
TRIBAC: Discovering Interpretable Clusters and Latent Structure in Graphs

Jeffrey Chan, Christopher Leckie, James Bailey and Kotagiri Ramamohanarao

Department of Computing and Information Systems, University of Melbourne, Australia
{jeffrey.chan, caleckie, baileyj, kotagiri}@unimelb.edu.au

Abstract—Graphs are a powerful representation of rela-
tional data, such as social and biological networks. Often,
these entities form groups and are organised according to a
latent structure. However, these groupings and structures are
generally unknown and it can be difficult to identify them.
Graph clustering is an important type of approach used to
discover these vertex groups and the latent structure within
graphs. One type of approach for graph clustering is non-
negative matrix factorisation However, the formulations of
existing factorisation approaches can be overly relaxed and
their groupings and results consequently difficult to interpret,
may fail to discover the true latent structure and groupings,
and converge to extreme solutions. In this paper, we propose a
new formulation of the graph clustering problem that results
in clusterings that are easy to interpret. Combined with a novel
algorithm, the clusterings are also more accurate than state-
of-the-art algorithms for both synthetic and real datasets.

Keywords-Graph clustering; blockmodelling; interpretabil-
ity; non-negative matrix factorisation

I. INTRODUCTION

Graphs are natural representations of relational data. Of-

ten, the entities represented by these graphs form groups of

similar relationships. Example groupings include communi-

ties of similar interests (e.g., in social networks), and can be

used to profile users and provide them with targeted market-

ing. In addition, these networks are typically organised by a

latent structure. For example, a graph representing the email

communications of a company is commonly organised in a

hierarchical manner, reflecting the company’s organisational

structure.

An important type of analysis to discover these groupings

and latent structures is graph clustering, which involves

grouping the vertices based on the similarity of their connec-

tivity. Two popular approaches for graph clustering are com-

munity detection [1] and blockmodelling [2]. Community

detection decomposes a graph into a community structure,

where vertices from the same communities have many edges

between themselves, and vertices of different communities

have few edges. Community structure has been found in

many graphs [1], but it is only one of many alternatives for

grouping vertices and inferring possible graph structure.

Consider Figure 1, which is an example of a flight routing

network. The vertices are airports, and edges model the

presence of flights between the two airports. Using a state-

of-the-art community finding algorithm [1], it cannot find

any structure, as all vertices are placed into a single group.

In fact, a reasonable structure of the network consists of four

positions (we use the social network analysis nomenclature

and refer to a set of vertices as a position): hub airports (P4),

large regional airports (P3), regional airports (P2) and local

airports (P1). See Figure 1a for the adjacency matrix whose

rows and columns are rearranged to illustrate this structure,

and the red dotted lines denote the boundaries of positions.

This demonstrates that a more general approach to graph

clustering is needed.

Blockmodelling is a powerful approach to decomposing

graphs [2]. Vertices are in the same position if they have

similar patterns of interactions to vertices of other positions.

The routing structure of Figure 1 certainly fits this definition,

e.g., local airports in P1 are well connected to hub and

regional airports (P4 and P3) but not to other local airports in

P1. The inherent structure can be identified by visualising

the image matrix (Figure 1e), where the positions are the

rows and columns and each matrix entry represents the inter-

position interactions. The positions and the image matrix

clearly summarise the core-periphery structure of the routing

in airports, and together form a blockmodel. Note that

the blockmodelling definition can also discover community

structure. Therefore, blockmodelling is a general approach

and allows us to discover positions and how they relate to

each other, and understand and characterise the underlying

structure (e.g., is it a community or core-periphery structure).

Non-negative matrix factorisation is a powerful technique

that approximates a matrix by two low dimensional, non-

negative ones [4]. In [5], the authors have shown that the

blockmodelling problem can be considered as a non-negative

matrix tri-factorisation (three matrix approximation) prob-

lem, where the original adjacency matrix is factorised into a

position membership matrix (the membership of each vertex

to each position, as illustrated in Figure 1c) and an image

matrix. While promising results were reported, there are

three important, unresolved challenges.

The first challenge relates to how blockmodelling is

formulated as a factorisation problem. Existing algorithms

[6][7][3] focus on constraining the membership and image

matrices to be non-negative and do not upper bound their

values. This can make the resulting factorisation difficult

to interpret. For example, consider the situation were two

vertices v1 and v2 have memberships of [1, 0.2, 0.2] and

[5, 1, 1] to three positions, respectively. v1 can be considered

as mostly affiliated with position 1 (value of 1). But v2

2014 IEEE International Conference on Data Mining

1550-4786/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDM.2014.118

737

(a) Rearranged adjacency matrix ac-
cording to TRIBAC.

(b) Rearranged adjacency matrix
according to BNMTF [3].

(c) Membership matrix for
TRIBAC. Values in 0 to 1.

(d) Membership matrix for BN-
MTF. Values in 0 to 0.89.

(e) Image matrix for TRIBAC. Val-
ues in 0 to 1.

(f) Image matrix for BNMTF. Val-
ues in 0 to 123.5.

Figure 1: Airport routing network. In Figures 1a and 1b,

the pixels representing the edges of the adjacency matrices

are coloured according to the positions of their incident

vertices (average coloured if vertices in different positions),

and the red dotted lines represent the boundaries of the

positions after they are harden/discretised. Darker blocks

in Figures 1c to 1f represent larger values.

is also strongly associated with position 1 (value of 5) –

is v2 more strongly affiliated with position 1, or are both

v1 and v2 more associated with position 1 than the other

positions? It is unclear which is the correct interpretation

when the memberships only have to be non-negative. In

Section III we argue that the memberships of each vertex

should sum to 1. With this constraint, the interpretation of

the discovered memberships becomes unambiguous, e.g., if

v2 is normalised to 1 then v1 and v2 have the same level

of affiliation to position 1. In addition, the lack of row sum

constraints can result in solutions with vertices that have no

membership to any positions (i.e., have no influence on the

positions or structure) or their membership values span a

large range, both making it even more difficult to interpret

and understand the results. For example, consider Figure 1d,

which illustrates the membership matrix found by [3]. Rows

10–20 are all zero and the corresponding vertices have no

position assignments.

The second challenge is that existing work [7][6][3]

considers the image matrix as a scaling factor for the

membership matrix and ignores its representation as the

latent structure. Because of its scaling purpose, the only

necessary constraint is non-negativity. This can lead to

some image matrices that are difficult to comprehend and

interpret. For example, consider the image matrix found by

[3] (Figure 1f) with non-zero entries ranging from 4.98 to

123.5. It is difficult to interpret what these entries mean,

apart from showing that one entry is dominant. Instead, we

argue that each entry should be upper-bounded (e.g., 1 for

unweighted graphs). With this restriction, we can interpret

the entries of the image matrix as the expected number of

edges between vertices of two positions. In addition, because

the new formulation has fewer degrees of freedom, this new

formulation helps to guide the optimisation to more accurate

results. Again consider Figure 1f and 1b. Figure 1b shows

that [3] broke up the local airports (P4) into two positions

and failed to identify the highly clustered hub airports (P1).

The third challenge is to develop efficient and accu-

rate blockmodelling algorithms using this new interpretable

formulation. State-of-the-art algorithms typically propose

post-optimisation normalisation as a potential solution to

the membership interpretability challenge. But this is un-

principled and can lead to inferior solutions, which we

demonstrate in Section V. Instead, in this paper, we show

how to incorporate row sum constraints within the objective,

which leads to more accurate and interpretable results.

To address these challenges, we introduce a new non-

negative matrix tri-factorisation formulation for graph clus-

tering. In addition, we propose a new algorithm TRIBAC

(Non-Negative Matrix Tri-Factorisation Blockmodelling

assisted by Contraints) that optimises this new formulation

and produces interpretable and more accurate memberships

and latent structures. In summary, our contributions are:

• We propose a new non-negative matrix tri-factorisation

blockmodelling formulation for graph clustering with

easier interpretability of the results.

• We propose a novel algorithm TRIBAC that optimises

our new formulation and produces more accurate and

interpretable clusterings and latent structures than ex-

isting methods.

II. RELATED WORK

Non-Negative Matrix Factorisation: Seung et al. [4] were

the first to popularise non-negative matrix factorisation

in machine learning. Ding et al. [8] extended this to a

three factor factorisation and introduce orthogonality con-

straints on the membership factors. Long et al. [7] and

Wang et al. [6] introduced the idea of non-negative matrix

tri-factorisation for finding blockmodels for graphs, and

produced different multiplicative optimisation approaches.

738

Zhang et al. [3] introduced a coordinate descent algorithm

to find overlapping position blockmodels. Chan et al. [5]

proposed a framework of algorithms and objectives to tackle

sparse and noisy graphs. All of these approaches do not

impose row sum constraints, making it more difficult to

interpret the discovered blockmodels.

Blockmodelling: We concentrate on those blockmodelling

algorithms that are most similar to our work. In [9], Chan et

al. proposed the novel approach of finding blockmodels in

evolving graphs using a minimum description length (MDL)

coding approach, with more ideal blockmodels resulting in

shorter codes. However, the MDL principle breaks down

when applied to larger graphs. Airold et al. [10] introduced

a mixed membership probabilistic model, where vertices can

belong to multiple positions. Edges, the position of vertices

and other variables are modelled as random variables. How-

ever, the fitting process can be slow.

III. NON-NEGATIVE MATRIX FACTORISATION

BLOCKMODELLING

In this section, we introduce the key concepts of block-

modelling [2], the notation used and our formulation of

blockmodelling as a matrix factorisation problem.

A graph G(V,E) consists of a set of vertices V and a

set of edges E : V × V . The edges can be represented

by an adjacency matrix A ∈ Rn×n+ whose rows and

columns are indexed by V and n is the number of vertices.

For unweighted graphs, A ∈ {0, 1}n×n. For notational

convenience, we denote the number of edges by m.

A blockmodel decomposes a graph A into a set of k
vertex positions represented by a membership matrix C
(with dimensions n by k) and a lower dimension matrix

called the image matrix M (dimensions k by k). The image

matrix represents the position to position interactions and

the overall latent structure. The blockmodel decomposition

approximates A as CMCT . The challenge of blockmod-

elling is to find a C and M which yield a good approxi-

mation to A, as well as themselves being interpretable and

understandable. Interpretability means the values of C and

M should fall into a particular range and have meaning. We

first describe how existing work approach this and then our

proposed solution.

In [6] and [7], the authors defined C and M as non-

negative. The focus of [6] and [7] is to find the best vertex

grouping, where M is regarded as a scaling matrix for C.

In addition, our experience has been that with the only

constraints on M (and C) being non-negativity, there are

too many degrees of freedom for the values of M, and it

is more difficult to recover the latent structure. Consider the

following scenario.

Let CMCT be an exact approximation of A, i.e., A =
CMCT . Consider the equation for each element of A:

Aij =
∑n
x

∑n
y CixMxyCjy . We wish to analyse what val-

ues Mxy can take in order to satisfy equality. Let Aij = 1.

Assume each vertex has only one non-zero membership (i.e.,

Cia > 0 and ∀x �= a, then Cix = 0). If Cia = Cib = 1,

then Mab should equal 1. If Cia = Cib = 0.1, then

Mab = 100. As it can be seen, the values are arbitrary.

This can lead to extreme values (e.g., in our experiments in

Section V we witness values of C in the order of 1050).

Furthermore, as explained in Section I, it is difficult to

interpret the values of M when there are only non-negativity

constraints, apart from zero corresponding to no interactions

between two vertex groups. In summary, M and C need

additional constraints in order to obtain interpretable and

accurate soft clusterings.

A. Additional Constraints for Interpretable C and M

For soft clustering, we argue that the membership of each

vertex should sum to the same constant value. If we desire

a probabilistic interpretation, then that constant should be 1

(i.e.,
∑
kCik = 1, ∀vi ∈ V).

M could take on any value in theory, but we believe that

M should lie in [0, 1] for unweighted graphs. In this case, we

can naturally interpret Mxy as the expected number of edges

between a vertex with full membership (i.e., 1) in position x
to a vertex with full membership in position y. Restricting

M to [0, 1] permits us to make this type of interpretation

of the discovered M matrix, which the other unbounded

formulations do not.

B. Optimisation Objective

We can estimate the approximate error by a number of

different loss functions. In this paper, we use the popular

Euclidean loss (sum of squared errors) and the aim is to

find a C and M that minimises the following error:

J(C,M) = min
C,M

||A−CMCT ||2F (1)

s.t. C ∈ [0, 1]n×k,M ∈ [0, 1]k×k∑
k

Cik = 1, 1 ≤ i ≤ n

For weighted graphs, we have M ∈ [0,maxij(Aij)]
k×k.

IV. TRIBAC

None of the existing measures [5][6][7][3] can solve

Equation 1. Hence, in this section, we describe our proposed

TRIBAC optimisation algorithm to optimise Equation 1.

Blockmodelling of three or more positions is a NP-Hard

problem [5]. Optimisation of M or C can be individually

convex, but optimisation of both is non-convex. Hence,

existing methods and our proposed algorithm TRIBAC

alternate between optimising for M and C until some

convergence criterion is satisfied.

Optimising C: Holding M constant, we solve for C.

We propose a multiplicative rule approach to solve this

subproblem.

739

Cij = Cij

(
Θ−ij +

∑
bΘ

+
ibCib

Θ+
ij +

∑
bΘ

−
ibCib

) 1
4

(2)

where Θ−ij = ATCM + ACMT and Θ+
ij =

CMTCTCM+CMCTCMT .

Theorem 1: J(C) is non-increasing under the update rule

of Equation 2.

Proof: See supplementary material1.

Optimising M: To solve M for Equation 1 requires solving

for box constraints on M, which requires computing the

active and inactive constraint sets. This is very difficult for

the multiplicative approach, hence instead we propose to use

a coordinate descent approach, similar to [3][5], but with an

additional upper limit constraint on M. Using the unit basis

as the conjugate basis, we solve the following problem for

the optimal step size ψ, subject to M ∈ [0, 1]:

min
ψ
Li,j(ψ) = ||(A−C(M+ ψEi,j)C

T)||2F (3)

where E ∈ [0, 1]k×k. After expanding the RHS of Equation

3 and taking the derivative w.r.t ψ and equating it to 0 we

obtain: ψ = Tr(Y0TY1)
Tr(Y1TY1)

, where Y0 = A − CMCT and

Y1 = CEi,jC
T . We require 0 ≤Mij + ψ ≤ 1. Hence:

ψ =

{
min(ψ, 1−Mij) if ψ ≥ 0

max(ψ,−Mij) if ψ < 0

Theorem 2: TRIBAC is non-increasing with respect to

J(C,M).
Proof: See supplementary material1.

In summary, there are three existing algorithms, their post-

optimisation, normalising variants and TRIBAC for matrix

factorisation blockmodelling. We compare the algorithm on

their: a) constraints on C; b) constraints on M; and c)

constraints on the row sum. In Table I we illustrate each

algorithm and what characteristics they possess.

V. EVALUATION

In this section, we compare the accuracy of the existing

and TRIBAC algorithms to find the true C and the latent

structures. We use both real and synthetic datasets to evalu-

ate our algorithms. The synthetic datasets allow us to control

and evaluate how different graph characteristics affect the

algorithms. We also use well studied datasets from social

network analysis [3] for our evaluation.

A. Datasets and Evaluation Criteria

1) Datasets: We generate our synthetic datasets with the

aim of evaluating how noise, sparsity and the latent structure

affect the accuracy of the different algorithms. We used the

same underlying generation approach to construct the syn-

thetic graphs1, which all have 100 vertices and 5 positions.

1 Available at people.unimelb.edu.au/jeffreyc.

Name Vert. # Edge # Directed?
Baboon 14 23 N

Monastery 18 34 Y
Karate 34 78 N

Les Mis’erables 77 254 N
Politic Books 105 441 N

Adj-nouns Adjacencies 112 425 N
College Football 115 613 N
Jazz Musicians 198 2742 N

C. Elegans 297 2359 Y
Airport Routing 332 4252 N

Politic Blogs 1490 19090 N

Table II: Statistics of real graphs tested.

This approach was used in [5] and can be considered as the

reverse of the blockmodelling problem. We first generate

the memberships (C) and the image matrix (M). Then we

generate the graph (A) using A = CMCT . We generate

C by drawing from a hyper-geometric distribution, where

the probability of a vertex to each position is the position’s

relative size. To generate M, we need to decide which

blocks are dense, which is dependent on the evaluation task.

We generated M such that their dense blocks replicate two

common graph structures: community and hierarchy.

To vary the sparsity, we change the densities of the dense

blocks in M. To vary the noise, we generate the desired

graph structure as a true image matrix, Mact. A background

image matrix, Mback, with the same expected number of

edges, is a uniformly random distributed assignment of the

edges. We then control the amount of noise in the graph by

weighting the contribution of Mback and Mact, via M =
(1− λ)Mact + λMback, where 0 ≤ λ ≤ 1.

We evaluate the algorithms using 11 real networks2 (see

Table II). These are graphs that are commonly used to eval-

uate social network analysis and blockmodelling algorithms.

2) Evaluation Criteria: To evaluate how well the mem-

berships are recovered, we use the same approach as [6][7]

by setting the cluster label of a vertex to the maximum

of its row in C (i.e., maxk(Cik)), then using hard cluster

comparison measures. Following those papers, we used

Normalised Mutual Information (NMI) [11].

To evaluate how well the latent structure is recovered, we

compute the Euclidean distance between the reference and

recovered image matrices. Because there is a correspondence

issue with position labels, we first find the best permutation

matrix P ∈ {0, 1}k×k that minimises the distance between

the membership matrices: P = argmaxP d(C
(1),C(2)PT).

Then we can compute the distance between the images as

d(M(1),M(2)) = ||M(1) −PM(2)||2F .

For the real datasets, there are no reference image matrices

to compare against. Hence, we use an encoding measure

[9] to evaluate how well the factorisation conforms to ideal

clustering structures. It uses a codeword that encodes the

graph using the blockmodel structures. If the blockmodel is

2Available at http://www-personal.umich.edu/∼mejn/netdata/

740

Name Position Approach Image Approach C constraint M constraint
∑

k Cik = 1?
RGC [7] Multiplicative Multiplicative 0 ≤ C 0 ≤ M N

ANMF [6] Multiplicative Multiplicative 0 ≤ C 0 ≤ M N
BNMTF [3] Coordinate Descent Coordinate Descent 0 ≤ C ≤ 1 0 ≤ M N
RGC-N [7] Multiplicative, ad-hoc Multiplicative 0 ≤ C ≤ 1∗ 0 ≤ M Y∗

ANMF-N [6] Multiplicative, ad-hoc Multiplicative 0 ≤ C ≤ 1∗ 0 ≤ M Y∗

TRIBAC Multiplicative Coordinate Descent 0 ≤ C ≤ 1 0 ≤ M ≤ 1 Y

Table I: Summary of the algorithms and objectives. Names in italic represent algorithms proposed in this paper. [*] Achieved

with ad-hoc post-optimisation normalisation.

(a) NMI. (b) NMI.

(c) Image Distance. (d) Image Distance.

Figure 2: NMI and the image distance results for the

synthetic datasets. The 1st column are results for the

hierarchy structure as we vary the background noise levels.

The 2nd column are the results for varying the sparsity on

community structured graphs. All the lines are consistently

coloured across the plots, and their legends are available

in the 2nd row.

an ideal one, than the codeword length is minimised.

We used the default number of iterations for RGC (400),

ANMF (400) and BNMTF (100). For a fair comparison, we

set the number of iterations for TRIBAC to 100 and for

each experimental run, we initialise each of the algorithms

with the same C and M. All implementations are in Matlab

2013b and the experiments ran on a PC with an Intel Core

i7-4600U CPU and 12GB of memory.

B. Results: Varying Noise, Structure and Sparsity

Figure 2 shows the results of the algorithms when we

vary the background noise levels (1st row) and sparsity (2nd

row) of the generated datasets. The results are the average

of 50 runs for each of the five graphs generated at each

parameter setting. We vary the noise levels from 0 to 0.9

and the sparsity from 0.1 to 1.

Algorithm Code Len.
∑

C
∑

M Zero rows Time (s)
RGC 236497 67.9 70.94 268 15.3

ANMF 240967 250.5 2.457 268 18.7
RGC-N 237321 1224 0.122 268 15.6

ANMF-N 239220 1224 0.116 268 19.0
BNMTF 230667 100.5 19.2 113.7 749
TRIBAC 217653 1490 1.002 0 31.6

Table III: Results for the PolBlog dataset. “Zero rows”

column is the number of rows in C that sum to 0.

First, we consider the NMI results when we vary the

noise (Figure 2a). TRIBAC is generally more accurate in

recovering the generated positions, particularly at lower

background noise levels. It is interesting to observe that

for RGC, the ad-hoc row normalised results (RGC-N) have

much higher accuracy than no normalisation, which further

highlights the importance of the right scaling for the factors.

Now consider the image distance (Figure 2c). The figures

show that RGC and BNMTF have large scaling issues, with

some of their image matrix entries being incredibly large.

Even for ANMF and the normalised variants RGC-N and

ANMF-N, they can have sizeable image distances from the

ground truth over some of the noise levels. Only TRIBAC

consistently has low image distance across all structures and

noise levels. This again shows the importance of proper

scaling for both the image and membership matrices.

Figures 2b and 2d show the NMI and image difference

results when the density (sparsity) of the generated graphs

are varied. Apart from the most sparse graphs (density of

0.1), TRIBAC has the highest NMI across the other density

values. Again, the image differences for RGC, RGC-N and

BNMTF are very large, indicating the difficulty with their

interpretation and issues with their formulations.

C. Results: Real Dataset Evaluation

Table III shows the results for the PolBlog dataset. We

compare the algorithms based on their code lengths, sums

of their membership and image matrices, number of zero

sum rows and the running times. We also compare the code

length of the algorithms across all 11 real datasets in Table

IV. All reported results are the average of 100 runs.

First consider Table III. For PolBlog, TRIBAC has the

shortest code length (2nd column) and most able to recover

useful structure. Next, consider the
∑

C and
∑

M (columns

3 and 4), which provide an indication of the scales of C

741

Algorithm Baboon Monast. Karate Les Mis. Pol. Books Adj-Nouns Football Jazz C.Elegans Airport Pol. Blogs
RGC 140.5 142.9 585.5 2065 3838 4349 3987 14343 15086 21679 2.38×105

ANMF 140.4 122.7 576.2 2111 3746 4331 4073 12964 15028 22002 2.38×105

RGC-N 141.7 148.7 581.0 1987 3760 4350 3873 14343 15086 23344 2.38×105

ANMF-N 141.6 135.3 577.1 2039 3710 4347 3980 12980 14956 23534 2.41×105

BNMTF 140.3 144.4 578.4 2117 3772 4349 4742 12984 14826 22644 2.29×105

TRIBAC 135.1 138.4 555.0 1585 3802 4091 4017 13334 14038 16486 2.17×105

Table IV: Average coding length results (in bits) for the different algorithms and datasets.

and M and their interpretability. Both RGC and BNMTF

have very large image matrix sums, meaning that some of

the entries are excessively large and difficult to understand.

They also cause the scales for C (see the
∑

C column) to

be relatively small, again making them harder to understand.

In contrast, all the row normalised algorithms (RGC-N,

ANMF-N and TRIBAC) have similar C sums that equal

the number of vertices and their image sums are also

similar. Column 5 shows the number of rows with zero

sum. Reconsider Table III, which shows RGC and ANMF

and their normalised variants all having 268 vertices (rows)

out of 1490 vertices with zero membership to all positions.

BNMTF have 113.7 vertices, which is still a large number,

while TRIBAC has no zero rows. This demonstrates the

importance of the row sum constraints on C to ensure

good and understandable solutions. Column 6 shows the

running times of the algorithms. BNMTF has much longer

running times than the other algorithms, which can make

it impractical to use. All the other algorithms, including

TRIBAC, generally have comparable running times.

We now consider the codeword lengths for all 11 datasets

(Table IV). We can observe that TRIBAC has the shortest

codewords for 7 out of the 11 datasets, demonstrating that

TRIBAC is generally more accurate at recovering good

blockmodel structure than other algorithms. Furthermore, the

row normalised/constrained algorithms (RGC-N, ANMF-N

and TRIBAC) have the shortest code lengths in 10 out

of 11 datasets, emphasising the importance of the row

sum constraint of C in the discovery of higher quality

blockmodels.

VI. CONCLUSION

In this paper, we have described the important problem

of blockmodelling in graph clustering and shown why the

current state-of-the-art factorisation methods cannot discover

blockmodels accurately in graphs. We proposed a new

objective that incorporates additional constraints on the

membership and image factors. These constraints impose

interpretable semantics onto the factorisation, as well as

helping to avoid extreme blockmodels. In addition, we have

proposed a novel algorithm TRIBAC, that combines multi-

plicative and coordinate descent approaches to optimise our

new objective. In our evaluation, we showed that TRIBAC

can recover generated blockmodels more accurately than

existing algorithms as well as produce blockmodels that have

the clearest structure, while having comparable running time

to the state-of-the-art methods.
For future work, we plan to investigate approaches such

as [12] to speed up the bottleneck coordinate descent part of

TRIBAC. Another potential direction is to extend TRIBAC

to possiblistic clustering but at the same time avoid extreme

values sometimes returned by BNMTF.

REFERENCES

[1] M. Rosvall and C. Bergstrom, “Maps of random walks on
complex networks reveal community structure,” PNAS, vol.
105, pp. 1118–1123, 2008.

[2] S. Wasserman and K. Faust, Social Network Analysis: Meth-
ods and Applications. Cambr. Univ. Press, 1994.

[3] Y. Zhang and D. Yeung, “Overlapping Community Detection
via Bounded Nonnegative Matrix Tri-Factorization,” in Pro-
ceedings of KDD, 2012, pp. 606–614.

[4] D. Lee and H. Seung, “Algorithms for Non-negative Matrix
Factorization,” Proceedings of NIPS, vol. 13, pp. 556–562,
2001.

[5] J. Chan, W. Liu, C. Leckie, J. Bailey, and K. Ramamohanarao,
“Discovering latent blockmodels in sparse and noisy graphs
using non-negative matrix factorisation,” in Proceedings of
CIKM, 2013, pp. 811–816.

[6] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, “Community
discovery using nonnegative matrix factorization,” DMKD,
vol. 22, no. 3, pp. 493–521, 2010.

[7] B. Long, Z. Zhang, and P. Yu, “A general framework for
relation graph clustering,” KAIS, vol. 24, no. 3, pp. 393–413,
2009.

[8] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal Nonnega-
tive Matrix Tri-Factorizations for Clustering,” in Proceedings
of KDD, 2006, pp. 126–135.

[9] J. Chan, W. Liu, C. Leckie, J. Bailey, and R. Kotagiri, “Seqi-
Bloc: Mining Multi-time Spanning Blockmodels in Dynamic
Graphs,” in Proceedings of KDD, 2012, pp. 651–659.

[10] E. Airoldi, D. Blei, S. Fienberg, and E. Xing, “Mixed mem-
bership stochastic blockmodels,” JLMR, vol. 9, pp. 1981–
2014, 2008.

[11] M. Meila, “Comparing clusterings - an information based
distance,” J. Multi. Anal., vol. 98, no. 5, pp. 873–895, 2007.

[12] C. Hsieh and I. Dhillon, “Fast coordinate descent methods
with variable selection for non-negative matrix factorization,”
in Proceedings of KDD, 2011, pp. 1064–1073.

742

