <xsl:value-of select="."/>
 </i></p>
 </xsl:if>
 </xsl:template>
 <xsl:template match="ACT">
 <xsl:if test="$p4">
 <h3>

 <xsl:value-of select="TITLE"/>
 </h3>
 <xsl:apply-templates select="SCENE"/>
 </xsl:if>
 </xsl:template>
 <xsl:template match="SCENE">
 <xsl:if test="$p5">
 <h3>

 <xsl:value-of select="TITLE"/>
 </h3>
 <xsl:apply-templates select="SPEECH"/>
 </xsl:if>
 </xsl:template>

Fig. 4. The Hybrid style XSLT Stylesheet XSLTBench.xsl

2.5 XPath Expressions

XPath is a language for locating nodes in an XML document using path expressions.
In XSLT, selection patterns [15, 17] are specified using a subset of XPath and can be
used in the match attribute of <xsl:template> elements. Construction patterns are
specified using the full XPath language and can be used in the select attribute of the el-
ements <xsl:apply-templates>, <xsl:for-each> and <xsl:value-of>. XPath also de-
fines a library of standard functions for working with strings, numbers and boolean ex-
pressions. The expressions enclosed in ‘[’ and ‘]’ in an XPath expression are called
qualifiers. In this paper, we disallow the use of functions and qualifiers inside con-
struction patterns.

3 XSLT Template Specialization Principles

Specialization is a well-known technique for program optimization [10] and can re-
duce both program size and running time. In our context, a specialization S, of an
XSLT program P, is a new XSLT program containing a subset of the templates con-
tained in P. The templates chosen be included in S may also need to undergo some
modification, to eliminate dangling references and to make them more specific. Section
3.3 will later describe the modification process. Execution of S will yield the same re-
sult as execution of P, for certain combinations of user inputs.
We now describe two broad kinds of XSLT specialization schemes: one is Spatial
Specialization, which creates a number of specializations based on consideration of the
spatial structure of the XML document and the likely patterns of user queries. The

other is Temporal Specialization, which creates specialized program versions based on
the expected (temporal) calling patterns between program templates. The overall aim
of specialization is to construct groupings of templates likely to be related to one an-
other. i.e. A specialization corresponds to a possible sub-program of the original,
generic one.

3.1 Spatial Specialization

We describe three different principles for spatial specialization. Spatial specialization
groups templates together according to the “nearness” of nodes they can match within
the DTD. It is intended to reflect the likely spatial locality of user queries. i.e. Users
are likely to issue input queries containing terms (elements) close to one another in the
DTD-Graph.

Branch_Principle(BP): Templates are grouped together according to sub-tree prop-
erties in the DTD-Graph. Each node N in the DTD-Graph can induce a specialization
as follows: Suppose N is at level k, it forms a set Q_N consisting of N + all descen-
dants of N + all ancestors of N along the shortest path to the root node. Q_N is now
associated with a set of templates S. For each node in Q_N, find all templates in the
XSLT program which contain a select pattern that matches the node and place these in
S. We say S is now a specialization at branch level k.
Example: In Fig 1 (b), for each different branch level, nodes in the DTD-Graph can
be grouped as below. Each of these node sets Q_i would then be associated with a set
S_i of templates which can match at least one of these nodes.
 Level 0: All nodes
 Level 1: 2 sets: Q_1={n0, n1, n3, n4, n7, n8, n9}, Q_2={n0, n2, n5, n6, n10}.
 Level 2: 4 sets: Q_1={n0, n1, n3, n7, n8, n9}, Q_2={n0, n1, n4}, 3), Q_3=

{n0, n2, n5, n10}, Q_4={n0, n2, n6}
 Level 3: 4 sets: Q_1={n0, n1, n3, n7}, Q_2={ n0, n1, n3, n8}, Q_3={ n0, n1,

n3, n9}, Q_4={ n0, n2, n5, n10}.

Kin_Principle(KP): Templates are grouped together based on the ancestor-descen-
dant relationships of the corresponding elements in the DTD-Graph. Given a kin gen-
eration number k, each node N in the DTD-Graph can induce a specialization as fol-
lows: Construct a set Q_N consisting of N + all descendants of N of shortest distance
at most k-1 edges from N. Q_N is now associated with a set of templates S in the
same way as for the branch principle, above.
Example: In Fig 1, suppose the kin generation number is 3, we get three node sets,
namely, Q_1={n1, n3, n4, n7, n8, n9}, Q_2={n2, n5, n6, n10} and Q_3={n0, n1, n2,
n3 n4, n5, n6}.

Position_Principle(PP): Templates are grouped together based on the minimum dis-
tance (in any direction) between the corresponding elements in DTD-Graph. This dif-
fers from the kin-principle in that groupings are no longer ancestor/descendant depen-
dent. Given a distance parameter k, each node N in the DTD-Graph can induce a spe-
cialization as follows: Construct a set Q_N consisting of N + all elements of shortest

distance at most k edges from N. Q_N is then associated with a set of templates S in
the same way as for the branch principle above.
Example: Looking at Fig. 1, suppose the distance parameter is 1. Some of the node
sets are Q_0={n0,n1,n2}, Q_1={n1,n0,n3,n4}, Q_2={n2,n0,n5,n6}, Q_5=
{n5,n2,n10}. Any sets which are subsets of other sets are removed.

3.2 Temporal Specialization

We now describe a single principle for temporal specialization. A temporal specializa-
tion is intended to reflect the expected execution sequence of templates at run-time,
based on static analysis of calling relationships within the XSLT program. This re-
flects, in part, the program designer’s view of which collections of templates are relat-
ed.

Calling_Principle(CP): Templates in an XSLT are grouped together by the different
calling relationship paths between templates. Work in [7] described the use of a
structure known as the XSLT Template and Association Graph(TAG). This is a graph
where the templates are nodes and there is an arc from node x to node y if template x
may call template y. Based on this structure, we form specializations which model the
maximal calling sequences between templates.
Example: Suppose there are five templates t1, t2, t3, t4 and t5 in an XSLT program
and the possible calling paths in the TAG are: t1->t2, t1->t3 and t1->t4->t5. This gives
the specializations: S_1={t1, t2}, S_2={t1, t3} and S_3={t1, t4, t5}

3.3 Summary of specialization processing

The process of XSLT Specialization is described by Fig 5. Due to space constraints we
sketch, rather than present in detail the various components.

PUSH Style XSLT C
l

a
s
s
I
f
I
c
a

t
I
o
n

PULL Style XSLT

Delete
Redundant

Instructions

Specializer

Hybrid Style
XSLT

Reify The
general

Instructions

Specialised
XSLT Set

Specialised
XSLT Set

Specialised
XSLT Set

Fig. 5. Specialization process
In Fig 5, the templates of different style XSLTs are classified (grouped) using the

specialization schemes(e.g BP, KP, PP and CP). Reification is then applied to any
push style templates. In this case, any templates that contain a <xsl:apply-templates>
instruction without a select attribute, have a select attribute added so that any possible
children in the specialization are called explicitly. For pull style XSLT templates,
<xsl:apply-templates> instructions are deleted if there do not exist any corresponding

templates that could match the select attribute (removal of dangling references). For
hybrid templates, we need to apply both reify and delete steps. The XSLT shown in
Fig 6 is one of the possible XSLTs specialized from the original XSLT in Fig 4, using
the Branch Principle (level 1). We call this program SpeXSLBench.xsl. It can be used
to do the transformation if the user query is about the title of the play.

xsl:stylesheet version="1.0" xmlns:xsl="http://

www.w3.org/1999/XSL/Transform">

 <xsl:output encoding="utf-8"/>

 <xsl:param name="p0"/>

 <xsl:template match="PLAY">

 <html>

 <body>

 <xsl:apply-templates select="TITLE"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="TITLE">

 <xsl:if test="$p0">

 <xsl:value-of select="TITLE"/>

 </xsl:if>

 </xsl:template>
</xsl:stylesheet>

Fig. 6. The specialized XSLT

4 Overview of XSLT specialization process

We give an overview of the XSLT Specialization Process in Fig 7. Fig 7(a) describes
the steps performed statically and Fig 7(b) describes the steps performed at run time.
Looking at Fig.7.(a), we parse the DTD into the DTD-Graph, parse the XSLT into an
XSLT-Tree and TAG (containing information about the calling relationships [7]) and
parse the XML into an XML-Tree. Observe that we assume existence of the XML
DTD and XML data source for static analysis. This is a realistic assumption for server
side XML. Next, we use the template specialization principles to specialize the original
XSLT into a set of specialized XSLTs. After that, we apply an XSLT Transformation
Cost Model(XTCM) to evaluate each specialization and label it with an expected cost.
This cost determination considers four parameters: Scan_Size (the expected number of
nodes examined during program execution), Access_Nodes (the expected size of the
output), Num_of_Templates (the number of templates in XSLT) and XSLT_File_Size.
We omit the details of the cost model due to space constraints, but note that any cost
model which produces an estimate of execution time could be used.

At runtime (Fig 7 (b)), based on the user query, an XSLT template index (a simple
B+ Tree data structure) is used to select the best (lowest cost) individual specialization
for each term in the user query. If all terms have the same best specialization, then this
specialization is used instead of the original XSLT program to answer the query.
Otherwise, if different terms have different best specializations, then the original XSLT
will be selected to run the transformation instead (the default case).

Recall that specializations were created under the assumption that the user query is
likely to contain related terms. However, if the user query includes two or more
unrelated topics, then it is unlikely they will be covered by the same best specialization.
In this case, a combination of two or more specializations might be more effective than
using the original XSLT program. We leave this as a topic for future research.

DTD

Specializer

XSLT Cost Model

DTD Parser XSLT Parser

DTD-Graph
XSLT-Tree
and TAG

Cost Analyzer

XSLT_1 XSLT_2 XSLT_3

XSLT_7 XSLT_8 XSLT_9

XSLT_4 XSLT_5 XSLT_6

Specialized XSLTs

Specialized XSLTs with cost parameters

XSLT_1 cost XSLT_2 cost XSLT_3 cost

XSLT_4 cost XSLT_5 cost XSLT_6 cost

XSLT_7 cost XSLT_8 cost XSLT_9 cost

Specialization Pre-Transformation

User

Requirements

Cost Comparing

B+Tree
Template_Index

XSLT_5

Specialized XSLTs with cost parameters

XSLT_1 cost XSLT_2 cost XSLT_3 cost

XSLT_4 cost XSLT_5 cost XSLT_6 cost

XSLT_7 cost XSLT_8 cost XSLT_9 cost

Original XSLT cost

XML XSLT
Processor

Result Doc

Pre-Transformation

(a) Static Environment (b) Runtime

Fig. 7. The overview of XSLT specialization process

5 Experimental Results

We now experimentally investigate the effectiveness of the XSLT specializations.
There are a variety of parameters which need to be considered: 1)Different XSLT
styles such as push, pull and hybrid, 2)Different XSLT sizes: big size(consists of more
than 30 templates), medium size(consists of 10 to 30 templates) and small size(consists
of 10 or less templates), 3)Different XSLT Template Specialization Principles:
including BP, KP, PP and CP. Fig 8(a) describes the space of possibilities. The test
environment includes three situations 1) Different sizes of XML data: big size(14MB),
medium size(7MB) and small size(4MB), 2)Different XSLT processors: Xalan-j v2.5.1
and Saxon v6.5.3, 3)Different systems(hardware and OS): Dell PowerEdge2500 (two
P3 1GHz CPU and 2G RAM running Solaris 8(X86)) and an IBMeServer pSeries 650
(eight 1.45GHz CPU, 16GB RAM, running AIX5L 5.2). All of these considerations
are shown in Fig.8(b).

Push HybridPull

Medium LargeShort

BP KP CPPP

14M7M4M

Saxon Xalan

IBMDELL

XSLT

Different XSLT styles

Different XSLT sizes

Different specialization principles

Different XML size

Different XSLT processors

Different environments

(a)
Test Case
Design

(b)
Test
Environment
Design

Fig. 8. Test case and environment design

So, any given test requires at least 6 different parameters. The Shakespeare.xml is
used as the basis for the XML source data and the program XSLBench.xsl (shown
earlier) + 2 other synthetic programs (one push style XSLT and one pull style XSLT)
are used for the XSLT source. The value 3 was used as a parameter in BP and KP
respectively and the value 1 was used for the parameter of distance in PP.
Additionally, we test using all possible single query inputs and all possible combined
query parameter inputs containing at most 3 terms. We choose the average
transformation time over all such queries. For example, if there are 3 possible
parameter values, p1, p2 and p3 (representing 3 different query terms), we test the
specialization by giving the parameter p1, p2, p3, p1-p2, p1-p3, p2-p3 and p1-p2-p3
respectively and then calculate the average transformation time over all queries.

We show charts below summarising the improvements. We concentrate on
contrasting 1)different XSLT styles, 2)different template specialization principles, 3)
different size XML data sources. Average time saving improvement compared to the
original program is given. e.g. If we want to determine the effect of specialization for
different size XML inputs, we classified all test results by the test parameter of XML
size(there are three in this paper: 4MB, 7MB and 14MB). And for each group of test
results we generate the average value as the final time saving improvement. Then we
build a bar chart to compare the effect of different groups.(some sub-classifications are
setup to display more information of contrast. e.g. under each group of different XML
sizes, we make the sub-classification of different XSLT processors.)

In Fig.9.(a) we see that template specialization is effective across the three different
XSLT design styles, with the pull style XSLT giving the greatest savings. Pull style
obtains the most improvement, since pull style templates require more expensive ac-
cess to the XML data, due to the need for explicit XPath expressions in construction
patterns. From Fig.9.(b), we see all specialization principles give improvements in the
average transformation time. The Branch_Principle is the most effective, since it gen-
erates the most specializations and hence one is more likely to cover the query. Con-
versely, the Calling Principle is the least effective, since it generates the fewest spe-
cializations (due to not few calling paths existing in the program). From Fig.9.(c) we
see that the technique of template specialization is effective for varying XML sizes and
is most effective for bigger size XML data size, because evaluating XPath expressions

takes more time for large XML input and the specializations contain fewer XPath ex-
pressions than the original XSLT program.

0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

Xalan Saxon
Processors

Tim
e S

av
in
g 4M XML

7M XML
12M XML

push push

pull pull
hybrid hybrid

0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

Saxon Xalan
processors

tim
e
sav

in
g push

pull
hybrid

BP
BP

KP

KP

PP PP

CP CP

0%
5%
10%
15%
20%
25%
30%
35%

Xalan Saxon
Processor

Tim
e S

av
in
g BP

KP
PP
CP

(b)Different Specialization Principles(a)Different XSLT styles (c)Different Size XML Files

Fig. 9. The summarized experimental results

Considering the XSLT transformation time [15], it can be broken into a number of
parts shown in Fig. 10.

XML
Parsing

XSLT
Parsing

XSLT
Compiling

XSLT
Scanning

XSLT
Instructions
Evaluation

XML
Scanning

Content
Transfor
-mation

Document
Output

Fig. 10. The different parts of time spend on XSLT transformation

Among all these components, the times for XML parsing, content transformation
(assuming the same document output) and document output serialization are
unalterable, given a specific XSLT processor and XML source. Oppositely, the times
for XSLT parsing, XSLT compiling, XSLT scanning and XML scanning are all
alterable. Each specialization contains fewer templates than the original XSLT
program. Consequently XSLT parsing, XSLT compiling and XSLT scanning is
expected to take less time. Furthermore, the specializations are likely to require less
time in XML scanning, since the scanning time is related to the XPath expressions of
select attributes for template instructions in <xsl:apply-templates>. These can be
changed during the specialization process. Since we treat the XSLT processor as a
black box it isn’t possible to more accurately analyse the savings for each component.

6 Related Work

To the authors’ knowledge, there is no other work which considers specialization for
XSLT programs. There is of course a rich body of work on specialization for various
kinds of programs [10, 16]. The difference for the XSLT scenario, compared to, say,
functional or logic programs, is that XSLT is data intensive and a DTD is provided.
XSLT based optimization has been considered by Z. Guo, M. Li et al in 2004[9]. They
use a streaming processing model (SPM) to evaluate a subset of XSLT. By SPM, an
XSLT processor can transform an XML document to other formats without using ex-
tra buffer space. However, some strong restrictions on the XSLT syntax and design
are made, limiting the applicability. XPath based XML query optimization has been
considered in a large number of papers, e.g. S. Abiteboul and V. Vianu in 1997, A.
Deutsch and M. Fernandez et al in 1999, Li and Moon in 2000.[1, 5, 6, 14]

7 Conclusion and Future Work

In this paper, we have proposed a new approach for optimization of server-side XSLT
transformations using template specialization. We described several specialization
schemes, based on notions of spatial and temporal locality. Experimental evaluation
found that use of such specializations can result in savings of 30% in execution time.
We believe this research represents a valuable optimization technique for server-side
XSLT design and deployment. As part of future work, we would like to investigate
extending our methods and algorithms to handle further XSLT syntax, such as the
wider use of built-in templates, and functions within construction patterns. We also
plan consider the possible cost models in more detail and analyse methods for
combining specializations.

References

[1]S. Abiteboul and V. Vianu. Regular path queries with constraints. In the 16th ACM SIGACT-
SIGMOD-SIGSTART Symposium on Principles of Database Systems,, AZ, 1997.

[2]T. Bray, J. Paoli, and C. M. Sperberg-McQueen, and E. Maler (2000): W3C Recommenda-
tion. Extensible Markup Language (XML) 1.0

[3]J. Clark. (1999): W3C recommendation. XSL Transformations (XSLT) version 1.0
[4]http://www.datapower.com/xmldev/xsltmark.html
[5]A. Deutsch and V. Tannen. Containment and integrity constraints for XPath. In Proc. KRDB

2001, CEUR Workshop Proceedings 45, 2003.
[6]A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu. A query language for XML. In

Proc.of 8th Int’l. World Wide Web Conf, 1999.
[7]C. Dong and J. Bailey. The static analysis of XSLT programs. Proc.of The 15th Australasian

Database Conference, Vol.27, Pages 151-160, Dunedin, New Zealand, 2004.
[8]R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimization in

semi-structured database. Proc. Int’l Conf on VLDB, Athens, Greece, 1997.
[9]Z. Guo, M. Li, X. Wang, and A. Zhou, Scalable XSLT Evaluation, Proc. of APWEB 2004,

HangZhou, China, 2004.
[10] N. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys, 1996.
[11]M. Kay. (2000): Saxon XSLT Processor. http://saxon.sourceforge.net/.
[12]M. Kay. Anatomy of an XSLT Processor, 2001.
[13]C. Laird. XSLT powers a new wave of web, 2002.
[14]Q. Li, B. Moon. Indexing and querying XML data for regular path expressions. In Proc. In-

t’l Conf on VLDB, Roma, Italy, 2001.
[15]S. Maneth and F. Neven Structured document transformations based on XSL. Proceedings of

DBPL'99, Kinloch Rannoch, Scottland, 2000.
[16]W3C. XSL transformations(XSLT) version 2.0. http://www.w3.org/TR/xslt20/.
[17]World Wide Web Consortium. XML Path Language(XPath) Recommendation.

http://www.w3.org/TR/xpath.

