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Visual assessment of clustering tendency for
incomplete data

Laurence A. F. Park, James C. Bezdek, Christopher Leckie, Kotagiri Ramamohanarao, James Bailey and
Marimuthu Palaniswami

Abstract—The iVAT (asiVAT) algorithms reorder symmetric (asymmetric) dissimilarity data so that an image of the data may reveal
cluster substructure. Images formed from incomplete data don’t offer a very rich interpretation of cluster structure. In this paper we
examine four methods for completing the input data with imputed values before imaging. We choose a best method using
contaminated versions of the complete Iris data, for which the desired results are known. Then we analyse two real world data sets
from social networks that are incomplete using the best imputation method chosen in the juried trials with Iris: (i) Sampson’s monastery
data, an incomplete, asymmetric relation matrix; and (ii) the karate club data, comprising a symmetric similarity matrix that is about
86% incomplete.

Index Terms—reordered dissimilarity images; VAT; iVAT; visualisation; incomplete data; cluster heat maps; imputation; Karate club
data
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1 INTRODUCTION

L ET O = {o1, . . . , oN} denote a set of N objects (red
wines, babies, fish, etc.). Let R = [rij ] be a matrix of

relational values on O×O, rij being the relation between oi
and oj . The most common form of R arises as dissimilarity
data, say D = [dij ] , where dij is the pair wise dissimilarity
between feature vectors xi and xj in Rp, dij = ‖xi − xj‖.
If all the vectors are distinct, no dij = 0. But when there are
duplicate vectors, say xs = xt, then d(xs,xt) = 0; we call
this a legitimate zero. In either case D is always a complete,
symmetric matrix of distances with no missing values. But
for other types of (dis)similarity data, dij = d(oi, oj) may
not be complete, and may not be symmetric, dij 6= dji.
For example, Sampson’s monastery data [1] is asymmetric
and incomplete. Breiger et al. [2] give the relationship from
Bonhaven to Ambrose the value 2 in Sampson’s data, but the
value from Ambrose to Bonhaven in the opposite direction
is 1. Some relationships are “missing” in this real data.
According to Wasserman and Faust [3], this is the most
common form of social network data. In what follows we
call such data “incomplete.” The Karate club data is another
example of social network data with missing values [4]. This
famous data set is a symmetric social network that links 34
members of a university Karate club. There are 156 links,
and 1000 missing values.

A relation matrix may have legitimate zeroes in it if
derived from non-distinct feature vectors, or because the
relationship has actual measured values of zero. But when
data are missing from a relation, it is a mistake to simply
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replace the missing values with zeros in order to make an
algorithm run. This is the case we are interested in: when
entries of R are missing, is there a reasonable way to impute
values that improve the analysis of cluster substructure in
the data?

In this article, we will examine the how to minimise
the effect of missing relational values on determining the
clustering tendency. Particularly, we will examine its effect
on the iVAT [5] method of visual assessment and examine
how we can determine the quality of the visualisation after
taking into account the missing values.

Previous work has shown that we have the choice of
removing the objects with missing values, imputing the
missing values, or adjusting the algorithm to suit missing
values. Removing objects with associated missing values is
generally a bad idea, since we are also removing information
that will assist us. For our case, we have the relational
matrix D, therefore removing missing values would lead to
removing all distances to any object with a missing relation.

There is not a clear distinction between imputation and
algorithm adjustment, since each method aims at using the
known data to minimise the effect of missing values. A
comparison of k-means and Fuzzy c-means clustering, with
various adjustments for missing feature values, are made in
[6], [7]. The distance metrics and centroid computation are
altered to allow for missing feature values. These methods
are not suitable for our case, as we begin with the set of
relations, and have no knowledge of the object features.

A comparison of imputation methods for clustering are
presented in [8]. The imputation consists of regression and
dimension reduction methods, where the known object fea-
ture values are used to estimate the missing feature values.
The imputation is performed on missing feature values
where the feature vectors exist in a multidimensional real
space. Unfortunately, iVAT requires imputation of relational
values, not feature values. Therefore different assumptions
must be made about the missing values and we have the
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added constraint that each imputed value is positive. We
show later in the article that regression is not appropriate
for relational data.

The representation of a graph is similar to the relational
matrix D used by iVAT (where the graph contains similari-
ties rather than dissimilarities), therefore imputation of edge
weights for graph clustering may be useful for iVAT. Graph
clustering with missing edge weights is considered in [9].
The clustering is performed using a convex program that
takes into account the uncertainty of the missing values.
Therefore, this work cannot be applied to iVAT (which
uses a dedicated reordering algorithm). Imputation of edge
weights is examined in [10], where missing values are im-
puted with either a sample from a uniform random variable,
or the expected value from the known data.

This survey of the literature shows that our problem is
unique in that we do not want an imputation method to
determine missing values or to provide accurate clustering,
but we want an imputation method that will assist iVAT
in visually presenting the correct number of clusters in
the data. Our task is to identify an imputation method
for relational data, such that we maximise the iVAT image
dependency on the known values, and minimise its depen-
dency on the imputed values. Our research question is “Can
we exploit the known values in D to provide imputation for
iVAT?” To answer this question, we must explore methods
of imputation of dissimilarities, and also examine the effect
of the proportion of missing values on the quality of iVAT
images.

We provide the following contributions:

• An investigation of the effect of various imputation
strategies on the quality of asiVAT images (Section
4).

• The introduction of the use of bias and variance in
visual assessment of cluster tendency (Section 4), and
the concept of the iVAT summary image to visually
assess the variance associated to an imputation tech-
nique (Section 4, 5 and 6).

• An analysis of the cluster tendency of the Sampson
and Karate data (Section 5 and 6).

The article will proceed as follows: Section 2 provides
a description of the iVAT and asiVAT algorithms for vi-
sualising cluster tendency, and discusses how we will be-
gin investigating imputation strategies. Section 3 provides
details of the set of imputation methods that we will in-
vestigate. Section 4 describes the how the concepts of bias
and variance will assist us in determining the utility of an
imputation method for iVAT, and examines the bias and
variance associated with each of the imputation methods.
Section 5 examines the cluster tendency of the Sampson data
using asiVAT with imputation. Finally, Section 6 provides
details of the cluster tendency for the Karate data using
imputed asiVAT.

2 BACKGROUND ON VISUAL CLUSTERING TEN-
DENCY ANALYSIS

The idea of a visual representation of the rows and/or
columns of D to reveal structural relationships between

pairs of objects began with Loua [11]. Visualisation of re-
lationships in D by examining reordered dissimilarity images
(RDIs) was first discussed by Czekanoski [12]. Wilkinson
and Friendly [13] call the RDI a “cluster heat map”. These
authors give a good account of the state of the art in
2009, which includes an estimate that this method of data
visualisation has appeared in more than 4,000 papers in the
last decade.

Let D be a set of dissimilarity data, dii = 0 for all i, and
D = DT . The visual assessment of tendency (VAT, [14]) model
reorders D to D? using the ordering indices of a minimal
spanning tree on D, and then displays a grayscale image
I(D?) of D?. Each element on the diagonal is zero (black).
Off the diagonal, the scaled values range from 0 to 1 (white).

The basic rationale for VAT is that if an object tends
to cluster with other objects, then it should also be part
of a submatrix of “similarly small” values corresponding
to those objects. These submatrices are seen as dark blocks
along the diagonal of the VAT image I(D?). Contrast can
be improved by setting the diagonal to the minimum of the
off-diagonal values. For an application of VAT in security
administration, see Zhang et al. [15], where VAT is the basis
of a product called RoleVAT, an engineering tool for role
based access control.

Improved VAT (iVAT, [5]) begins by transforming D to
D′ = f(D), where f is the feature extraction operation
that replaces each dij in D with the geodesic distance
d′ij , followed by VAT reordering of D′ to D′?. The iVAT
image I(D′?) of many data sets visually represents potential
cluster structure in the data much more clearly than VAT
images do.

The requirement that D = DT limits the utility of the
VAT/iVAT algorithms. Recently, Havens et al. [16] extended
these models to the asymmetric case with asiVAT (asym-
metric VAT). The basis of this extension is to transform D to
(D + DT )/2 before constructing D′?. Figure 1 gives pseu-
docode for asiVAT, which reduces to iVAT when D = DT

2.1 Selection of an Imputation Method

There are any number of imputation schemes that might
be useful. If we test different schemes on a data set for
which the results are unknown, there is no way to judge
whether a particular method is or is not performing well.
In other words, we need some sort of “ground truth” for
the imputation methods, so we will process a data set for
which the expected results are pretty well known. The test
data we will use is the Iris data, collected by Anderson
in 1935 [17], and subsequently made famous by Fisher in
1936 [18]. Iris comprises n = 150 feature vectors in p = 4
dimensions. Each vector in Iris has one of three physical
labels corresponding to one of three Iris subspecies: setosa,
versicolor, or virginica. The number of clusters in Iris is usu-
ally declared as either 2 or 3 depending on the model used
to define clusters. Most models identify c = 2 clusters in Iris.
We begin by calculating the symmetric Euclidean distance
matrix DE . DE will contain one legitimate pair of zeroes,
because x102 = x143, so d(x102,x143) = d(x143,x102) = 0.

Figure 2 is the iVAT image I(DE) of DE . The two dark
diagonal blocks of this image clearly suggest that the pri-
mary structure in Iris is two clusters. This image comprises



3

Fig. 1. The asiVAT algorithm

Require: D ∈ Rn×n, dij ≥ 0, dii = 0
1: procedure ASIVAT(D)
2: D ← (D +DT )/2
3: ## Compute: VAT matrix D?

4: K ← {1, . . . , n}
5: Initialise: I ← J ← ∅; P ← {0, . . . , 0}
6: Select (i, j)← arg minp∈K,q∈K (dpq)
7: P (1)← i; I ← i; J ← K\{i}
8: for r ← 2 to n do
9: Select (i, j)← arg minp∈I,q∈J (dpq)

10: P (r)← j; I ← I ∪ j; J ← J\{j}
11: end for
12: D? ← DPP ## Permute rows and columns
13: ## Compute: iVAT matrix D′?

14: Initialise: D′? ← [0]n×n

15: for r ← 2 to n do
16: Select j ← arg mink∈{1,2,...,r−1} (D?

rk)
17: D′

?
rc ← D′

?
cr ← D?

rc where c = j
18: D′

?
rc ← D′

?
cr ← max (D′

?
rj , D

′?
jc),

where c = {1, . . . , r − 1}\{j}
19: end for
20: return D′?

21: end procedure

the visual ground truth for our imputation experiments.
Our plan is to delete randomly selected values in Iris, use
the remaining values to impute an approximation D̂E to
DE , display the iVAT image I(D̂E) of D̂E , and compare it
visually to Figure 2. (When D̂E is asymmetric, we will use
asiVAT.) Different imputation methods will produce differ-
ent D̂Es, and thus, different images. We will use both visual
and statistical analysis of a number of trials of the basic
experiment to select the best imputation method. The Iris
experiments can be thought of as a training session for the
imputation methods, since we use contaminated versions of
this complete data set to select the best imputation method.
After we settle the issue of which imputation method to use,
we will apply it to the incomplete monastery and Karate
club data sets, and compare the resultant images and results
to several previous studies.

Note also that all experiments performed on the Iris data
were also performed on simulated data containing varying
numbers of multidimensional Gaussian clusters (providing
iVAT images with varying numbers of blocks along the
diagonal). The findings from these experiments were the
same as those from the Iris data and so were omitted from
this article.

Now we can state the objective of the current study:
when D is incomplete, can we impute values for the “miss-
ing” values that make the transformed image, say I(D??),
more useful for assessment of cluster tendency in D?

In the following sections, we use the notation D for the
set of known dissimilarity values, dij ∈ D for the known
dissimilarity between objects oi and oj , ∆ for the set of
unknown dissimilarity values, and δij ∈ ∆ for the unknown
dissimilarity between objects oi and oj .

Fig. 2. The iVAT image of the Iris data

2.2 Related Work

This work concerns with the imputation of missing relations
to provide visually correct images when using the many
forms of VAT, and therefore only operates on the non-
negative domain of features and responses. There has been
no prior work on the imputation of relational data for the
visualisation that is required by iVAT. Previous work has
been proposed with similar but different ideas to those
presented in this article, but as stated in the introduction
those methods are intended for object data, not relational
data, and are used to preserve a given set of statistics rather
than provide an appropriate visualisation.

The EM algorithm [24], [25] is used to compute model
parameters from incomplete data. The method iteratively
computes the expected value of missing information, then
uses the known and computed values to obtain maximum
likelihood parameters of the model. For our application, it
is not clear what form the likelihood function should take,
since our goal is the visualisation of the number of clusters.
One possibility is to compute the likelihood of an iVAT
image based on the clarity of the clusters, but this implies
that a parameter exists that controls the clarity. Further work
is required to identify the usefulness of the EM algorithm for
visualisation.

Imputation using IVEWARE [26] (algorithm in [27]) is
the same as our Simple Linear Regression Imputation, but
the imputation of the ith variable uses the imputed values
of the 1st to i − 1th variables, and then re-estimate once
all imputed values are computed. IRMI [27] builds upon
IVEWARE by first imputing all missing values with approxi-
mate values, then iteratively recomputing all missing values
until a convergence rule is satisfied. Both of these methods
are based on GLM modelling, therefore not appropriate for
our imputation of relations (as described in Section 3.2.1).

The MICE algorithm [28] is a framework for imputation
that uses Gibbs sampling to compute a distribution over
the imputed values for inspection and provides one of the
samples as the imputation. The initial inspection process
is similar to our computation of the iVAT summary image
(Section 4.3), where instead of computing the next imputa-
tion from the last, we reinitialise the imputed values, and
allow for a burn-in period for each sample. Visualisation of
the similarity of the resulting imputations then allow us to
decide if there is an appropriate imputation, and where to
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select it from (using the modes of the summary iVAT image).
Predictive Mean Matching (PMM) [29] is a popular

imputation method for the MICE framework. Using this
method, regression is performed over the known variables
to predict values for missing variables, but instead of imput-
ing using the predicted value, we impute using the known
data value with the smallest residual. This ensures that the
imputed value remains within the domain of the known
values. The concepts from PMM can be adapted to our
Kernel regression method, which we will explore in future
work.

The code used to compute the iVAT and asiVAT images,
as well as the imputation methods can be downloaded from
the authors Web site1.

3 IMPUTING DISSIMILARITIES

In this section we will examine three methods of imputing
the missing dissimilarity values in D: 1) sampling from
a given distribution, 2) prediction from regressing over
the known values, and 3) a combination of sampling and
regression.

3.1 Imputation by sampling

There are many ways to impute values for missing data in
D. Perhaps the simplest scheme is to interpolate linearly
between the missing elements of D. More sophisticated
(and better) schemes use random samples drawn from an
assumed or estimated probability distribution. In this sec-
tion, we will examine uniform and bootstrap sampling for
imputation.

We do not assume that D is symmetric, but we do
assume that it is hollow (dii = 0 for all i) and that dij ≥ 0 for
pairs (i, j) such that dij is an observed input value. Since D
is a dissimilarity matrix, we will require imputed values δij
to be greater than or equal to zero. Each of these sampling
methods have complexity O(1) with respect to the data.

3.1.1 Uniform Imputation
If we assume that all values within the range of the known
dissimilarity values dij are equally likely candidates for the
missing values δij , we take samples from the uniform dis-
tribution, bounded by the minimum and maximum known
dissimilarity values.

The imputed dissimilarity of objects oi and oj is com-
puted as:

δij ∼ Uniform
(

min
dij∈D

(dij), max
dij∈D

(dij)

)
(1)

For example, consider the dissimilarity matrix:

D =


0 1 2 2
2 0 1 −
1 2 0 1
2 2 2 0

 (2)

where the dash ‘-’ denotes a missing value. The minimum
and maximum known dissimilarities are 0 and 2 respec-
tively, therefore, we impute the missing value by taking a

1. http://www.scem.westernsydney.edu.au/∼lapark/impVAT

random sample from the distribution Uniform(0, 2), giving
us, for example, 1.13.

This method of sampling is simple and does not depend
on the objects oi and oj . Unfortunately, it uses only the
extreme values of the known dissimilarities, and therefore
can be quite adversely affected by outliers.

3.1.2 Bootstrapped Imputation

Uniform imputation assumes (somewhat naively) that the
distribution of dissimilarities is uniform. Rather than assum-
ing a priori any particular form for the sampling distribu-
tion, we can use the known dissimilarities to construct an
approximation to the dissimilarity distribution, and sample
from this distribution. This process is called bootstrapping,
since we are sampling from a sample to obtain further infor-
mation about its distribution [19]. The imputed dissimilarity
of objects oi and oj is computed as:

δij ∼ Bootstrap (D) (3)

where the bootstrap process randomly selects an element
of D, where each element has equal probability of being
selected, to return as the sample.

For example, consider the dissimilarity matrix in (2).
Using the known dissimilarity values, we can construct the
frequency table and proportion estimates of each dissimilar-
ity:

dij 0 1 2

Frequency 4 4 7
Sample Proportion 0.267 0.267 0.467

Then, for each missing value, we take a random sample
from the set {0, 1, 2} using the sample proportions as the
probability for each random draw. For example, if we need
to impute five missing values, a sample of size five might
produce the imputed values 2, 1, 2, 0, 0.

This method is independent of the objects oi and oj , but
is preferred to uniform imputation since it takes into account
the distribution of the known dissimilarities.

3.2 Imputation by regression

The two sampling methods proposed in Section 3.1 compute
the imputed value δij where δij is not conditionally depen-
dent on i and j. This implies that if we permute the set of
imputed values, we will not change the likelihood of the
resulting imputation, since they are not dependent on their
position. The dissimilarity δij is the dissimilarity between
objects oi and oj , and so should be dependent on the values
of i and j. In this section, we will examine two regression
methods that depend on transitive connections of i and j
through intermediate paths between them to compute the
unknown dissimilarity δij .

3.2.1 Simple Linear Regression Imputation

To compute the unknown dissimilarity δij between object
pair (i, j), we can make use of the known dissimilarities
between the object pairs (i, k) and (k, j). In fact, if we take
the vector di· containing the set of known dissimilarities
between oi and the remaining objects, and find another
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vector dk· that is approximately equal to di·, then we would
expect dij to approximately equal to dkj .

Using this concept, we can build a linear model, fitting
d
(j)
k· to the response dkj , where d(j)k· is the vector dk·, with

the jth element removed. This allows us to predict the
missing value δij using the known values d(j)i· :

dij = 〈d(j)i· ,β
(j)〉+ ε (4)

where d(j)i· is the vector of dissimilarities from object i to
the other n− 1 indices, excluding the dissimilarity between
i and j, β(j) is the vector of regression coefficients (fitted
using the existing relationships between d(j)k· and dkj), 〈∗, ∗〉
is the Euclidean inner product of the two vectors, and ε is
Normally distributed with constant variance.

For example, using the dissimilarity matrix in (2), we
treat the column with the missing value as the depen-
dent variable that we will regress over, and the remaining
columns as the independent variables, so that each row is
a regression observation. This gives us the simple linear
regression:  2

1
0

 =

 0 1 2
1 2 0
2 2 2

 β1
β2
β3

 (5)

Using least squares, we compute β(j) = [−1.67, 1.33, 0.33].
The value of δij is then given by 〈d(j)i· ,β

(j)〉, giving us δij =
−3.

But all the entries in D must be non-negative, so this
result cannot be used. We can use instead a Generalized
Linear Model, with a link function that maps the (−∞,∞)
domain to (0,∞), but unfortunately, the occurrence of zeros
in the distance matrix causes problems with the model fit-
ting. We could also use the Tobit model, forcing all negative
values to zero. But obtaining a negative response from a
linear model, where all fitted responses were non-negative,
shows that there is a problem with the prediction.

We should also note that fitting a regression model im-
plies that some of the variables have a higher correlation to
the response than others, which would be the case for most
imputation problems. In our case our data are dissimilarities
(all having the same scale, and can be thought of as all
coming from the same distribution), therefore information
about one given dissimilarity should not be more important
than information about another given dissimilarity. There
may be sample correlation between dissimilarities related
to a specific object, but this correlation may not be present
in the population. Instead of fitting a regression model, we
can take advantage of the geometric properties of dissimi-
larities, and hence move on to the more appropriate Kernel
Regression.

3.2.2 Kernel Regression Imputation (KR)

Simple linear regression imputes the missing value δij
based on the similarity of other index pairs to (i,j), but it
assumes that the relationship between the dissimilarities is
linear. Kernel regression (or kernel smoothing) [20, chap. 6]
regresses over a value by computing the weighted sum of

the other dissimilarities, where the weight is based on the
dissimilarity. Kernel regression is computed as:

δij =

∑
k 6=iK(di·,dk·)dkj∑
k 6=iK(di·,dk·)

(6)

where the kernel K(·, ·) is chosen based on the dissimilarity
space. If the dissimilarity space is Euclidean, the Gaussian
kernel is an appropriate choice:

K(x,y) = exp
(
−γ‖x− y‖22

)
(7)

where γ ∈ R+.
For example, for the dissimilarity matrix in (2), we treat

the column with the missing value as the dependent vari-
able that we will regress over, and the remaining columns
as the independent variables, where each row is a regression
observation. If we let the Gaussian kernel parameter γ = 1:

δ2,4 =
K(d2·,d1·)d14 +K(d2·,d3·)d34 +K(d2·,d4·)d44

K(d2·,d1·) +K(d2·,d3·) +K(d2·,d4·)

=
0.086× 2 + 0.086× 1 + 0.107× 0

0.086 + 0.086 + 0.107
= 0.927

This is a reasonable value for the range [0, 2] of recorded
values in D. To see the effect of changes to the estimate
as the kernel parameter gamma changes, we impute the
required value for γ = 0.1, 0.5 and 2.0 and 5.0. The
estimates for these choices are 0.993, 0.964, 0.849 and 0.611.
Any of these values seems reasonable for the problem at
hand. Choosing gamma in (0, 1] results in pretty similar
values, but the range for gamma should probably depend
on the range of observed values in D. Note that Kernel
regression is a set of weighted inner products and so has
complexity O(N2), where N is the number of objects.

3.3 Imputation by Bootstrapped Regression

Kernel regression imputation as described in Section 3.2.2
is useful if D contains only a few missing values. If there
are quite a few unknown dissimilarities, we may not have
enough information to perform a statistically significant
regression. For example, if we have the dissimilarity matrix:

D =


0 1 − 2
2 0 1 −
1 − 0 1
− 2 2 0

 (8)

simple kernel regression requires us to impute the missing
values one at a time. If we begin with the missing dissim-
ilarity in the second row, we must be able to compare the
second row with the other rows. But the other rows also
contain missing values, so some of the weights needed for
equation (6) are not available. To avoid this problem, we
propose using bootstrapped kernel regression (KR Boot):

1) First initialise the missing values using bootstrap
imputation (Section 3.1.2), resulting in a first esti-
mate D̂ for D; and then

2) Impute each of the missing values in D using D̂
as a placebo for D with the imputation method of
choice.
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3.4 Imputation by Iterated Bootstrapped Regression

To refine the imputed values further, we can repeat the
regression multiple times, using the imputed values from
the previous regression as the initial imputed values.

1) First initialise the missing values using bootstrap
imputation (Section 3.1.2), resulting in a first esti-
mate D̂0 for D; and then

2) for a in 1 to k:

a) Impute each of the missing values in D̂a

using D̂a−1 as a placebo for D with the
imputation method of choice.

3) Use D̂k as the best estimate of D

It is not clear that iterated regression will improve the
utility of the imputed values, so we will examine this fur-
ther in the experiments section. We specifically use Kernel
Regression, to obtain Iterated Bootstrapped Kernel Regression
(IBKR).

4 BIAS AND VARIANCE OF IMPUTED ASIVAT IM-
AGES

For an imputation method to be useful, the asiVAT images
generated after imputation must have low bias and vari-
ance. The images after imputation must have low variance,
in that the location of the missing values should have little
effect on the asiVAT image, and they must have low bias,
meaning that the mean asiVAT image should provide us
with an indication of the (nominally) correct number of
clusters.

If an imputation method leads to low bias but high
variance, then for a given data set, we would have low
confidence in the accuracy of the imputed asiVAT image. If
the imputation method leads to low variance but large bias,
then we would have confidence that the imputed asiVAT
image is not correct. Therefore it is important that both of
these attributes are minimal.

To examine the bias and variance of the imputed asiVAT
images, we require a data set with no missing values and a
“known” number of clusters. We can then randomly select
and remove dissimilarities, perform the imputation and
compute the asiVAT image. By repeating this process, we
will obtain a distribution of asiVAT images, that can be
examined for bias and variance.

To perform our analysis, we return to the Iris data. The
relational matrix is again constructed by computing the
Euclidean distance between all 150 object pairs, providing
us with the 150 × 150 matrix DE as above. We then ran-
domly remove off-diagonal elements (i,j) of DE and their
counterparts (j,i) (due to the Iris distance being symmetric)
to obtain m MAR missing values. An experiment of this
kind allows us to assess the accuracy of our imputation
methods because we know the exact values that are “miss-
ing,” and we think we know the number of clusters (which
we presume to be 2) within the data.

For each experiment, we will examine the four impu-
tation methods: uniform, bootstrap, kernel regression, and
bootstrapped kernel regression, and examine how they be-
have as the number of missing values grows.

We choose the kernel parameter γ = (2ns2)
−1 for kernel

regression, where n is the row length and s is the standard
deviation of the known values in D before imputation. This
choice allows us to normalise the distance between vectors
by the length of the vector n and the expected distance
between each dissimilarity and the mean dissimilarity (s2),
removing the dependence of the function on the size of D
and the magnitude of the elements in D.

We set the kernel parameter differently for bootstrapped
kernel regression. After using bootstrap initialisation, we
have many values in D that are estimates, therefore we
have lower confidence in these values. When using the
Gaussian kernel to compute the similarity of row j to row
i, if there are only a few bootstrapped values in dj·, we
can be reasonably confident that the computed similarity is
accurate. If row j has many missing points and hence many
bootstrapped values, then the similarity computed using the
kernel may not be accurate. To account for this, we set the
kernel regression parameter to a vector, whose jth element
is:

γj =
mj + 1

2ns2
(9)

where mj is the number of missing values for row j. By
weighting each element of the vector, we are providing a
weighted form of feature selection, that puts more emphasis
on the Kernel regression model variables that have been
fitted with less imputed values. These weights also act as
a form of regularisation that reduces the risk of over-fitting
the model to the data.

4.1 Accuracy of imputed values

Before we look at the iVAT images generated using each
imputation method, we will first examine how well each
imputation method is able to predict the missing values.
Using the Iris data, we randomly removed 5, 10, 50, 100,
500 and 1000 values from the matrix DE and then imputed
these values using each of the four methods. The Root
Mean Square (RMS) difference between the imputed and
true values was then measured and recorded. This process
was repeated 100 times to examine the variation in the RMS
values. The mean and standard deviation RMS values are
presented in Table 1.

The uniform and bootstrap imputation methods provide
an approximately constant mean error as the number of
missing values increases, with a decreasing standard devia-
tion. The Bootstrap mean error is lower than uniform, most
likely due to the bootstrap imputation using the distribution
of the data, while uniform does not.

Kernel regression and bootstrapped kernel regression
both begin with a lower RMS error. As the number of
missing values increases, the mean RMS error of kernel
regression approaches the those of bootstrap and uniform.
The mean RMS error of bootstrapped kernel regression
decreases as the number of missing values increases. The
reduction in error is likely to be due to bootstrapped kernel
regression making use of all known data in D, while kernel
regression can use only a small fraction when there is a large
number of missing values.
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TABLE 1. The mean and standard deviation RMS differences between imputed and actual values from the contaminated Iris data over 100
random trials. The RMS values are computed for 5, 10, 50, 100, 500 and 1000 randomly chosen missing values in the dissimilarity matrix DE .

Method m = 5 m = 10 m = 50 m = 100 m = 500 m = 1000

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Uniform 2.689 (0.7391) 2.726 (0.5494) 2.872 (0.2614) 2.818 (0.1762) 2.80 (0.0671) 2.799 (0.057)
Bootstrap 2.236 (0.6037) 2.332 (0.4239) 2.315 (0.2018) 2.318 (0.1315) 2.31 (0.0625) 2.311 (0.047)
KR 0.213 (0.0788) 0.209 (0.0541) 0.249 (0.0302) 0.290 (0.0314) 1.34 (0.4102) 2.211 (0.324)
KR Boot 0.704 (0.1939) 0.689 (0.1276) 0.673 (0.0626) 0.615 (0.0429) 0.42 (0.0221) 0.364 (0.018)

4.2 Bias in imputed asiVAT images
Our next set of experiments evaluate the bias induced
by each imputation method when generating the asiVAT
image. We do this by examining how well each method
of imputation leads to determining the number of clusters,
on average, using an asiVAT image. We will examine the
accuracy by examining the number of clusters suggested
by the asiVAT image and we will examine the bias of each
method relative to the number of missing values in D.

Bias in a distribution of asiVAT images can be deter-
mined by examining the mean of the set of asiVAT im-
ages. If we can determine the (apparently) correct number
of clusters from the mean asiVAT image, it implies that
the imputation method has induced little bias. But if the
number of apparent clusters in the input data differs from
the number suggested by the mean asiVAT image, then the
imputation method has introduced a large amount of bias
in the interpretation of data substructure.

To simulate this situation for detecting bias in the mean
asiVAT image, we begin with the Iris data, and:

1) Set the number of missing values m.
2) Randomly select m positions in DE and remove

them, resulting in the depleted matrix DE,m

3) Impute the set of m missing values in DE,m to
obtain D′E .

4) Generate the asiVAT image of D′E
This process was repeated 100 times to obtain a distribution
of asiVAT images for a given m and given imputation
method. The mean image was then generated by obtaining
the mean intensity at each pixel over the distribution of
asiVAT images.

If low bias exists, the mean asiVAT image will show two
clusters (which should be similar to the image of DE in
Figure 2). If there is high bias, the mean image may not show
two clusters. When this happens, the likelihood is high that
the replacement of m values (on average) in DE by imputed
values alters the actual substructure that asiVAT enables us
to visualise.

We split the bias experiments into two sets: the first set
contains small numbers of missing values, and the second
set contains large numbers of missing values.

4.2.1 Bias for a small number of missing values
The first set of experiments will compare the bias induced by
each of the four imputation/asiVAT methods when a small
fraction of the dissimilarities are missing.

We computed the mean asiVAT image over 100 trials
using the uniform, bootstrap, kernel regression and boot-
strapped kernel regression imputation methods. The images

were generated for missing value counts of m = 10, 50,
100 and 500. Figure 3 presents the mean asiVAT image
from 100 trials. To put this experiment in perspective, 500
missing values in Figure 3 corresponds to 2.22% of the
uncontaminated input values in DE .

Figure 3 shows that all of the imputation methods
induce low bias for 10 and 50 missing values, but only
the kernel regression and bootstrapped kernel regression
methods induce low bias for 100 and 500 missing values.
Note that both bootstrapped kernel regression and kernel
regression behaved similarly, implying that bootstrapping
did not greatly affect these asiVAT images.

4.2.2 Bias for a large number of missing values
In this section, we will perform the same experiments as
the previous section, but we increase the number of missing
values tom = 225, 1125, 2250 and 4500, which is equivalent
to 1%, 5%, 10% and 20% of DE . Due to the large number of
missing values, we are unable to perform kernel regression,
therefore the experiments in this section use the imputa-
tion methods uniform, bootstrap and bootstrapped kernel
regression. Figure 4 presents the mean asiVAT images for
the KR boot method: the other methods did not perform
well, and are not discussed further for the Iris data.

Only bootstrapped kernel regression provides little bias
when there are a large number of symmetric missing values.

Since bootstrapped kernel regression imputation seems
to produce fairly unbiased approximations, we test its limits
by increasing the number of missing values. Figure 4 shows
the results of our experiments with KR boot ranging from
1% to 60% missing values.

We can see in Figure 4 that bootstrapped kernel regres-
sion produces little bias for 30% missing values. For 40%
missing values the cluster structure is still visible, but not
clear. For 50% and 60% missing values, we find that the bias
is too great to suggest the correct cluster block structure.

The results from these experiments show that boot-
strapped kernel regression induces the least bias amongst the set
of imputation methods for all numbers of missing values. We also
found that if we have a very small number of missing values
(less that, say 5%), then any of the proposed imputation
methods is sufficient.

4.3 Variance in imputed asiVAT images

We found in the previous section that bootstrapped kernel
regression induced the least bias in the imputed asiVAT
image. In this section, we will examine the variance of the
asiVAT image distribution, which identifies how similar a
generated asiVAT image will be to the expected image.
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Fig. 3. Mean asiVAT images of 100 matrices on the Iris data for the four imputation methods. The columns show the results of having 10, 50, 100
and 500 missing values from D.

The variation in imputed values caused by different
missing value positions and random sampling causes vari-
ation in the generated asiVAT image. Therefore it is as if
we are sampling an asiVAT image from a distribution of
asiVAT images, conditioned on the known values in D and
the imputation method.

When comparing imputation methods, a robust method
will produce an asiVAT image distribution with low vari-
ance, so when we sample from the asiVAT distribution,
we are more likely to get what we expect. A non-robust
method will provide an asiVAT image distribution with
high variance, so we will not know what to expect when
sampling from the asiVAT image distribution (meaning
there may be large changes to the asiVAT image each time
we generate it, due to the imputation method not coping
with the randomness of uniform or bootstrap sampling).

To examine the variance of the asiVAT image distribu-
tion, we take a sample of N asiVAT images using a given
imputation method. Each of the N images is based on an
approximation of DE by a D̂E . An imputation method
with low variance will produce N approximations that are
similar to each other, while a method with high variance
will produce less similar approximations. Next, we describe
how to compute an N ×N matrix of correlation coefficients
from the N imputation trials.

The asiVAT algorithm builds D̂E by reordering the ob-
jects underlying DE . In other words, iVAT permutes the n
objects in DE . To compute the difference between two asi-
VAT images, we compare the difference in the permutations
of DE to D̂Ei and D̂Ej . A commonly used method of com-
paring permutations is Kendall’s τ distance, which counts
the discordant pairs between two rankings, and is also equal
to the minimum number of adjacent transpositions required
to transform one of the orderings of objects to the other.

For example, if we impute the missing value in matrix
D in equation (2) as 0, we obtain the asiVAT matrix:

VAT
(
D +DT

2

)
=


0.0 1.0 2.0 1.5
1.0 0.0 1.5 1.5
2.0 1.5 0.0 1.5
1.5 1.5 1.5 0.0

 ,p1 =


4
2
1
3


(10)

where p1 is the permutation of the rows and columns.
Instead, if we impute the missing value in matrix D in
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Fig. 4. Mean asiVAT images of 100 matrices on the Iris data for the KR Boot imputation method from 1% to 60% missing values.

equation (2) as 2, we obtain the asiVAT matrix:

VAT
(
D +DT

2

)
=


0.0 1.5 2.0 2.0
1.5 0.0 1.5 1.5
2.0 1.5 0.0 1.5
2.0 1.5 1.5 0.0

 ,p2 =


4
3
1
2


(11)

where p2 is the permutation of the rows and columns. We
have left out the path based distance refinement of the
asiVAT algorithm to simplify the example. When ignoring
the imputed values, the resulting matrices from the asiVAT
algorithm are identical up to a permutation, where the
permutation is shown by the vector p. Therefore, to compare
the two asiVAT matrices (images), we compute the Kendall’s
τ distance between the permutations.

τ(p1,p2) = 3 (12)

since the pairs (1,2), (2,3), (1,3) are discordant between the
two orderings. Note that the domain of τ is {0, 1, . . . , n(n−
1)/2}, where n is the number of items being ordered.

Given a set of N asiVAT images, we compute Kendall’s
pairwise dissimilarity between all N(N − 1)/2 asiVAT dis-
tance matrix pairs, to obtain a dissimilarity matrix DN of
distance approximations. To visualise the similarity between the
set of asiVAT images, we can view the iVAT image of the asiVAT
dissimilarity matrix DN . If this summary iVAT image is all
(or mostly all) black, the N asiVAT images are very similar
to each other and hence the method is robust. If the image
if DN is grey to white, then there is little similarity between
the asiVAT images, meaning that the method is not robust.

Summary iVAT images I(DN ) using the uniform, boot-
strap and bootstrapped kernel regression imputation meth-
ods on the Iris data, with 1%, and 20% missing values
are shown in Figure 5. There is high correlation between
the imputed asiVAT images for all methods when 1% of
the values are missing (shown by the mostly black iVAT
summary images). As we increase the percentage of missing
values, the correlation decreases. At 20% missing values
using uniform and bootstrap imputation, the dark blocks are
quite a bit lighter, indicating loss of correlation. But when
using KR Boot regression, the darkness fades only slightly.
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Fig. 5. Summary iVAT images I(DN ) for N = 100 imputed asiVAT
images on the Iris data.

This tells us that the asiVAT images generated using bootstrapped
kernel regression are highly correlated and hence the method is
robust and has low variance.

The presence of many small blocks in an iVAT correlation
image indicates that there are many small clusters of asiVAT
images. This implies that we probably won’t obtain similar
images when different sets of missing value positions are
provided.

If we have no information about the true asiVAT image
(the image generated where no missing values exist), we can
use the iVAT summary image of the asiVAT dissimilarity
matrix to measure confidence in the generated image. High
variance implies low confidence, while low variance implies
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high confidence.
At this point we are done with the Iris data, having used

it to identify the best imputation method as KR boot. The
examples in the next two sections will consider only this
method.

5 SAMPSON’S MONASTERY DATA

Sampson’s monastery data contains a set of measured re-
lationships between 18 monks. Each monk rated the top
and bottom three brother monks over 4 traits: like, esteem,
influence and consistency. A typical question in the poll
was ”list in order the three brothers who you like the
most.” Sums over the four traits result in 104 non-zero and
204 missing values off-diagonal. Thus, 68% of the data are
missing values because they were not collected. These are
the values we will impute.

When examining the Iris data, we had two sources of
variation, the position of the missing values (that were ran-
domly removed) and the randomness from the imputation
method. The Sampson data contains a predefined set of
missing value locations, so in this section, any variance
in asiVAT images will be due to the randomness in the
imputation method only.

The monks were asked to list the top 3 other monks,
meaning that only the greater relationships were recorded
and not the lesser relationships, so the missing values are
associated to lesser relationships. Therefore it would not
make sense to use bootstrapped initialisation, since the
bootstrapped values will be in the range of the known
values. The recorded values in the data are from 5 (the
highest), to 1 (the lowest). This implies that the missing
relationships should be considered to be between 0 and
1 (less than the known relationships but not negative).
Therefore, we initialise the missing values for bootstrapped
kernel regression uniformly with values between 0 and 1.

5.1 Imputing Sampson’s data

There is no true asiVAT image for the Sampson data, since
it contains missing values, Therefore, we are unable to
examine the bias (since it requires comparison to the true
asiVAT image). We can examine the variance of KR Boot on
Sampson’s data, since it only requires comparison to other
images made by the same method. We used the process
described in Section 4.3 to obtain the summary iVAT image
I(DN ) of the dissimilarity between asiVAT images for KR
Boot. The resulting image is shown in Figure 6.

The very light colour and many diagonal blocks in Fig.
6 indicate that KR boot produced many clusters of self-
similar approximations to the Sampson Data. This implies
that if we repeatedly run imputed asiVAT on the data, we
will probably obtain different asiVAT images on each run,
providing us with many different visual estimates of the
number of clusters in the data, and hence no confidence in
the results. This result agrees with our Iris data analysis,
where each method had high variance when 60% of the
dissimilarities were missing.

Fig. 6. iVAT image I(DN ) for N = 100 imputed asiVAT images using
KR Boot on Sampson’s data.

Mode

Fig. 7. The summary iVAT image I(DN ) for N = 100 imputed asiVAT
images obtained using IBKR on the Sampson data. The mode of the
asiVAT image distribution corresponds to the largest dark block (lower
right) on the diagonal.

5.2 Iterated imputation

The previous section showed that KR Boot is not effective on
Sampson’s data, where the likely cause is the high propor-
tion of missing values. In this section, we will examine the
effect of iterated bootstrapped kernel regression (IBKR) on
Sampson’s data. IBKR updates the value of a missing value
using the set of known values and the currently assigned
values to all other missing values. Therefore imputation at
each iteration is dependent on imputation from the previous
iteration2.

When performing IBKR, it would be ideal if the asiVAT
procedure converged. Our experiments indicate that IBKR
iterations lead to either convergence or to a limit cycle which
alternates between two asiVAT approximations. Faced with
this dilemma, we ran IBKR until one of the two conditions
emerged for each trial. When cycling occurred, we stopped
the iteration at a randomly chosen cycle. We found that
50 iterations was sufficient for these conditions to be met.
The resulting iVAT image I(DN ) of N = 100 asiVAT
dissimilarities is given in Figure 7.

Fig. 7 has three (hard to see) dark, diagonal blocks.
This indicates that IBKR produced three clusterings of very
similar approximations over the 100 trials. The largest dark

2. See Breiger et al. [2] for a similar approach called CONCOR to
iterated improvement of cluster analysis in Sampson’s data. CONCOR
attempts to improve the interpretation of structure in a correlation
matrix (but without imputation of missing values) by repeated com-
putation of correlation between the column vectors of the input matrix.
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Fig. 8. Three mode asiVAT images of Sampson’s data from the largest
dark block in Fig. 7.

block, in the lower right portion of I(DN ), represents half
of the estimated matrices. Comparing Figs. 6 and 7 shows
that IBKR estimates produce a much smaller variance than
KB Boot estimates when there are a large number of missing
values.

5.3 Mode of the asiVAT image distribution
The previous section shows that IBKR imputation results in
an asiVAT distribution with small variance, but we did not
describe how to select an asiVAT image from the distribu-
tion.

A general asiVAT image is used to estimate the number
of clusters in a given data set. The subsets of I(DN ) cor-
responding to its dark blocks suggest a certain number of
clusters (of approximations to the input data matrix). Each
of the blocks presumably contains very similar estimates.
So, if we can identify a large set of images with low
dissimilarity, we can examine them to obtain the suggested
number of clusters in the data. We call the largest set of
asiVAT approximations with low dissimilarity, the mode
approximation DM to D, and I(DM ) the mode asiVAT image
of the data.

To identify the number of clusters in Sampson’s data, we
examine the set of asiVAT images associated with the mode
in Figure 7. All of the images were very similar, so a sample
of three images taken from the mode are presented in Figure
8. Each of these images show three main clusters, where
the first contains one object, the second contains a smaller
stronger cluster and the third contains two sub-clusters.

To assess the overall utility of our method, we compare it
to several previously published results. First and foremost,
Sampson used a combination of several analytical tech-
niques to conclude that the 18 monks were best partitioned
into 3 subsets: the “young turks” = {1, 2, 7, 12, 14, 15, 16}:
the “loyal opposition” = {4, 5, 6, 8, 9, 10, 11, 13}; and the
“outcasts” = {3, 17, 18}.

Brieger et al. [2] and White et al. [21] both get exactly
the same conclusions using 3 block models of Sampson’s
data. But Brieger et al. also provide several alternate inter-
pretations of Sampson’s data that exhibit subtle changes to
the original structure. Their statement in [2] provides some
insight that justifies the finer analysis:

“the basic Sampson pattern, . . . , involves two sep-
arate main cliques (the Young Turks and the Loyal
Opposition), each possessing the familiar internal
organisation of leaders and hangers-on; but there
is also a peripheral group, the Outcasts, whose lack
of received positive sentiment from the top blocks
is analogous to that of the scapegoats”

(a) Image from [16].
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(b) Image using IBKR.

Fig. 9. Comparison of iVAT image in [16] to an IBKR image from Fig.
8 for Sampson’s data. The numbers on the diagonal refer to the monk
ID from Sampson’s data.

White et al. [21] posit a slightly different partition, viz.,
“young turks” = {1, 2, 7, 12, 14, 15, 16}: the “loyal oppo-
sition” = {4, 5, 6, 8, 9, 10, 11}; and the “outcasts” = {3, 13,
17, 18}.

Some basic split into three groups appears in nearly
every study of Sampson’s data. Fig. 9 compares the leftmost
IBKR image from Fig. 8 to the asiVAT image of Sampson’s
data that appears as Fig. 7(d) of [16]. The primary structure
in both images is a loner pixel and a large block containing
the other 17 monks. View 9(b) portrays the split of the
monks into c = 3 clusters, but these three clusters reside
within c = 2 blocks, suggesting that the primary structure is
two clusters,C1 = {1, 8−14, 16−18} unionC2 = {2−7, 15}.
You have to squint to see that monk 1 is inside a much larger
block that contains the 10 other monks in C1. The other
larger block C2 containing the remaining 7 monks supports
a split into two clusters {2, 3, 6, 15} and {4, 5, 7}. The point
here is not that this is in any sense a “better” interpretation
of the monastery data than the many different solutions
offered in the literature. Rather, it is to emphasise that IBKR
improves the quality of asiVAT images, such as the one in
view 9(a), that do not use imputation for the missing values.

6 ZACHARY’S KARATE CLUB DATA

The ZACHC Karate club data are a square symmetric set
of relational data collected by Zachary [4] that represent the
relative strength of the associations (number of situations
in and outside the club in which interactions occurred)
between the 34 members of a university karate club. The
maximum number of interactions is 7, between nodes 26
and 32; the minimum is 1, which occurs several times.
These data have appeared in many papers about social
networks because the evolution of the relationship between
pairs of members in the Karate club – which was known
and recorded by Zachary – provides “ground truth” in the
sense that the split into two subgroups actually occurred.
The question posed by many writers: how many clusters
does this network data contain after the split?

Zachary used an information flow model of network
conflict resolution to explain the split of this group into
c = 2 factions. Figure 10 shows Newman and Girvan’s [22]
interpretation of the network after the split as a weighted,
undirected graph G = (V,E,W ). The principals in the split
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Fig. 10. Newman-Girvan clusters in G [22]

Fig. 11. Zhang et al. clusters in G [23]

were the karate instructor (vertex 1) and the president of
the club (vertex 34). Square nodes in Figure 10 represent the
instructor’s faction and circular nodes depict the president’s
faction, so these authors also supported the idea that there
are c = 2 clusters in the objects represented by G.

The belief that this network contains c = 2 computa-
tionally evident clusters has been challenged many times.
For example, Zhang et al. [23], clustered a vector rep-
resentation of G based on spectral representation of the
information in the adjacency matrix of the graph with the
standard hard c-means algorithm. Figure 11 shows their
crisp 3-partition of the Karate club data. The clusters A =
{5, 6, 7, 11, 18}, B = {1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22} and
C = {1, . . . , 34}−{A∪B} shown there, with minor changes,
are accepted by many other writers as being “correct.”

Edge weight wij in G is just the relative strength of in-
teraction between individuals i and j, so the weight matrix
W is not a dissimilarity relation. There are 156 edges with
weights wij > 0, and 1000 edges that are not connected,
wij = 0, so this data set is about 86.5% incomplete. Accord-
ing to our previous determination, IBKR is needed. In order
to make this data compatible with iVAT input requirements,
it is transformed to the dissimilarity matrix D by setting
dij = 7 − wij . The diagonal of D is set to 0 after this
transformation.

Fig. 12 shows the 100 × 100 summary image I(DN )
made by computing Kendall’s Tau over N = 100 trials of
IBKR on the Karate club data. There are three main dark
blocks along the diagonal, indicating three major modes

Mode

Mode

Mode

Fig. 12. The summary asiVAT image I(DN ) for 100 trials of IBKR on
the Karate Club Data has 3 fairly equal modes.
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Fig. 13. Central asiVAT images from the three IBKR modes in Fig. 12,
showing Image I(D19) (left), Image I(D55) (center), and Image I(D88)
(right).

for the corresponding set of 100 asiVAT images, implying
uncertainty in the clustering.

Figure 13 contains asiVAT images 19, 55 and 88, which
are the centre images for each of the three modes seen in
Fig. 12. These three images present different interpretations
of clusters in the Karate club data.

Fig. 13(left) suggests a primary structure of c = 3 clus-
ters, but they are substantially different from the 3 clusters in
Fig. 13(centre), The strongest substructure in 13(left) posits
c = 7 clusters. View 13(centre) has 2 primary clusters. View
13(right) has 3 primary clusters. The two tail clusters at the
bottom right in views 13(left) and 13(right) are the same;
{6, 7} and {11, 17}, but subclusters in the main block are
quite different. We do not assert that any of these views of
the Karate club data are “correct.” The point of this example
is to show how IBKR imputation can be used with asiVAT
as a tool for exploratory data analysis.

7 DISCUSSION

It is difficult to evaluate methods of determining the number
of clusters in data, therefore it is at least as difficult to
evaluate the effectiveness of imputation methods for de-
termining the number of clusters in data. Evaluation could
have been performed using simulated data (for example,
randomly sampling from multidimensional Gaussian dis-
tributions) then randomly removing values to generate the
incomplete data. This would allow us to examine how well
each imputation method dealt with Gaussian clusters, but
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we would be unsure as to how well the results generalised
to different cluster distributions.

Our approach of investigating the utility of each method
on a real data, where values were artificially removed,
allowed us to examine how each imputation method per-
formed on real data, while the artificial removal of data
allowed us to examine the effect of the proportion of missing
data. Using real data sets, that have been thoroughly inves-
tigated by the clustering research community, meant that we
had knowledge of the number of clusters when evaluating.

In any empirical evaluation, we always have the problem
of how many data sets to use for evaluation. Our analysis
used three data sets: Iris was used to discriminate between
the imputation candidates; Sampson’s and Zachary’s data
was used to test the limits of the effective IBKR method. We
saw that IBKR provided some uncertainty in its summary
image for Sampson’s data, but provided a good imputation,
and that IBKR showed a higher level of uncertainty for
Zachary’s data (with three mode blocks). More data could
have been used to examine how IKBR copes with different
data distributions, but the analysis we have performed
provides sufficient evidence towards IBKR being a useful
tool for cluster analysis on incomplete data.

The Summary image gives us an indication of the vari-
ation of the iVAT image due to the imputation. While we
observed that the variation was associated to uncertainty,
further analysis is required to determine the reliability of
this association.

8 CONCLUSIONS

The iVAT and asiVAT algorithms offer a visual means for
organisation of a data set that allows us to estimate the
number of clusters within the data. Unfortunately, the iVAT
and asiVAT algorithms both require pairwise dissimilarities
between all n objects in order to compute the assessment
images.

In this article, we investigated four methods of impu-
tation of missing dissimilarity values and their effect on
the subsequent asiVAT image. We first investigated the
asiVAT image bias and variance induced by each imputation
method using the Iris data, and found that uniform and
bootstrapped imputation were acceptable for a small num-
ber of missing values (up to 5%), while bootstrapped kernel
regression was acceptable for a larger number of missing
values (up to 40%). Based on the Iris trials, we recommend
KR Boot for data with any number of missing values up to
about 40%.

We also investigated the effect of imputation on Samp-
son’s monastery data with 68% missing values, and
Zachary’s Karate club data with 86% missing values. The
large number of missing values led us to propose and
investigate iterated KR Boot (IBKR). This modification of KR
Boot led to visual interpretations of both data sets that were
consistent, but different, from others in the extant literature.

Our IBKR split of Sampson’s data in Fig. 9(b) differs a
bit from those of several previous studies, but those studies
also disagree with each other in fine detail. This observation
holds for the Karate club data too. The important point is
that the IBKR method is, to our knowledge, the first method
that offers a visual estimate for the number of potential

clusters in these data sets, and the IBKR mode images
contain fine structure detail that can be extremely useful in
sharper estimates of cluster structure. Don’t forget, asiVAT
does NOT find the clusters – it just suggests how many to
look for.

In summary, IBKR promises to be a useful extension
of the VAT/iVAT family of cluster heat maps to the case
of symmetric or asymmetric input dissimilarity data with
missing values. However, much more experimental evi-
dence is needed to validate this variant of the basic method.
We will devote a forthcoming paper to a number of addi-
tional case studies.
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