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Abstract

In agent systems, an agent’s recovery from execution
problems is often complicated by constraints that are not
present in a more traditional distributed database sys-
tems environment. An analysis of agent-related crash re-
covery issues is presented, and requirements for achiev-
ing ‘acceptable’ agent crash recovery are discussed.

Motivated by this analysis, a novel approach to man-
aging agent recovery is presented. It utilises an event-
and task-driven model for employing semantic compen-
sation, task retries, and checkpointing. The compensa-
tion/retry model requires a situated model of action and
failure, and provides the agent with an emergent unified
treatment of both crash recovery and run-time failure-
handling.This approach helps the agent to recover accept-
ably from crashes and execution problems; improve sys-
tem predictability; manage inter-task dependencies; and
address the way in which exogenous events or crashes can
trigger the need for a re-decomposition of a task. An agent
architecture is then presented, which uses pair process-
ing to leverage these recovery techniques and increase the
agent’s availability on crash restart.

1. Introduction

Multi-agent systems are often complex, with decen-
tralised models of control. Actions of the agents are
often influenced by the environment in which the sys-
tem is situated. Unaddressed problems can propagate
from one agent to another, in ways that may be diffi-
cult to identify. In addition, unexpected changes in the
environment can cause problems with agents that were
not designed to handle such changes. If problems oc-
cur, it is often difficult to characterise the global state
of an agent system and to determine if its behaviour is
correct. For this reason, the ability to handle failures
and recover from them can be important in sustain-

ing a stable agent system. Traditional recovery meth-
ods employed in (distributed) database systems are not
adequate, although many of the principles are useful.

In this paper, we first discuss issues in agent crash re-
covery that make application of existing recovery tech-
niques from other fields problematic, and present a def-
inition of agent recovery to an ‘acceptable’ rather than
consistent state.

We then present a novel approach for supporting
agent recovery. The approach utilises an event- and
task-driven model of when and how to employ tech-
niques for semantic compensation and task retries,
and to checkpoint agent state. The compensation/retry
model requires the agent to implement a situated model
of action and failure, resulting in a unified treatment
of both crash recovery and run-time failure-handling,
and allowing the agent to address a number of facets
of the ‘acceptable state’ objectives described.

Based on this framework, we will describe a high-
level agent “recovery procedure” that addresses the ob-
jectives of an acceptable recovery state. This procedure
includes the use of a technique called pair processing,
which leverages the agent’s recovery capabilities to im-
prove agent availability on startup– shortening the re-
covery period and reducing the length of time in which
transient environmental information may be lost. We
then discuss related and future work, and conclude.

2. Issues in Agent Crash Recovery

In the distributed systems and transaction manage-
ment contexts, the goal of crash recovery is to return
a system of (possibly distributed) processes to a con-
sistent state after a crash, where a consistent global
state is one which may occur during a failure-free, cor-
rect running of the computation (that is, such a state
would have been reachable during normal operation),
and consistency must be achieved both with respect to
an individual process and for the system as a whole.



Distributed-system recovery methods typically
make a number of assumptions about the con-
text in which their techniques will be employed.
They typically assume the existence of a closed sys-
tem with only controlled processes modifying the
data; that some form of rollback is possible (a pro-
cess can be restored to a previously saved state); and
that post-checkpointed requests can be replayed start-
ing from a restored state. [6].

Based on these assumptions, a range of checkpoint-
ing and logging techniques have been developed to re-
cover a system of distributed processes to a consistent
state after a crash. If a process checkpoints (saves state)
before “exporting” any information to other processes,
sometimes referred to as pessimistic independent check-
pointing [16], then restoration of one process won’t
require cascading rollbacks for others (if the assump-
tions above are met), but this can be expensive. A fo-
cus of many of these techniques is thus how to reduce
the checkpointing overload, e.g. by employing uncoor-
dinated checkpointing, but to then return the system
to a globally consistent state after a crash, e.g. by find-
ing a suitable recovery line. If replay is not feasible,
then these approaches will not work.

In an agent environment, the underlying assump-
tions made by these techniques are often violated,
so that it is not always possible to achieve con-
sistency of an individual agent on restart. This
is the case for several reasons. First, it is not al-
ways possible for an agent to revert to a previous
checkpointed state. “State”, in terms of the agent’s be-
haviour, may include aspects of the environment not
under the agent’s control. In addition, most situ-
ated actions “always commit”– so for agents which
interact with their environment, it is usually not pos-
sible to perform rollbacks in the traditional database
sense. Nor are exact compensations (forward recov-
ery) always possible– an agent can’t always undo the
effects of an action that modified its environment.

Second, it is possible for transiently observable ex-
ogenous events to occur while an agent is down, which
there may be no means to ‘replay’ when the agent
comes back up. Thus, some information may be lost
during a crash.

In addition, replay of actions can be problematic:
the agent’s environment may include limited resources,
which can’t be accessed or used arbitrary numbers of
times. For example, an information source may have a
limit on the number of queries it supports per day; or
if an object is broken it may not be replaceable.

So, individual agent recovery consistency, as defined
in the traditional distributed systems sense, is typically
not possible. As a consequence, post-recovery inter-

agent system consistency becomes ill-defined, even if a
conservative checkpointing scheme is used. Thus, tra-
ditional distributed-system recovery methods are usu-
ally not directly applicable in an agent context.

In this paper, we describe an approach for agent
recovery and run-time failure-handling that addresses
these issues. In the remainder of this section, we de-
scribe a way of evaluating agent recovery, in terms of
acceptability criteria, that we claim is more useful in
this context than strict consistency.

2.1. Recovering to an ‘acceptable’ state

“Hospital” domain example tasks:

• Take inventory of medications: what is currently
available? The process involves moving medica-
tions around a stockroom to facilitate counting.

• Get information to a doctor : determine the doc-
tor’s schedule, find out where they’re expected to
be; thenwork out a route to intercept them, as they
arrive/depart fromaknown location (e.g. a surgery
room); then go to that location.

• Give medications to a patient : devise a medication
plan to address a set of symptoms. Not all drugs
may be taken with each other.

• Feed patient : get food tray from cafeteria, bring to
patient’s room.

Figure 1. Motivating examples, describing agent
tasks in a “hospital” domain. The paper will dis-
cuss recovery and repair issues in the context of
these tasks.

It is clear from the discussion above that for many
agent systems, it will not be possible to achieve con-
sistent recovery in a distributed-systems sense of the
term. It is thus more useful to consider how an agent
might reach a sufficiently acceptable state after recov-
ery, and what such an acceptable state might be. Here,
we propose an informal definition of ‘acceptability’ in
terms of a set of recovery objectives, illustrated in the
example “hospital” agent domain of Fig. 1:

• The agent recovers to a state that is sufficiently pre-
dictable to avoid propagation of crash-induced er-
rors. For example, in the “hospital” domain of Fig.
1, if an agent crashes and drops a tray while bring-
ing it to a patient, it should clean up the floor (if
necessary) upon recovery.

• After restart, the agent knows ‘enough’ about the
current state of the world and what the other agents
expect of it, and its actions reflect this knowledge:



the agent is not using outdated information about
its environment; it doesn’t drop important tasks it
should be working on; it is able to ascertain if it has
been given any new tasks while it was in a crashed
state, and it is able to detect whether changes to
its environment require it to redo tasks. For exam-
ple, if an agent is trying to deliver information to
a doctor, but the doctor’s location changes while
the agent is down, it should be able to detect this
change upon recovery and re-generate its route.

• The agent has checkpointed sufficient information
so that it doesn’t have to redo ‘too much’ work if it
crashes.

The concept of ‘acceptable recovery’ drives the ap-
proach presented in this paper.

3. Compensation/Retry
Failure-Handling

In this section, we present an approach for deal-
ing with certain types of agent problems via an event-
driven model for applying task compensations and ini-
tiating task re-decompositions (re-achievement). We
first describe the model from a behavioural standpoint,
then the architectural mechanisms required to make it
work. Then, in the following section, we describe how
this model allows us to treat many aspects of recov-
ery and run-time failure-handling in a unified manner,
and allows us to address a number of the ‘accept-
able state’ objectives described in Section 2.1. The ap-
proach is described in the context of a goal-driven agent
that performs context-based (hierarchical) task decom-
position, maintains an agenda of currently-active goals
and executable actions (i.e., “intentions”) and whose
subtasks may potentially be delegated to other agents.

A key idea of the model is that it is useful to employ
an approach we term semantic task compensation, in
conjunction with task retry (re-decomposition), to ad-
dress problems that occur both from crashes, and from
task failure. The motivation behind this idea is that
the ability of an agent system to recover from prob-
lems can be improved by improving the agents’ ability
to “clean up after” or “undo” effects of their problem-
atic actions. Note, however, that compensation activi-
ties must address agent task semantics. An exact ‘undo’
is not always desirable, even if possible, and the appro-
priate compensations are context-dependent. The use
of semantic compensation in an agent context has sev-
eral benefits:
• It helps leave an agent in a state from which fu-

ture actions– such as retries, or alternate methods
of task achievement– are more likely to be suc-
cessful, and the implicit assumptions made by the

agents, in terms of representational validity and
state, are more likely to hold;

• it helps maintain an agent system in a more pre-
dictable state: agent interactions are more robust;
and unneeded resources are not tied up; and

• the approach can often be applied more generally
than methods which attempt to “patch” a specific
failed activity, and can be usefully viewed as a de-
fault failure-handling strategy.

However, traditional transaction management meth-
ods are usually not appropriate in a situated-agent con-
text. We cannot always characterize ‘transactions’ and
their compensations ahead of time, nor create composi-
tions of compensations by applying subcompensations
in a reverse order [8]; in many domains such compen-
sations will not be correct or useful. In addition, in an
agent context, failure-handling behaviour should be re-
lated to the agent’s goals, and take into account which
goals are current or have been cancelled.

Thus, to operationalize the use of semantic compen-
sation in an agent context, it is necessary both to define
the compensations in a way that is effective, and to use-
fully specify when to initiate both compensations and
goal re-achievements, including scenarios where prob-
lems occur with tasks delegated between agents.

3.1. Goal-Based Compensation

The agent’s task compensations are defined declar-
atively, in terms of goals– statements of what needs to
be achieved to effect the compensation– not in terms
of plans or action sequences. That is, in defining com-
pensation knowledge for a given domain (sub)task, the
agent developer specifies what must be true about the
state of the world for compensation of that task to
be successful. The declarative definitions thus support
context-dependent compensations– the agent applica-
tion will determine at runtime how to implement, or
achieve, these goals. The same semantic compensation
may be performed differently under different circum-
stances.

A goal-based formulation of failure-handling knowl-
edge is useful in several ways:

• it allows an abstraction of knowledge that can be
hard to express in full detail;

• its use is not tied to a specific agent architecture;
and

• it allows the compensations to be employed in dy-
namic domains in which it is not possible to pre-
specify all relevant failure-handling plans.

More detail is provided in [20].



3.2. Failure-Handling Model

Based on these core concepts– the use of goal-based
compensation and re-achievement for failure-handling–
we describe an approach to handling a class of agent
problems. A framework supporting the approach has
been implemented [20, 19]. However, here we general-
ize from that implementation, and focus on the failure-
handling model.

In this model, execution may be interrupted by a
‘problem event’ on a task; the event triggers activ-
ity, based on a series of task compensations and re-
decompositions, to handle the task problem. There
are two types of problem events, failure and revi-
sion/cancellation, each described below. A problem
event may be generated by execution-monitoring rules
that are part of the agent’s domain knowledge, and are
triggered by some aspect of the agent’s state. Addition-
ally, problem events for a given task may be generated
by the agent architecture, e.g. in response to timeouts
or messages from other agents.

In general, an agent may either handle a problem
event at its source, or recursively delegate the han-
dling of the problem further up the task tree, triggering
broader repair activities. In both cases, current execu-
tion is first halted1.

We first describe the way in which the agent handles
each type of problem event, then discuss some of the
implications of the model.
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Figure 2. An execution failure at node 1.

Failure event: The effect of failure-event handling is
to “clean up” the effects of the failure by compensation,
then re-attempt the work that was compensated for.
The handling of a failure may be delegated up the task
tree; if this occurs, then the compensation is broader
and more general, and the amount of work to redo the
compensated task will be more extensive.

1 In addition, the model supports definition of what we term sta-
bilization goals, which– when defined– are employed bottom-
up from the point of execution to the failed goal when an exe-
cution path is halted and before any explicit failure-handling
is initiated. However, this aspect of the model is beyond the
scope of this paper.
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Figure 3. The FSM describing handling of an execu-

tion failure event.

Failures can only be triggered for tasks along the
current-goal execution path, as shown in Figure 2. Such
an event is generated by either an explicit failure rule,
which detects a problem with a task on the execution
path that can not be resolved; by leaf-level execution
failure; or by a crash during execution of the task. In
the figure, the execution of the leaf task node 1 can
report a failure, but failure events can also be explic-
itly detected for nodes 2-4 as well. For example, in the
“hospital” domain of Fig. 1, an agent delivering a food
tray might crash or trip; these are leaf-level failures.
However, if while en route to a doctor, the agent learns
that the doctor has left the building, this can trigger
failure detection on the higher-level “deliver info” task.

A failure event is handled as follows: the agent will
compensate, then re-decompose (retry) the task that
received the failure event, or recursively “push up” han-
dling to its parent task. This is illustrated by the nested
finite-state machine (FSM) of Figure 3. On failure, the
task can be locally compensated, then re-tried. Alter-
natively, the failure handling can transition recursively
to the parent task (if one exists), and a compensation
of the parent task attempted. Note that if the task
is not a leaf node, then retrying the task in the con-
text of new information may result in a different de-
composition of the task– an alternate way of perform-
ing it given new information [21]. The ’F’ and ’S’ la-
bels on the arcs indicate failure/success of the (com-
pensation) task. A sucessful compensation will termi-
nate without retry if the task is no longer active (has
been cancelled), as is further discussed below. A fail-
ure of the retry can cause the compensate/retry cycle
to be repeated. At any time, failure of either the com-
pensation or the retry can allow handling to be pushed
to the parent task. Domain search control can be used
to determine which arc is chosen if more than one ex-
ists for a given transition event, as further discussed
below.
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Figure 4. A revision event (R) triggers compensation

and task re-decomposition of the ancestor task com-

mon to the revision and execution points.

Revision/cancellation event: A revision event is ap-
plicable to any node (whether completed or not) in a
currently-active task tree, where the root task node
has not yet been achieved. Such an event is generated
by an explicit revision rule, part of the agent’s domain
knowledge, which carries the semantics that some as-
pect of the agent’s state indicates that the task should
not have been performed, and that the parent task in
which the problematic task was used, needs to be re-
worked. Information from other agents, or revoking or
cancelling a previously-assigned task, can trigger such
a rule.

The important difference with the failure-handling
process above, is that here, revision events can be
detected for successfully-completed subtasks, not just
currently-executing tasks. For example, consider the
“give medications” task of Section 2. If the patient is
allergic to one of the medications, further use of that
drug must be cancelled, a compensation must be per-
formed if necessary (e.g. by giving epinephrine), and
then the “give medications” task must be re-addressed:
a replacement must be found, and a new plan must be
generated, one which doesn’t include any drugs that
are contraindicated with the replacement.

As the example suggests, by undoing the effects of a
completed task, any dependent tasks will be affected;
this is addressed by the event-handling process, which
is illustrated in Figure 4 and is as follows. To handle a
revision event, the agent must first compensate the task
that received the revision event– node 5 in the figure.
Then, it determines the task that is the common ances-
tor of both the revision event task, and the currently-
executing task2. This is the level at which dependencies
caused by compensating must be addressed. In the fig-
ure, node 3 is the common ancestor task of both node
5 (which received the revision event), and node 1 (the
currently-executing task). At that common node, the

2 This tree shows the case for ordered subtasks; for concurrent
subtasks, similar reasoning is applied.

agent follows the procedure of Figure 3– it compen-
sates, then re-decomposes the task of node 3, or may
recursively push handling to its parent task. The dot-
ted line of Fig. 4 suggests the task decomposition that
will be revisited. If a root node of a task hierarchy re-
ceives a revision/cancellation event, the agent compen-
sates it only; there are no parent dependencies to force
a re-decomposition.

3.2.1. Discussion. The two different types of prob-
lem handling above illustrate a distinction between the
approach described here and most compensation-based
failure-handling in the workflow and transaction man-
agement literature. In particular, here compensation
activity may be triggered by events on tasks that have
completed successfully, as well as by execution prob-
lems.

In general, a problem will be most effectively ad-
dressed at the lowest level possible; this should be the
default. However, in some cases a local compensation
may be problematic (or attempts at a local fix may
fail repeatedly), and the agent should effect a broader,
higher-level compensation instead. This is analogous to
‘throwing’ exceptions upward.

In the procedures above, we don’t specify how many
retries should occur or when handling of a problem
should be pushed up– in general, this requires domain-
specific knowledge, which can be encoded as search
control on the selection of an FSM transition when
multiple transitions are possible, allowing incremental
refinement of an agent’s default failure-handling be-
haviour. That is, we distinguish the specification of
the domain-independent failure-handling process (the
FSM) from any domain-specific choices on the allow-
able transitions at a given stage in the failure-handling.

The examples above did not include scenarios where
failure occurs during a compensation. However, while
it is beyond the scope of this paper to discuss in detail,
such scenarios are supported consistently in the model
above as well. Compensation tasks may also have asso-
ciated compensation definitions. The nested FSM exe-
cution model allows errors during compensation to be
addressed locally (as discussed above) or captured by
the parent context of the original error, again depend-
ing upon the domain knowledge conditioning the FSM
transitions.

The failure-handling model above can be viewed
as a type of exception handling. However, in con-
trast with other approaches to agent exception han-
dling, e.g. [18, 2], in our approach there is no explic-
itly separate “handler” method– the agent’s domain
knowledge is leveraged to implement the compensa-
tion and retry goals that are the building blocks of
the failure-handling process. In addition, our failure-



handling model operates at a different level of granu-
larity, in that failures during a compensation or retry
are considered in the context of their enclosing failure-
handling effort.

3.3. Agent Execution and Failure Model

For situated agents, action execution can have un-
expected or non-deterministic results, and exogenous
events can change things independent of any action of
the agent. This means that:
• Finishing all subgoals in a task decomposition

doesn’t necessarily imply success of the parent
goal. This can be the case even if execution of
each subgoal occurred without any explicit error
results.

• Success/failure of a goal can be triggered by ex-
ogenous events as well as subgoal results.

• Similarly, exogenous events can impact or undo
the effects of previously-achieved (sub)goals.

So, for a situated agent, execution monitoring must
be supported if the agent is to do robust failure han-
dling. In the context of the compensation-based failure-
handling model described above, this translates to sev-
eral requirements. The agent must be able to sense
and react to exogenous events; and sense, rather than
‘model’ the results of its actions (since its actions may
have unpredictable results). In addition, a goal-based
agent should be able to monitor and explicitly detect
goal status changes, both success (achievement), and
failure, based on state information, not execution his-
tory. Thus:
• Success of a parent task is determined by explicit

detection of achievement, not inferred by the com-
pletion of its subtasks. Further, an agent must not
infer failure based solely on a current inability to
achieve a goal, though achievement timeouts may
cause domain-specific derivation of explicit failure.

• Unachieved current tasks remain active. Thus, if
all the subtasks of a task are achieved, but the par-
ent task itself is not, it stays on the agent’s agenda.
For example, consider an agent’s task of giving
some information to a doctor. The agent may suc-
cessfully go to the place the doctor is expected to
be, but if the doctor does not turn up there after
all, the “locate doctor” task remains active (un-
less timeout occurs).

• Already-achieved tasks on the agenda are de-
tected as such and are removed (not re-executed),
thus allowing only necessary work to be per-
formed in expanding a compensation task, or in
re-decomposing a task. For example, if a com-
pensation requires an agent to locate a doc-

tor, and the doctor is currently visible to the
agent (i.e., already located), this triggers the de-
tection of task achievement, causing the removal
of the sub-task from the agenda.

If these requirements are not met, then problem
events can’t be detected, and compensations and re-
decompositions– which must be expanded in the con-
text of work that needs to be done– can’t be properly
employed.

In addition to the above, the agent has a further
architectural requirement to support these methodolo-
gies. It must maintain an abstract execution log/history,
via persistent transactional storage, maintained across
crashes. This log records not only ‘leaf task’ execution,
but task status information, and parent-child relation-
ships, with each root task current to the agent rep-
resented as a tree. That is, the hierarchical task rela-
tionships, as well as the goal failure and success events
in the execution history, are preserved in the log. The
logged information enables the problem-handling rea-
soning described above, as well as refinements of the
default behaviour via search control rules conditioned
on the history information.

4. A Unified Approach to Recovery and
Run-Time Failure Handling

Section 2 discussed why traditional recovery meth-
ods, such as those applied in distributed systems, aren’t
directly applicable in most agent contexts. Rollback is
typically not possible, and on recovery from a crash,
agents must consider and accommodate changes in the
environment during their recovery process, and must
compensate for effects of the crash.

The compensation/retry model of Section 3, in con-
junction with its underlying logging framework, pro-
vides a foundation for addressing these issues, and for
treating aspects of both recovery and run-time failure-
handling in a unified manner. To do this, two additional
extensions to the model above are required. First, agent
crash points are treated as failure events. An agent crash
causes a failure event to be posted for the task that
was currently executing at the time of crash, on recov-
ery. This information is derivable from the agent’s per-
sistent execution log. Second, we extend the persistent
transactional logging framework described in the pre-
vious section to support checkpointing of agent state
information, as is further discussed below.

By supporting these capabilities, and by employing
the compensation/retry model in the context of situ-
ated goal and execution monitoring, the agent exhibits
a recovery behavior that addresses a number of the ‘ac-



ceptable state’ objectives described in Section 2.1. The
following behaviour is supported at crash recovery:

First, on recovery from a crash as well as a failure,
compensation helps ‘reset’ the agent if it was left in an
inconsistent or ill-defined state on crash, and works to-
ward releasing unneeded resources, thus allowing the
agent to behave more predictably, and to allow the
other agents in the system to operate more successfully.

A useful analogy is that of a transaction, which can
be viewed as a series of operations which takes a sys-
tem from one consistent state to another [8]. Our ap-
proach to semantic compensation can be viewed in the
same way– post-crash compensation approximates a
rollback, leaving the agent and the system as a whole
more consistent and well-defined.

For example, if an agent crashes while it is perform-
ing the “count medications” task in the stockroom, its
count may no longer be valid after it restarts (e.g.,
while it has been down, other agents may have removed
items from the room). The agent will need to start over,
but for a correct (re)count, it should first “clean up”
what it had been doing, by restoring all the items it
was counting to their normal places in the room.

Second, the agent’s execution monitoring model al-
lows the effects of a crash to be sensed in the same way
as unexpected execution results, these effects may sim-
ilarly trigger failure/revision events. That is, changes
in the world trigger revision events in a unified man-
ner, without needing to distinguish whether the agent
was down in the interval during which the changes oc-
curred. For example, if an agent is trying to intercept
a doctor, and the doctor’s location changes, this will
trigger a revision of the “plan route” task regardless of
whether the agent was offline during the time of the
change.

Third, if non-achievement of a subgoal causes its ac-
tive parent to be no longer directly achievable, but the
parent has not failed, then work will continue on the
parent goal– it will remain on the agenda, with further
task (re-)decompositions applied to it. This helps en-
sure that post-recovery, the agent continues to work on
relevant goals.

Finally, if the agent crashes without having an up-
to-date state checkpoint, explicit task status detection
helps avoid unnecessary redo of work. For example, an
agent’s checkpointed state may record that it still needs
to administer medication to a patient, but state in-
formation from the external world (e.g. the patient’s
chart) will allow it to determine after restart if the
task has already been done.

The task structure recorded in the agent’s persis-
tent execution log supports both compensation/retry
reasoning, as described above, and recovery bookkeep-

ing. Section 3 described its role in managing task com-
pensations and retries. However, this persistent history
serves two additional purposes.
1. It allows a crashed agent to rebuild its runtime
agenda on restart.
2. The task-based logging mechanism can be lever-
aged to allow the agent to checkpoint at task achieve-
ment points. Task-based checkpointing imposes a
more coherent semantics on the saved informa-
tion than would an arbitrary checkpoint interval, and
is more easily synchronized with respect to commu-
nication with other agents, as such communication is
typically task-oriented. Consequently, task-based com-
pensation/retry is more coherently supported.

Further, the hierarchical task structure allows check-
pointing at different granularities (frequencies) based on
the level of the task tree for which task completion trig-
gers a checkpoint. Note that if the state of the exter-
nal world is likely to change quickly while the agent is
down, triggering task re-decomposition after a crash,
then frequent checkpointing of task results may not
be cost-effective; some of the agent’s low-level task re-
sults are likely to be discarded after the crash. Instead,
the agent may recover more effectively by checkpoint-
ing only at the completion of high-level tasks.

4.1. Supporting Recovery: Process Pairs

The view of recovery handling presented above as-
sumes that on restart from a crash, initialisation from
some saved state is performed, from which the agent’s
accommodation to the changes in its tasks and envi-
ronment, as described above, can proceed. An impor-
tant factor in this recovery process is how fast the re-
covery can take place. For example, if an agent crashes
while trying to intercept a doctor, the doctor may move
out of sensing range if the agent is down too long. The
faster the agent can restart, the less likely it is to miss
important transient external events, the less the world
is likely to change, and the less work the agent is likely
to require upon restart.

Pair processing3 is a well-known technique for im-
proving process reliability [8]. A process pair is a col-
lection of two processes which provide a service. At any
one time, one of the processes is primary, and delivers
the service. If the primary fails, its shadow takes over.
The two processes ‘ping’ each other to determine that
each is still alive. Because the shadow runs in-memory,
this can provide quicker recovery than a full restart.

We have applied pair processing to a design and
implementation of an agent architecture for recovery.

3 Sometimes referred to as a ‘primary/backup’ model.
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Figure 5. An agent architecture for supporting pair processing and recovery.

Key aspects of this architecture are that that it lever-
ages the failure-handling and recovery functionality de-
scribed above while allowing this core functionality to
remain decoupled, and can support efficient incremen-
tal updating of the shadow’s state with the primary’s.

As shown in Figure 5, our design uses a shared
persistent transactional data store between the pair
members. A layered architecture factors pair process-
ing from recovery reasoning, from the agent’s domain
reasoning. The primary persists its recovery bookkeep-
ing and state information to the data store, from which
the shadow recovers it as necessary. Each pair member
has the same agent architecture, but an agent oper-
ates differently in primary vs. shadow mode.

Design for recovery requires correct implementation of
persistence requirements; thus, an important aspect of
our design is that each layer works in concert to imple-
ment the persistence necessary to support the model.
On receiving information from an adjacent layer, a
layer must persist any necessary information before ac-
knowledging to the sending layer that it was received.
On passing information to an adjacent layer, it must
not remove any information from persistent memory
until acknowledged by the receiving layer.

The pair processing layer, in conjunction with its
underlying messaging layer, provides transparent and
persistent addressing for the pair. The other agents in
the system address the pair by its logical name, not
its component agents4. Because both pair members re-
ceive the messages, message persistence across crashes
is supported5, and via their pings, each agent in the
pair acts as a sentinel to the other. By factoring pair
processing from recovery functionality, and by provid-

4 Currently, we are using JGroups to support agent communica-
tion, but this approach would map to a FIPA-based architec-
ture as well.

5 Here, a single-fault model is assumed– but the two agents need
not be on the same machine.

ing transparent pair addressing, agents in the system
can run with or without using pair processing.

The shadow agent receives pair-addressed messages
from the other agents, but does not perform domain
tasks while it is in shadow mode. If the primary crashes
or becomes unresponsive, the shadow detects this via
its monitoring, kills the primary, and switches itself to
primary (launching a new shadow). To do this, it must
synchronise its message queue with the old primary’s
persisted message information, and its recovery layer
must then instantiate itself and its agent logic layer
from the primary’s checkpointed information.

The use of a shared database allows this model to
support an important benefit of pair processing– the
shadow, while it is running in-memory, can leverage
the database to efficiently incrementally update it-
self with the primary’s checkpointed changes. Because
the shadow is not yet ‘active’, the updating does not
compete with other tasks. Thus, if the primary agent
crashes, the shadow has already completed much of the
instantiation process and may be running quickly.

5. Related Work

In addition to the distributed systems methodolo-
gies described in Section 2, several agent-oriented re-
search directions are relevant to our approach as well.

The SPARK [11] agent framework is designed to
support situated agents, whose action results must be
sensed, and for which failure must be explicitly de-
tected. ConGolog’s treatment of exogenous events and
execution monitoring has similar characteristics [4].
While these languages do not directly address crash
recovery, their action model and task expressions are
complementary to the recovery approach described
here.

In the Cougaar agent system[17], it is not required
that the agents use pessimistic checkpointing; thus, a



procedure is defined to allow them to perform an ap-
proximate synchronization after a crash, by exchang-
ing task information. Barga et al. [1] also address inter-
process recovery issues, by proposing “interaction con-
tracts” which allow the processes to rely on each other
for implementing certain persistence needs, thus allow-
ing recovery guarantees. However, in both cases, this
work differs from ours in that their models do not in-
corporate consideration of constraints from or changes
to a situated agents’ environment that would invali-
date replay of work or require task changes in the con-
text of recovery.

Section 3.2.1 compared our approach to that of
building explicit within-gent exception-handling logic.
Other approaches encode handler logic within separate
monitoring/sentinel agents, e.g. [14, 9]. For a given spe-
cific domain, such as a type of auction, sentinels are
developed that intercept the communications to/from
each agent and handle certain coordination excep-
tions for the agent. All of the exception-detecting and
exception-handling knowledge for that shared model
resides in the sentinels. In our approach, while we de-
couple the failure-handling model from the agent’s do-
main knowledge, the agent’s domain logic is leveraged
for failure detection and task implementation. Sentinel-
based fault detection approaches, e.g.[14], also have rel-
evance to pair-processing: an important aspect of agent
recovery is detecting when an agent is behaving so in-
correctly that it should be restarted.

Eiter et al. [5] describe a method for recovering
from execution problems by backtracking to a diag-
nosed point of failure, based on execution monitor-
ing, from which the agent continues towards its orig-
inal plan. The backtracking is enabled by building a
library of reverse plans corresponding to action se-
quences. Thus, their compensations are defined at a
plan segment level rather than a goal level, and do not
address scenarios where higher-level semantic compen-
sation is required. However, the failure-handling model
we describe in this paper can be viewed as falling into
the same class of ‘plan repair’ approaches as does the
system above. Effectively, for this class of repair and re-
covery approaches, the use of compensation/reversal is
employed as a search control heuristic over the plan re-
pair space.

In Nagi et al. [13], [12] an agent’s problem-solving
drives ‘transaction structure’ in a manner similar to
that of our approach. However, they define specific
compensation plans for (leaf) actions, which are then
invoked automatically on failure. Thus, their method
will not be appropriate in domains where compensa-
tion details must be more dynamically determined.

Workflow systems encounter many of the same re-

covery issues as agent systems. Recent process model-
ing research attempts to formalize some of these ap-
proaches in a distributed environment. For example,
BPEL&WS-Coordination/Transaction [2] provides a
way to specify business process ‘contexts’ and scoped
failure-handling logic, and defines a ‘long-lived transac-
tion’ protocol in which exceptions may be compensated
for. Their scoped contexts and coordination protocols
have some similarities to our nested failure-handling
model. However, as discussed in Section 3.2.1, our ap-
proach doesn’t require explicit definition of separate
handler methods, and operates at a different level of
granularity.

Pears et al. [15] describe a framework that incor-
porates server-level exception-handling and the use of
process pairs in a mobile agent context. However, in
their domain they do not address issues in updating
the shadow with the primary’s state after the initial
replication. Fedoruk et al. [7] propose an approach to
agent replication, which has some similarities with the
primary/shadow model of our approach. However, in
their discussion of state replication and “switchover”,
they do not take into account the situated recovery is-
sues addressed here.

6. Summary and Future Work

In this paper, we have first analysed issues in agent
crash recovery, and suggested that criteria for recovery
to an acceptable rather than consistent state has more
utility in an agent context. We then described an ap-
proach to managing agent recovery that addresses some
of these criteria, which allows a unified treatment of
both crash recovery and run-time failure handling, cen-
tered around an event- and task-driven model for em-
ploying semantic compensation and re-decomposition
of the agent’s tasks. A notable feature of this model is
the way in which compensations can be systematically
applied to completed as well as currently-executing
tasks. By treating crashes as execution failure points,
the agent is able to support an integrated reaction to
environmental and task changes that require repair.

The approach can be viewed as a default recovery
and failure-handling behaviour, applicable when more
specific patching/replanning information is not avail-
able, and to which refinements can be made incremen-
tally. In helping the agent to recover acceptably from
crashes and execution problems, the approach can pre-
vent fault propagation between agents, improve sys-
tem predictability; help manage inter-task dependen-
cies; and address the way in which exogenous events or
crashes can trigger the need for a re-decomposition of
a task. The use of a process pairs-based agent architec-



ture can leverage such recovery techniques and increase
the agent’s responsiveness and availability on restart.

Our existing implementations have provided proof-
of-concept demonstrations for key aspects of the ap-
proach described above– both the compensation/retry
model and the pair processing framework– and we are
in the process of further integrating, formalizing, and
testing the model. A language such as 3APL [10, 3]
offers a useful starting point for such a an effort: it
provides a more formal semantics than our current
implementation, and it supports goal-based reasoning
and context-based task decomposition. However, its
use would require extension of the existing language.
3APL does not model exogenous events, and does not
explicitly model execution failure or success, allow for
non-deterministic outcomes from an action execution,
nor allow definition of explicit rules for detection of
goal failure/success. As part of our current research,
we are specifying and implementing a variant of 3APL
that supports these changes.
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