
Under consideration for publication in Knowledge and Information
Systems

A Binary Decision Diagram Based
Approach for Mining Frequent
Subsequences

Elsa Loekito1, James Bailey1 and Jian Pei2

eloekito@csse.unimelb.edu.au, jbailey@csse.unimelb.edu.au, jpei@cs.sfu.ca
1National ICT Australia (NICTA), Department of Computer

Science and Software Engineering, University of Melbourne, Australia;
2School of Computing Science, Simon Fraser University, Canada

Abstract. Sequential pattern mining is an important problem in data mining. State
of the art techniques for mining sequential patterns, such as frequent subsequences,
are often based on the pattern-growth approach, which recursively projects conditional
databases. Explicitly creating database projections is thought to be a major compu-
tational bottleneck, but we will show in this paper that it can be beneficial when the
appropriate data structure is used. Our technique uses a canonical directed acyclic
graph as the sequence database representation, which can be represented as a Binary
Decision Diagram (BDD). In this paper, we introduce a new type of BDD, namely a
Sequence BDD (SeqBDD), and show how it can be used for efficiently mining frequent
subsequences. A novel feature of the SeqBDD is its ability to share results between
similar intermediate computations and avoid redundant computation. We perform an
experimental study to compare the SeqBDD technique with existing pattern growth
techniques, that are based on other data structures such as prefix trees. Our results
show that a SeqBDD can be half as large as a prefix tree, especially when many similar
sequences exist. In terms of mining time, it can be substantially more efficient when
the support is low, the number of patterns is large, or the input sequences are long and
highly similar.

Keywords: Sequential pattern mining, Frequent subsequences, Binary Decision Dia-
gram, Sequence Binary Decision Diagram, SeqBDD.

Received Apr 03, 2008
Revised Apr 05, 2009
Accepted Aug 15, 2009

2 E. Loekito et al

1. Introduction

Mining sequential patterns is an important task in data mining. There are many
useful applications, including analyzing time-stamped market basket data, find-
ing web access patterns (WAP) from web logs (Pei, Han, Mortazavi-asl and
Zhu, 2000), finding relevant genes from DNA sequences (Ma, Wang, Sasha and
Wu, 2001) and classifying protein sequences (Ferreira and Azevedo, 2005; She,
Chen, Wang, Ester, Gardy and Brinkman, 2003). The frequent subsequence is a
fundamental type of sequential pattern. Given a minimum frequency threshold,
it is defined as a frequently occurring ordered list of events or items, where an
item might be a web page in a web access sequence, or a nucleotide in a DNA
sequence.

Frequent subsequence miners must explore an exponentially sized search
space (Pei, Han, Mortazavi-Asl, Wang, Pinto, Chen, Dayal and Hsu, 2004), which
makes mining particularly challenging when a large number of long frequent
subsequences exist, such as in DNA or protein sequence data sets which have a
small alphabet, or in weblog data sets, which have a larger alphabet size, at a
low minimum support (Pei et al., 2000). Popular techniques for mining frequent
subsequences such as those in (Pei et al., 2004; Ezeife and Lu, 2005) adopt a
pattern growth approach which is thought to be the most efficient category of
approaches for sequential pattern mining. The generation of infrequent candidate
patterns is avoided by projecting the database into smaller conditional databases
recursively. However, there are some challenges which need to be addressed in
such a technique: 1) Projecting numerous conditional databases takes consid-
erable time as well as space, especially since item reordering optimizations do
not make sense for sequential mining, like they do for frequent itemset mining.
2) Each conditional database is processed independently, although they often
contain some common sub-structures.

One of the most popular data structures used in frequent pattern mining
is the prefix tree. Its extensions for the sequence context have been proposed
in (Ezeife and Lu, 2005). However, the benefit of using a prefix tree for mining
frequent subsequences is questioned in (Pei et al., 2004), since its compactness
relies on common prefix-paths, which cannot be fully exploited in the sequence
context. Moreover, work in (Pei et al., 2004) proposed the PrefixSpan algorithm,
which grows prefixes of the frequent patterns, also often called the prefix-growth
approach. PrefixSpan is one of the best pattern growth algorithms, and its op-
timization technique completely avoids physically constructing database pro-
jections. When the alphabet size is small and the volume of patterns is huge,
however, PrefixSpan is limited in not being able to exploit the similarity between
the sequences or the candidates.

Instead of a prefix tree, we will demonstrate how a directed acyclic graph
(DAG), represented as a Binary Decision Diagram(BDD) (Bryant, 1986), can be
used as an alternate data structure for mining frequent subsequences. A BDD
is a canonical representation of a boolean formula and it has been successfully
used in other fields such as boolean satisfiability solvers (Aloul, Mneimneh and
Sakallah, 2002), and fault tree analysis (Sinnamon and Andrews, 1996). BDDs
potentially allow greater data compression than prefix trees, since node fan in
(suffix sharing) as well as node fan out (prefix sharing) is allowed in a BDD,
and identical sub-trees do not exist. Complementing their compactness, BDDs
are also engineered to enforce reuse of intermediate computation results, which
makes them potentially very useful for pattern growth sequence mining, in par-

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 3

ticular for compressing and efficiently manipulating the numerous conditional
databases.

In this paper, we introduce a mining technique based on the use of a spe-
cial kind of BDD, which can provide an overall compressed representation of
the intermediate databases, and in contrast to previous thinking, benefit from
their explicit construction by relying on sophisticated techniques for node sharing
and caching. It is not straightforward to efficiently encode sequences into BDDs,
however. To this end, we introduce an original variant, namely the Sequence
Binary Decision Diagram (SeqBDD), which is suitable for compactly rep-
resenting sequences and efficiently mining frequent subsequences. Based on the
canonical property of SeqBDDs, multiple databases may share sub-structures,
which in turn allows high overall data compression to be achieved and redun-
dant computations to be avoided. The questions which we address in this research
are:

– Can sequences be compactly represented using a BDD?

– Can the use of a BDD benefit frequent subsequence mining?

– Can a BDD-based frequent subsequence mining technique outperform state-of-
the-art pattern growth techniques?

To summarise, our contributions in this paper are three-fold:

– We introduce a compact and canonical DAG data structure for representing
sequences, which we call a Sequence Binary Decision Diagram (Seq-
BDD), and its weighted variant which allows the frequency (or support) of
the sequences to be represented. Unlike prefix-trees, SeqBDDs allow node fan-
out as well as fan-in, which is a novel data representation in the sequence
mining literature.

– We show how a Weighted SeqBDD can be used for mining frequent subse-
quences in the prefix-growth framework. In particular, node-sharing across
multiple databases is allowed, and BDD primitives which promote re-use of
intermediate computation results are adopted in the mining procedure, allow-
ing high data compression and efficient mining to be achieved. The ability to
exploit any similarity between the conditional databases is a novel feature of
our mining technique.

– We experimentally investigate the behavior of our technique for finding fre-
quent subsequences in biological data sets which have a small alphabet domain,
as well as weblog data sets with a large domain which are challenging when the
support threshold is low, and several synthetic data sets. We compare its per-
formance against the competitive pattern growth algorithms, PLWAP (Ezeife
and Lu, 2005) and PrefixSpan (Pei et al., 2004). SeqBDDMiner is proven to be
superior when the input sequences are highly similar, or when the minimum
support threshold is low, where the conditional databases share many common
sub-structures.

2. Preliminaries

This section gives the definition of some terminologies used in frequent subse-
quence mining.

Let I be the set of distinct items. For instance, in a DNA data set, the set

4 E. Loekito et al

I contains alphabet letters A, C, G, T . A sequence S over set I is an ordered
list of items, e1e2 . . . em where ej ∈ I, and each item ej is called an element
of S, for 1 ≤ j ≤ m. The j-th element that occurs in S is denoted by S[j].
The number of elements in a sequence, m, is referred as the length of S, and it
is denoted by |S|. Each number between 1 and m is a position in S. Set I is
called as the alphabet domain of S. An item from the alphabet domain can occur
multiple times as different elements of a sequence. A data set D is a collection
of sequences, defined upon a domain set of items, I. The number of sequences in
D is denoted by |D|.

A sequence p = a1a2 . . . am is a supersequence of another sequence q =
b1b2 . . . bn (n ≤ m), and q is a subsequence of p, if there exist integers 1 ≤ i1 <
i2 < . . . < in ≤ m such that q[1] = p[i1], q[2] = p[i2], . . ., q[n] = p[in], and|q| ≤
|p|. We say that p contains the subsequence q. The frequency of a sequence p in
D is the number of sequences in D which contain p. The support of p is defined
as the relative frequency of p with respect to the number of sequences in D, i.e.
frequency(p)

|D| .

Sequence q is a prefix of p if q is a subsequence of p, and q[i] is equal to p[i]
for all 1 ≤ i ≤ |q|. Sequence q is a suffix of p if q is a subsequence of p, and q[i] is
equal to p[j] for all 1 ≤ i ≤ |q|, where j = (|p|− |q|+ i). An x-suffix of a sequence
p is a suffix of p which begins with item x. Moreover, it is a longest x-suffix in p
if it begins with the first occurrence of x in sequence p.

Given a positive minimum support threshold min support, p is a frequent
subsequence if the support of p is not less than min support, i.e. support(p) ≥
min support, where 0 ≤ min support ≤ 1. The task of mining frequent subse-
quences from a data set D is defined as finding all subsequences from D whose
supports are at least min support. Moreover, closed frequent subsequences (Wang
and Han, 2004) are frequent subsequences such that none of their supersequences
have the same frequency. In this paper, we focus only on finding frequent subse-
quences, which has a larger search space than the closed subsequences.

Frequent subsequences have an anti-monotonic property (Srikant and Agrawal,
1996). For every sequence p and its subsequence q, support(p) ≤ support(q).
This anti-monotonic property is often known as the apriori property of fre-
quent subsequences. Moreover, the prefix anti-monotonic property (Pei, Han
and Want, 2002) also holds, since support(p) ≤ support(q) is true for a sequence
p and its prefix q.

3. Overview of sequential pattern growth techniques

In this section, we will give an overview of the general pattern growth framework
in frequent subsequence mining, which is adopted by our technique and in the
state-of-the-art techniques such as Prefixspan (Pei et al., 2004), WAP-mine (Pei
et al., 2000), and PLWAP (Ezeife and Lu, 2005). The pattern growth framework
was introduced in frequent itemset mining (Han, Pei, Yin and Mao, 2004), which
recursively divides the database into conditional databases, each of which is pro-
jected by a frequent item. For mining frequent subsequences, the pattern growth
framework is applied in a similar manner. Other techniques for mining frequent
subsequences exist, but they are not based on the pattern-growth framework.
We will present a review of those techniques later in the paper.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 5

Prefixspan (Pei et al., 2004) adopts the pattern growth framework for mining
frequent subsequences, by growing prefixes of the frequent subsequences. For a
prefix x, its conditional database contains the longest x-suffix from each sequence.
Optimization techniques used by Prefixspan include pseudo-projection and bi-
level database projection. The pseudo-projection technique uses pointer-offset
pairs for finding the conditional databases, instead of physically creating them.
However, it is only possible when the database fits in the main memory. The bi-
level projection allows fewer and smaller databases being projected, by inducing
a conditional database for each length-2 prefix.

WAP-mine uses a WAP-tree (Web Access Pattern tree) (Pei et al., 2000)
database representation, which is similar to the FP-tree in (Han et al., 2004)
for mining frequent itemsets. Each node in a WAP tree is labeled, and nodes
with the same label are linked together. Each branch represents a sequence. Un-
like the other algorithms, WAP-mine grows suffixes of frequent subsequences.
The use of a prefix tree is aimed to achieve data compression, and quick iden-
tification of frequent prefixes. However, constructing the numerous databases in
WAP-mine can be costly. PLWAP (Ezeife, Lu and Liu, 2005) is an improvement
over WAP-mine, but it adopts a prefix growth framework and does not build
new conditional databases. PLWAP uses a PLWAP-tree (Pre-order Linked Web
Access Pattern tree) as the data representation, with a special code annotating
each node which allows the initial database to be re-used for representing the
conditional databases. However, such a technique is computationally expensive
when long subsequences exist.

4. Overview of Binary Decision Diagrams

In this section we will give some background about Binary Decision Diagrams
(BDDs), the data structure we will use, which are a compact and canonical graph
representation of boolean formulae. We will also give an overview of a special
type of BDD, namely a Zero-suppressed BDD (ZBDD) (Minato, 1993), which
has been introduced for efficient representation of monotonic boolean functions
and has also been used for mining frequent and emerging patterns (Loekito and
Bailey, 2006; Minato and Arimura, 2006; Loekito and Bailey, 2007). A survey
on other ZBDD applications can be found in (Minato, 2001). We will describe
how BDDs can be adopted for efficiently mining frequent subsequences in the
following section.

4.1. Binary Decision Diagrams

Binary Decision Diagrams(BDDs) (Bryant, 1986), are a canonical directed acyclic
graph (DAG) data structure, which were introduced for compactly representing
boolean formulae. A BDD can also be viewed as a binary decision tree with the
identical sub-trees being merged.

For example, let F be a boolean formula such that F = (a∧b)∨(a∧c)∨(b∧c).
Figure 1(a) shows the binary decision tree for F , in which A solid line represents
a true assignment, and a dotted line represents a false assignment to a variable.
Each node at the lowest level represents the output of the function, where 1
means TRUE, 0 means FALSE. An example of a BDD representation for F is

6 E. Loekito et al

(a) Binary Decision Tree (b) Binary Decision Diagram

Fig. 1. Example of Binary Decision Tree and Binary Decision Diagram for boolean formula
F = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) (a solid line represents a TRUE value of the variable; a dotted
line represents a FALSE value of the variable)

shown in Figure 1(b), in which identical sub-trees do not exist, and node fan-in
is allowed.

Formally, a BDD is a canonical DAG, consisting of one source node, multiple
internal nodes, and two sink nodes which are labeled as 0 and 1. Each internal
node may have multiple parent nodes, but it has only two child nodes. A node
N with label x, denoted N = node(x, N1, N0), encodes the boolean formula
N = (x ∧ N1) ∨ (x ∧ N0). The edge connecting node N to N1 (resp. N0) is
also called the true-edge (resp. false-edge) 1. Each path from the root to sink-1
(resp. sink-0) gives a true (resp. false) output of the represented function. A
BDD is called ordered if the label of each internal node has a lower index than
the label of its child-nodes. Being canonical, each BDD node is unique, which
can be obtained by merging any two identical nodes.

BDDs allow logical operations on Boolean formulae, such as AND, OR, and
XOR, to be performed in polynomial time with respect to the number of nodes.
Their efficiency is based on the following two important properties:

– Canonical: Equivalent subtrees are shared and redundant nodes are elimi-
nated.

– Caching principle: Computation results are stored for future reuse.

Canonical property of BDDs: The canonical property of BDDs (i.e. the
uniqueness of each node) is maintained by storing the unique nodes in a table
of <key,node>-pairs, called the uniquetable. The key is a function of the node’s
label and the keys of its child nodes.

Caching principle: Each BDD primitive operation is associated with a
cache, which is also called as the computation table, that maps the input param-
eters to the output of the operation. The cached output may be re-used if the
same intermediate operation is re-visited, avoiding redundant computations.

Existing BDD packages allow fast uniquetable access. In particular, the pack-
age that we use, JINC (Ossowski and Baier, 2006), implements both the unique
table and computation table using hash tables. The unique table, moreover, uses
a separate chaining, i.e. multiple keys with the same hash value are stored in
a linked list. In principle, the size of each list is n/m, where n is the number
of nodes, and m is the size of the table. When n ≤ m, insertion and lookup
operation can be done in a constant time. Otherwise, it requires the list to be

1In their illustrations, the true-edges are shown as solid lines, the false edges are shown as
dotted lines

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 7

(a) Merging rule (b) Zero-suppression rule

Fig. 2. ZBDD Reduction Rules

traversed, which may have O(n/m) complexity (based on a linear search). On
the other hand, the computation table keeps only one key (instead of a list) per
entry, which allows a constant lookup or insertion time complexity.

4.2. Zero-suppressed Binary Decision Diagrams

A Zero-suppressed Binary Decision Diagram (ZBDD) (Minato, 1993) is a special
kind of BDD which is particularly efficient for manipulating sparse combinations.
More specifically, a ZBDD is a BDD with two reduction rules (see Figure 2 for
illustrations):

– Merging rule: If nodes u and v are identical, then eliminate one of the two
nodes, and redirect all incoming edges of the deleted node to the remaining
one.

– Zero-suppression rule: If the true-edge of a node u points to sink-0, then u
is deleted and all incoming edges to u are redirected to u’s 0-child.

By utilising these rules, a sparse collection of combinations can be represented
with high compression. For an n variable formula, the possible space of truth
values is 2n, but the BDD/ZBDD can have exponentially fewer nodes. We will
consider the use of ZBDDs for representing sequences, but first we consider
the itemset case. An itemset p is seen as a conjunction of the items, and the
set of itemsets is seen as a disjunction of such conjunctions. A ZBDD node
N = (x, N1, N0) represents a set of itemsets S such that S = S0 ∪ (S1 × {x})
where N1 and N0 represent S1 and S0, respectively. A sink-0 encodes the empty
set (∅), and sink-1 encodes the set of empty itemsets ({∅}). For clarity, we omit
sink-0 nodes from the illustrations in this paper. The basic, pre-defined, ZBDD
primitives(Minato and Arimura, 2005) which will be used in our algorithm are
listed in Table 1. They have polynomial time complexity with respect to the
number of nodes.

There are a few works which study the use of ZBDDs for pattern mining, such
as for mining frequent itemsets (Loekito and Bailey, 2007; Minato and Arimura,
2006), mining emerging patterns (Loekito and Bailey, 2006), and finding simple
disjunctions (Minato, 2005). Work in (Loekito and Bailey, 2007), in particular,
proposed a weighted ZBDD which allows an efficient frequent itemset mining
technique to be developed.

4.3. ZBDD-based representation for sets of sequences

Directly representing sets of sequences as ZBDDs is not possible, since ZBDDs
do not allow a variable to appear multiple times in any path. A natural way to
encode a sequence is by introducing variables which encode each item and its

8 E. Loekito et al

ZBDD Itemsets

0 The empty set, ∅
1 The set of an empty itemset, {∅}
add(P, Q) Set-union of P and Q, i.e. the set of

itemsets which occur in either P or Q
subtract(P, Q) Set-subtraction of Q from P , i.e. the

set of itemsets which occur in P but
do not occur in Q

Table 1. ZBDD Primitives (P and Q are ZBDDs)

Sequence Itemset Encoded

p1 = aabac a1, a2, b3, a4, c5
p2 = baba b1, a2, b3, a4

p3 = aaca a1, a2, c3, a4

p4 = bbac b1, b2, a3, c4

Fig. 3. Sequence to itemset translation using Naive encoding, and the resulting ZBDD repre-
sentation of the sequence database

position in the sequence. In the following discussion, to differentiate the original
sequential representation from its itemset representation, we refer to items in the
original domain as alphabet letters.

Let L be the maximum length of a sequence S, and N be the size of the
alphabet domain A. As a naive encoding, S can be expressed as an itemset over
a new domain I ′ containing L×N items, each item represents an alphabet letter
at a particular position in the sequence. Another encoding requires L × log2N
items (Kurai, Minato and Zeugmann, 2007), which may be more efficient if the
sequences contain many elements. We will give more details about each encoding
shortly. We refer to the ZBDD representations based on the alternative encodings
as ZBDDnaive, and ZBDDbinary, respectively.

4.3.1. Naive Encoding Scheme

Let xi be an item in I ′, where i ∈ [1 . . . L], and x ∈ A. Item xi in the itemset
representation of a sequence S represents the occurrence of letter x at the i’th
position in S.

Example 4.1. Suppose we have an alphabet domain A = {a, b, c}, and the
maximum length of the sequences is 5. The itemset domain contains 15 items.
Let D be a sequence database containing p1 = aabac, p2 = baba, p3 = aaca,
p4 = bbac. The itemset representation of p1 is {a1, a2, b3, a4, c5}. Figure 3 shows
the itemset encoded database.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 9

Symbol Binary Code
(v1, v0)

Itemset Encoded

a (0, 1) xj.0

b (1, 0) xj.1

c (1, 1) xj.1xj.0

Sequence Itemset Encoded

p1 = aabac x1.0, x2.0, x3.1, x4.0, x5.1, x5.0

p2 = baba x1.1, x2.0, x3.1, x4.0

p3 = aaca x1.0, x2.0, x3.1, x3.0, x4.0

p4 = bbac x1.1, x2.1, x3.0, x4.1, x4.0

Fig. 4. Sequence to itemset translation using binary coding, and the resulting ZBDD repre-
sentation of the sequence database

4.3.2. Binary Encoding Scheme

The binary encoding scheme represents each alphabet letter by n = ⌈log2(N+1)⌉
binary variables. Suppose there are 3 letters, a, b, and c, they are represented
using 2-bit binary variables v1, v0, such that (v1, v0) = (0, 1) represents a, (1, 0)
represents b, and (1, 1) represents c. At a given position i ∈ [1 . . . L] in the
sequence, and j ∈ [0, . . . , n], item xi.j encodes the binary coding of a sequence
element (vn, . . . , v0) such that vj = 1. Figure 4 shows the encoded database D
and its ZBDD representation.

Compactness: The work in (Kurai et al., 2007) uses a lexicographic vari-
able ordering for the ZBDD. Other variable orderings may be used, but it does
not have much influence on the compactness of the ZBDD, due to the position-
specific item representation. The binary encoding allows more flexible node shar-
ing between different alphabet representations, at the cost of using more nodes
in each path than the naive encoding. In the context of sequential patterns, the
ZBDDs are used to store frequent subsequences, which may occur in different
positions in various sequences in the database. Using the position-specific item-
set encoding, there is no quick way to identify the occurrence of a subsequence
in several sequences. Based on this limitation, we next propose a new type of
BDD which is more suitable, and more compact, for representing sequences.

5. Sequence Binary Decision Diagrams

We have shown in the previous section that Zero-suppressed Binary Decision
Diagrams have limitations for representing sequences. In this section we will
describe our proposed data structure, namely the Sequence Binary Decision
Diagram or SeqBDD for short, and its weighted variant which allows more
efficient manipulation of sequences.

In SeqBDDs, only the 0-child nodes are ordered with respect to their parent
nodes, and a variable is allowed to occur multiple times in a path, which is not
possible using any of the existing BDD variants. Analogous to ZBDDs, both the

10 E. Loekito et al

node-merging and the zero-suppression rules are employed in SeqBDDs, which
allow a compact and canonical graph representation of sequences.

In order to use SeqBDDs for mining sequential patterns such as frequent sub-
sequences, the frequency of the sequences need to be represented in the database.
Inspired by the weighted-variant of ZBDD for frequent itemset mining (Loekito
and Bailey, 2007), we introduce Weighted Sequence Binary Decision Dia-
grams (Weighted SeqBDDs).

In SeqBDD semantics, a path in a SeqBDD represents a sequence, in which
the nodes are arranged in-order to the positions of their respective variables in
the sequence. More specifically, the top node corresponds to the head of the
sequence, and the successive 1-child nodes correspond to the following elements,
respectively. A SeqBDD node N = node(x, N1, N0) denotes an internal node
labeled by variable x, and N1 (resp. N0) denotes its 1-child (resp. 0-child). The
label of node N has a lower index (appear earlier in the variable ordering) than
the label of N0. We denote the total number of descendant nodes of node N ,
including N itself, by |N |.

Let x be an item and P and Q be two sets of sequences. We define an
operation x × P which appends x to the head of every sequence in P , and a
set-union operation P

⋃

Q which returns the set of sequences which occur in
either P or Q.

Definition 5.1. A SeqBDD node N = node(x, N1, N0) represents a set of se-
quences S such that S = Sx

⋃

(x × Sx), where Sx is the set of sequences which
begin with element x (with the head elements being removed), and Sx is the set
of sequences which do not begin with x. Node N1 represents set Sx, and node
N0 represents set Sx.

Moreover, every sequence element in the SeqBDD can be encoded into a set
of binary variables, using a similar binary encoding scheme used in ZBDDbinary

which was discussed in Section 4.3.2. However, each path is much likely longer,
and the improvement in terms of node sharing is relatively small. Thus, in most
cases, the database representation with the binary encoding is less compact.
In the following discussion, we will compare the compactness of SeqBDDs with
ZBDDs under the naive itemset encoding.

Compactness of a SeqBDD: By removing the variable ordering between
each node and its 1-child, the SeqBDD’s merging rule allows common suffix-paths
between sequences to share nodes, regardless of their length. This is something
which is not possible in the ZBDD representations. We employ a lexicographic
variable ordering for the SeqBDD. Other variable orderings may be used, how-
ever, this would not have much influence on the compactness, since it is only
employed partially.

The following theorems state the compactness of SeqBDDs relative to ZBDDs
and prefix trees, where the size is proportional to the number of nodes.

Theorem 5.1. Given a sequence database, the sizes of the SeqBDD, ZBDD,
and prefix tree representations satisfy the following relation: SeqBDD ≤ ZBDD
≤ Prefix tree, where the sequences in the ZBDD are encoded by the naive itemset
encoding, and SeqBDD is the most compact.

Proof. The proof for this theorem follows from Lemma 5.1.

Lemma 5.1. Given a sequence database, nodes in the ZBDD have a many-to-

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 11

one relationship with the SeqBDD, and nodes in the prefix tree have a many-to-
one relationship with the ZBDD.

Proof. Since the merging rule criteria affects either the ZBDD or the SeqBDD
only if there is some common suffix between the sequences, assume there are two
non-identical sequences in the input database, p and q, which share a common
suffix namely suffix. Let PZ and QZ be two suffix paths in the ZBDD which
correspond to suffix in p and q, respectively, PSeq and QSeq be corresponding
paths in the SeqBDD, and Ptree and Qtree be the corresponding paths in the
prefix tree.

If |p| 6= |q|, the suffixes of p and q are represented using different sets of
variables and PZ and QZ can be mapped to Ptree and Qtree respectively. If
|p| = |q|, however, PZ and QZ are merged, and both Ptree and Qtree correspond
to one path in the ZBDD.

Regardless of the length of p and q, the suffix suffix is encoded similarly in
both sequences and PSeq and QSeq are merged, which shows the many-to-one
mapping between the ZBDD nodes to SeqBDD.

5.1. Weighted Sequence Binary Decision Diagrams

A Weighted SeqBDD is a SeqBDD with weighted edges. In particular, every
edge in a Weighted SeqBDD is attributed by an integer value, and each internal
node’s incoming edge corresponds to the total frequency of all sequences in that
node. Thus, the weight of the incoming link is monotonically decreasing as the
node is positioned lower in the structure. We define a Weighted SeqBDD node
by the following definition.

Definition 5.2. A Weighted SeqBDD node N is a pair of 〈ϕ, ϑ〉 where ϕ is the
weight of N , and ϑ is a SeqBDD node.

The weight of node N , i.e. ϕ, represents the weight of the incoming link
to N . For a node N , we define a function weight(N) = ϕ, which gives the
total frequency of the sequences in N . If N is an internal node, N0 and N1

correspond to two partitions of the database, and weight(N) is the sum of the
total frequencies of the sequences in N0 and in N1:

weight(N) = weight(N0) + weight(N1) (1)

Two nodes in a Weighted SeqBDD are merged only if they have the same
label, the same respective child-nodes, and also the same weights on the outgoing
edges respectively. Hence, a Weighted SeqBDD may be less compact than the
non-weighted SeqBDD, since two nodes which contain similar sequences cannot
be merged in the Weighted SeqBDD if their respective frequencies are differ-
ent. Figure 5 illustrates a Weighted SeqBDD node and the Weighted SeqBDD’s
merging rule.

Example 5.1. Consider a set of sequences, with their respective frequencies,
S = {aaa : 3, aba : 2, bc : 2, bbc : 2}. Figure 6(a) shows an example of a Weighted
SeqBDD representation of S. Assuming a lexicographic ordering, the prefix-path
a is shared between sequences aaa and aba, and prefix b is shared between
sequences bc and bbc. The lower node representing suffix c is shared between
sequences bc and bbc, but the bottom a-nodes are not merged because they have

12 E. Loekito et al

(a) Node N = 〈ϕ, ϑ〉;

ϑ = node(x, N1, N0); ϕ = ϕ1 + ϕ0.
(b) Weighted SeqBDD’s Merging Rule

applies only if ϕ0 ≡ ϕ′
0

and ϕ1 ≡ ϕ′
1

Fig. 5. Illustration of Weighted SeqBDDs

(a) Weighted SeqBDD (b) SeqBDD

Fig. 6. Weighted SeqBDD vs SeqBDD for a set of sequences S = {aaa : 3, aba : 2, bc : 2, bbc :
2}, using a lexicographic variable ordering

different frequencies. As a comparison, the SeqBDD for the same sequences,
being 1 node smaller, is shown in Figure 6(b).

Monotonic property of weights in a Weighted SeqBDD: When a
Weighted SeqBDD is used for storing subsequences, we can use the weights to
efficiently prune sequences which do not satisfy the minimum support constraint
due to the monotonic property of the weight function. In particular, its mono-
tonicity is described by the following theorem.

Lemma 5.2. Given a Weighted SeqBDD node N , weight(N0) ≤ weight(N) and
weight(N1) ≤ weight(N)

Proof. The proof for this lemma is straightforward from Equation 1. Since the
weight of each node is a positive integer, and it is the sum of the weights of its
child nodes, i.e. N0 and N1, the weight of a node is no smaller than the weight
of its child nodes.

Based on Lemma 5.2, if the weight of a node N is less than the minimum
support, node N and its child-nodes correspond to infrequent sequences. Thus,
they can be safely removed and replaced by the sink-0 node. Being monotonic,
the weights in Weighted SeqBDDs may be used for representing other monotonic
functions, other than the total frequency which we have defined, such as the
maximum (or minimum) length of the sequences.

Weighted SeqBDD primitive operations: Basic ZBDD operations (listed
in Table 1) such as set-union and set-subtraction can be adapted for Weighted
SeqBDDs (and for the general SeqBDDs). In the following discussion, we show
how the weight function can be integrated with ZBDD’s set-union operation.
When a sequence co-exists across the input SeqBDDs, its frequencies are added.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 13

If both of its inputs are sink-1 nodes, the output is also a sink-1 with the weights
of the input nodes being added. Moreover, the weight of each node in the out-
put is computed using Equation 1. Below, we show that the operation is correct,
with references made to the corresponding lines in the SeqBDD’s add() procedure
shown in Algorithm 1.

Theorem 5.2. Correctness of the add() procedure: Given two Weighted
SeqBDDs P and Q, the add(P, Q) correctly adds the sequences in P and Q and
their corresponding frequencies.

Proof. Consider the following cases:

1. If P is a sink-0, i.e. P is empty, the output consists of all sequences in Q.
Similarly, if Q is a sink-0, P is returned as output (line 1-2).

2. If both P and Q are sink-1 nodes, i.e. each of P and Q consists of an empty
sequence, then the output also consists of an empty sequence (line 3-5). The
weight of the output node is the total frequency between P and Q (line 4).

3. If both P and Q are internal nodes with labels x and y.

(a) Suppose x = y (line 7-8). Since x is the lowest indexed item among the
head item of all sequences in P and Q, x should be the label of the output
node. The 1-child of the output node should contain all sequences which
begin with x, which are present in P1 and Q1, and the 0-child of the output
node contains the remaining sequences.

(b) Suppose x has a lower index2 than y (line 9-10), x has a lower index than
the head of all sequences in Q. Therefore, the output node should be labeled
with x, and all sequences which begin with x present in P1. The remaining
output sequences exist in P0 and Q.

(c) Suppose x has a higher index than y (line 11). This condition is opposite
to condition 3(b), since the operation is commutative.

In each of the above cases, any sequence which co-occurs in P and Q is identified
when the sink-1 nodes are found. Hence, when a co-occurring sequence is found,
its total support is computed bottom-up beginning with the sink nodes, followed
by the parent nodes respectively (line 12).

Properties of Weighted SeqBDDs: A Weighted SeqBDD is similar to a
prefix tree, except that identical sub-trees are merged, and the frequency values
are represented as edge weights instead of node attributes. Table 2 shows a
comparison between their structural properties. Weighted SeqBDDs do not have
side-links which are needed for finding database projections in the prefix trees.
Moreover, node fan-out is allowed in both Weighted SeqBDDs and prefix trees,
but node fan-in is only allowed in Weighted SeqBDDs. Node fan-in is maintained
in a Weighted SeqBDD by the node merging rule. Thus, without the merging
rule, a Weighted SeqBDD would look like a Binary Decision Tree, and contains
the same number of nodes as a prefix tree. The caching mechanism in Weighted
SeqBDDs allows the cost of projecting the databases to be reduced, by making
use of their node fan-in property. Without the caching mechanism, therefore, the
traversal cost of a Weighted SeqBDD would be the same as the traversal cost of
a prefix tree.

2A sink-1 is considered an internal node with the highest index.

14 E. Loekito et al

Algorithm 1 SeqBDD’s add() operation, returns the set-union between two
sets of sequences
Input: P and Q are the input Weighted SeqBDDs, each of which represents a set of sequences
Output: 〈Z.weight, Z〉 : the Weighted SeqBDD containing set-union between P and Q

Procedure:

1: case P is a sink-0 node : return Z = Q
2: case Q is a sink-0 node : return Z = P
3: case Q = P is a sink-1 node :
4: Calculate weight: Z.weight = weight(P) + weight(Q)
5: return 〈Z.weight,Z〉
6: Let Z = node(Z.var, Z1, Z0), P = node(x, P1, P0), Q = node(y, Q1, Q0)
7: case x = y :
8: Z.var = x ; Z1 = add(P1, Q1) ; Z0 = add(P0, Q0)
9: case x has a higher index than y :

10: Z.var = x ; Z1 = P1 ; Z0 = add(P0, Q)
11: case x has a lower index than y : return add(Q,P)
12: Calculate weight: Z.weight = weight(Z0) + weight(Z1)
13: return 〈Z.weight, Z〉

An example of a Weighted SeqBDD and a prefix tree, presented as a PLWAP
tree (Ezeife and Lu, 2005), is shown in Figure 7, both of which represent a
database containing sequences {aabac, baba, aaca, bbac}. The Weighted SeqBDD
is smaller than the prefix tree by 5 nodes, since it merges suffix-path ac between
sequences aabac and bbac, and suffix-path a between sequences baba and aaca.

Table 3 shows a comparison between a Weighted SeqBDD and the other
types of BDD. When there are no duplicate sequences in a Weighted SeqBDD,
the structure has the same number of nodes as a non-weighted SeqBDD, because
each sequence has a frequency of 1, and each node which is shared in the non-
weighted SeqBDD is also shared in the weighted SeqBDD. The zero-suppression
rule is employed in ZBDDs and SeqBDDs, and their weighted variants (Loekito
and Bailey, 2007). BMDs (Bryant and Chen, 1995) also have weighted edges,
but they use a different weight function. In terms of variable ordering, SeqBDDs
employ a global ordering which is applied only upon the 0-child nodes, whereas
FreeBDDs (Gergov and Meinel, 1994) allow different paths to have different
orderings. The other BDDs apply a global ordering between each node and both
of its child nodes.

Table 4 shows some statistics of the Weighted SeqBDD and ZBDD representa-
tions for three real data sets (description of these data sets is given in Section 7),
when used for representing the frequent subsequences and their frequency values.
We do not include the size comparison between the data structures for represent-
ing the input sequences, since there are no duplicates in the input data (Note
that duplicates may appear in the projected conditional databases). Comparing
the size of the data structures for storing the output patterns, which contain
many more sequences than any conditional database, is sufficient for analysing
their compactness. For yeast.L200 data set, the Weighted SeqBDD (W-SeqBDD)
contains 304 nodes for storing 886 sequences with an average length of 3.3, being
about 50% smaller than the Weighted ZBDDs (WZBDDs) which are labeled as
WZBDDnaive and WZBDDbinary. For the other two data sets, which contain
longer sequences, the W-SeqBDDs are 65%-75% smaller than the WZBDDs.
more especially for the snake data set which contains thousands of frequent sub-
sequences. For all the three data sets, the WZBDDbinary is always larger than
WZBDDnaive. When the alphabet size is large, such as in the davinci data set,

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 15

Property Weighted SeqBDD Prefix Tree

Support storage As edge weight In every node
Side-links No Yes
Fan-out Yes Yes
Fan-in Yes No

Table 2. Comparison between Weighted SeqBDD and Prefix Tree

Data Structure Zero-suppressed Weighted Edges

SeqBDD Yes No
Weighted SeqBDD Yes Yes
Weighted ZBDD Yes Yes
BMD No Yes
FreeBDD No No

Data Structure Variable Ordering

SeqBDD A global variable ordering is enforced be-
tween each node and its 0-child

ZBDD A global variable ordering
BMD A global variable ordering
FreeBDD A variable ordering is enforced on the 1-

child nodes in each path, different paths
may have different variable orderings

Table 3. Comparison between (Weighted) SeqBDD and other BDD Variants

Dataset minsup Num. of subsequences Average length

yeast.L200 0.8 886 3.3
snake 0.3 4693 4.6

davinci 0.0015 785 4

Dataset |W-SeqBDD| |WZBDDnaive| |WZBDDbinary| |PrefixTree|
yeast.L200 304 693 669 885

snake 983 4212 5257 4692
davinci 357 1000 1901 783

Table 4. Characteristics of the represented subsequences, and size comparison between
Weighted SeqBDD (W-SeqBDD), WZBDDnaive, and WZBDDbinary, in terms of the num-
ber of nodes

the WZBDDbinary contains twice the number of nodes of the WZBDD with the
naive encoding. Compared to prefix trees, the Weighted SeqBDDs allow more
than 50% compression, whereas the WZBDD representations are less compact
when the alphabet size is large or a large number of sequences exist.

Complexity analysis: In the following discussion, we discuss the computa-
tional complexity for creating and manipulating nodes in the general SeqBDDs,
which is also applicable to the Weighted SeqBDDs. The computational cost for
creating a SeqBDD node requires one look-up operation to the uniquetable, which
is the same as that in a BDD.

Theorem 5.3. The time complexity for creating a SeqBDD that consists of N
nodes is O(N).

Proof. When creating a node, the hash key for that node is computed and one

16 E. Loekito et al

lookup operation is performed to find a pre-existing entry in the unique table.
Given that nodes with the same hash key are stored as a sorted linked list, the
lookup operation requires a single traversal of that list which has an average size
of n

m
, where n is the number of nodes and m is the size of the table. Based on

the existing hash table implementation in JINC (Ossowski and Baier, 2006), n
m

is kept to a small value, hence, allowing O(1) time complexity for insertion and
lookup operations. Thus, when creating N nodes, the overall time complexity is
O(N).

Theorem 5.4. Given a database containing k sequences with a maximum length
of L. The number of nodes in the SeqBDD representation is bounded by kL, and
the height of the SeqBDD is bounded by L.

Proof. In the given database, there are kL elements in total. In the worst case,
each of those elements is represented by a node in the SeqBDD, thus, the SeqBDD
consists of kL unique nodes. The height refers to the maximum length of any
path in the SeqBDD, which is L, which refers to the maximum length of the
input sequence since each path corresponds to a unique sequence.

Note: in practice, the number of nodes is much smaller than kL, since many
nodes in a SeqBDD which correspond to common prefixes, or common suffixes,
may be shared across multiple sequences. Since the number of nodes of the
SeqBDD is O(kL), hence, its construction has O((kL)) time complexity.

The basic operations, such as set-union and set-subtraction, have polynomial
time-complexity with respect to the number of nodes in the input SeqBDDs.
Our algorithm for mining frequent subsequences employ the primitive SeqBDD’s
add() operation which adds two sets of sequences and combines their frequencies.
The complexity analysis of such operation follows.

Theorem 5.5. Given two SeqBDDs P and Q, and a binary operation <op>(P ,
Q), where <op> is one of the primitive operations add, or subtract. The time
complexity of <op>(P ,Q) is O(|P | + |Q|).

Proof. The primitive operations visit each node from the two input nodes at
most once. Hence, the number of recursive calls is O(|P | + |Q|). Since in each
recursive call, a new node may be created, the total number of unique nodes
(including the input and the output nodes) is O(|P | + |Q|). In the worst case,
no nodes are merged between the input and the output SeqBDDs. Hence, the
overall time complexity for the operation is O(|P | + |Q|).

Caching mechanism: To optimise and reduce computational cost, Seq-
BDDs employ the same type of caching mechanism as is used by BDDs. In our
implementation, we use the caching library of JINC (Ossowski and Baier, 2006).

Note the term “caching”, here, has somewhat different meaning from previous
work on frequent pattern mining, such as (Ghoting, Buehrer, Parthasarathy,
Kim, Nguyen, Chen and Dubey, 2005), which describes cache conscious trees for
mining frequent itemsets. There, the intention is to minimise access to physical
memory, by storing frequently accessed nodes of of the data structure. On the
other hand, the SeqBDD’s caching mechanism has a different aim, which is to
store the results of intermediate computations, corresponding to subtrees and
then make them available for re-use when the subtree is visited along a different
path in the SeqBDD. Caching is automatically provided by the SeqBDD library
implementation, and thus it is not explicitly shown in the algorithm described
shortly.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 17

(a) Weighted SeqBDD (b) Prefix tree

Fig. 7. Weighted SeqBDD vs Prefix tree for a data set containing sequences
{aabac, baba, aaca, bbac}, using a lexicographic variable ordering. The SeqBDD contains 4 fewer
nodes than Prefix tree through merging of lower a-c nodes and lower a-node.

Note that SeqBDD caching is not possible for tree like structures (such as
a prefix tree), since subtrees in a prefix tree can be visited by only one path,
whereas subtrees in a SeqBDD can be visited by several paths (and thus cached
for reuse between alternate paths). Without a caching mechanism, the time com-
plexity of manipulating a BDD, as well as a SeqBDD, is similar to that of a binary
tree, since the computation of a node would need to be repeated as many times
as the number of prefix-paths through which that node is visited.

6. Mining Frequent Subsequences

We call our algorithm for mining frequent subsequences SeqBDDMiner. Seq-
BDDMiner follows a prefix growth mechanism similar to Prefixspan in (Pei
et al., 2004), but uses a Weighted SeqBDD for representing the database. In the
remainder of the paper, unless otherwise stated, we refer to the Weighted Seq-
BDD by its general term SeqBDD. Unlike Prefixspan, our algorithm physically
creates the conditional databases but this benefits mining, since the SeqBDD
allows nodes to be shared across multiple databases, and allows the results to be
shared between similar intermediate computations. Using the SeqBDD’s caching
principle, moreover, construction of the conditional databases can be performed
efficiently.

The initial SeqBDD representation of the database is built by add-ing the
input sequences. The construction procedure is shown in Algorithm 2. For an
item x, the x-conditional database contains suffixes of the first occurrence of
x from each sequence in the input database. We find an f -list for each item
x, which is an ordered list of elements which are frequent in the conditional
database. This list allows early pruning of the conditional database by removing
items which do not appear in the f -list. For efficiency purpose, the ordering in
this list is inverted from the SeqBDD’s global variable ordering, which allows the
output node to be built bottom-up incrementally.

For finding the frequency of an item, we define a SeqBDD-based operation
which follows a divide-and-conquer strategy. Given an input SeqBDD database
P , and an item x. Let var be the label of P . The frequency of x is found by
recursively adding its frequency in the two database partitions: P1 and P0. The

18 E. Loekito et al

Algorithm 2 Algorithm buildDB for creating the initial Weighted SeqBDD
from a sequence data set
Input: D : a sequence data set.
Output: initDB : the Weighted SeqBDD containing sequences in the input data set D.
Procedure:
1: (Initialise initDB to be a sink-0 node.) initDB = 0
2: for each sequence s in D do

3: (Build a SeqBDD which contains a sequence s.)
Ps = a Weighted SeqBDD containing sequence s

4: (Add PS to initDB.) initDB = initDB
S

Ps

5: end for

Note: A
S

B denotes the add(A, B) operation where A and B are SeqBDDs.

first partition, P1, contains sequences which begin with var, the second partition
contains the remaining sequences. If var = x, weight(P1) gives the frequency of
x in the first database partition. On the other hand, if var 6= x, the frequency of
x in the first database partition is computed recursively in P1. The recursion in
P1 terminates at the first occurrence of x in each branch. The similar recursion
procedure is performed in P0. We define the operation frequency(P, x) for finding
the frequency of item x in a SeqBDD P as the following. If P is a sink node,
frequency(P, x) = 0, otherwise,

frequency(P, x) =

{

frequency(P1, x) + frequency(P0, x) if P.var 6= x

weight(P1) + frequency(P0, x) if P.var = x

For an item x, finding the x-suffixes (and the conditional databases), which
is a major component in our mining algorithm, we define a SeqBDD operation
suffixTree using a similar recursive strategy as the above discussed frequency
operation. Given a SeqBDD P , and an item x, suffixTree(P, x) is the set of x-
suffixes which are contained in P , excluding the head elements, which we call as
the x-suffix tree. If P is a sink node, suffixTree(P, x) = ∅, otherwise,

suffixTree(P, x) =

{

suffixTree(P1, x)
⋃

suffixTree(P0, x) if P.var 6= x

P1

⋃

suffixTree(P0, x) if P.var = x

Optimizations: The first optimization is called infrequent database pruning,
which is based on the monotonic property of the weights in a SeqBDD. If the
weight of the top node is less than min support, then the conditional databases
can be safely pruned. Additionally, SeqBDDMiner has a number of optimizations
which rely on the use of the SeqBDD’s caching library:

– Caching of intermediate results. The frequent subsequences from each
conditional database are stored in a cache table called the patternCache, to be
re-used if the same conditional database is projected by some other prefixes.
We define an operation, patternCache[P], to obtain the cached output for a
database P .

– Caching of pruned conditional databases. For a given item x, and an
input database, the (pruned) conditionalDB is stored in a cache table, using
a similar mechanism as the patternCache. The procedure for obtaining the
conditionalDB comprises of 3 operations: 1) find the x-suffix tree, 2) find its
f -list, 3) prune infrequent items from the x-suffix tree. Each operation is asso-
ciated with its own cache, so that various databases, which may share common
sub-structures, may share the results of their intermediate computations.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 19

Algorithm 3 SeqBDDMiner for mining frequent subsequences
Input: inputDB : a SeqBDD containing the input database

min support : the minimum support threshold
f -list : a list of items which occur frequently in inputDB

Output: allFS : a SeqBDD containing the frequent subsequences
Procedure:

1: (Infrequent database pruning.) if (weight(inputDB) < min support), then return 0
2: (Terminal case.) if (inputDB is a sink node), then return inputDB
3: (Do cache lookup.) if (patternCache[inputDB] is not empty), then

return patternCache[inputDB]
4: (Initialise the output node.) allFS = 1
5: for each item x in f -list do

6: (Find the x-suffix tree.)
x-suffix tree = compute suffixTree(inputDB, x)

7: (Find the frequent items in x-suffix tree.)
f |x-list = the list of frequent items in x-suffix tree

8: (Prune infrequent items from x-suffix tree.)
x-condDB = remove items which do not appear in f |x-list from
x-suffix tree

9: (Find frequent subsequences with prefix x from the conditional DB.)
x-FS = x × SeqBDDMiner(x-condDB,min support, f |x-list)

10: (Incrementally build the output node.) allFS = add(x-FS, allFS)
11: end for

12: (Cache the output patterns.) patternCache[inputDB] = allFS
13: return allFS

Note : x × P appends item x to the head of every sequence in P , by creating a node(x, P, 0),

where P is a SeqBDD.

Details of the mining algorithm: The SeqBDDMiner algorithm is shown
in Algorithm 3, which we will explain line-by-line. The procedure begins with
the input SeqBDD containing the initial data set with the infrequent items being
removed, the f -list contains the frequent items which are ordered in reverse to the
SeqBDD’s variable ordering. Firstly, the infrequent database pruning is applied
if the total frequency of the sequences is less than the minimum support (line
1). The function terminates if the database is empty (line 2), or if the output
is found in the patternCache. In the latter case, a pointer to the cached output
is returned (line 3). For each item x in f -list, it projects the x-suffix tree (line
6). Prior to its processing, the x-conditional database is pruned in 2 steps (line
7-8): i) Find the frequent items in x-suffix tree using the pre-defined SeqBDD’s
frequency() operation; ii) Remove the infrequent items from x-suffix tree. Then,
the function is called recursively on the x-conditionalDB (line 9). When the
locally frequent patterns are returned from the x-conditionalDB, x is appended
to the head of every pattern. The output node is built incrementally by adding
the intermediate outputs for all such x (line 10).

Example 6.1. Reconsider the set of sequences D in Example 4.1. Let min support
be 3. Construction of the initial SeqBDD database is shown in Figure 8, which in-
crementally adds the individual SeqBDD of each sequence. Let Si be the SeqBDD
which contains sequence pi, where i = {1, 2, 3, 4}. The conditional databases for
item c and b are shown in Figure 9. The first item in f -list is c, hence, c-suffix
tree is built by finding suffixes {} from S1, a from S3, and {} from S4, and then
adding them together. The f -list in c-suffix tree is empty. Thus, the resulting
c-conditionalDB contains an empty set {} with a support of 3, no more patterns

20 E. Loekito et al

Fig. 8. SeqBDDs representing S1 = {aabac}, S2 = {baba}, S3 = {aaca}, S4 = {bbac}, S1+S2,
(S1 + S2) + S3, and ((S1 + S2) + S3) + S4 with lexicographic variable ordering

Fig. 9. The initial database, and conditional databases when growing prefix c and prefix b,
and the corresponding locally frequent subsequences, labeled as FS|c and FS|b, respectively.
FS|c+FS|b shows the combined frequent subsequences. FS|c+FS|b+FS|a shows the globally
frequent subsequences. (minsup = 3)

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 21

can be grown. The output node for prefix c, containing {c : 3} is shown under
label FS|c.

The next item in f -list is item b. b-suffix tree contains suffixes ac, aba, bac,
whose f -list (labeled as f |b-list) contains only item a. Then, SeqBDDMiner()
is called on b-conditionalDB. Consequently, prefix a is being grown from b-
conditionalDB, resulting frequent subsequences b : 3 and ba : 3, labeled as FS|b.
The output node, allFS, which previously contains FS|c, is now combined with
FS|b. The new output node is labeled FS|c + FS|b. Since for every prefix item
x, the highest node of allFS always has a lower index than x (due to the reversed
item-ordering in f -list), FS|c +FS|b can be obtained by simply appending allFS
to the 0-child of FS|b. The same procedure is performed for the last item, a,
obtaining patterns {a : 4, ac : 3, aa : 3}.

Soundness and completeness of the algorithm: We will show that the
algorithm is sound and complete, based on properties of the Weighted SeqBDD.
As earlier discussed, the output patterns are grown recursively based on the
frequent items from each conditional database. Thus, we need to show that the
frequent items are correctly found from the given database. We show this by
proving the correctness of the frequency SeqBDD operation.

Theorem 6.1. Given a SeqBDD P and an item x. The function frequency(P, x)
correctly calculates the frequency of item x in the given database P .

Proof. The total frequency of an item x, can be derived from paths which contain
x, since each path maps to a unique sequence. Firstly, if the database contains
only a single path, which may contain multiple occurrences of x, the weight of the
highest x-node gives the frequency of x in the database, since any lower x-node
belongs to the same sequence. Secondly, if the database contains multiple paths
and there are two x-nodes A and B such that each one is the highest x-node
in their corresponding paths, A and B represent two separate partitions of the
database and thus, the total weights of A and B gives the frequency of x in the
overall database.

Theorem 6.2. The SeqMiner algorithm is sound and complete.

Proof. We will prove this theorem in two parts: (a) the algorithm is sound, and
(b) the algorithm is complete.

Soundness: We will show that growing prefix x from an item in the x-
conditional database generates a frequent subsequence pattern. Given a prefix
x = x1, x2, . . . xn, and its conditional database P , by definition, P contains
items which are frequent in the longest x-suffixes from the original database. The
frequency of each item in the original database is no smaller than its frequency in
P . More specifically, the frequency of each item i in P , is the number of sequences
in the original database which contain subsequence x1, x2, . . . xn, i. Thus, if i
occurs in P , growing x with item i generates subsequence x1, x2, . . . xn, i which
is frequent in the original database.

Completeness: We will show by contradiction that there exists no frequent
subsequence patterns which contain an item which does not occur in the condi-
tional database of any of its prefixes.

Suppose there exists a frequent subsequence pattern q = q1, q2, . . . qn−1, qn

which is not found by the algorithm, because item qn does not occur in the
conditional database of one of the prefixes of q. Let x and y be two prefixes of q,
such that x = q1, q2, . . . qm, where m < (n−1), and y = q1, q2, . . . qm, . . . qn−1. Let

22 E. Loekito et al

P be the x-conditional database. Suppose item qn does not occur in P because
z = q1, q2, . . . qm, qn is infrequent. The subsequence z is also a subsequence of
the frequent pattern q, which contradicts the anti-monotonic property which
says that all subsequences of a frequent subsequence pattern are also frequent.
Therefore, such a subsequence pattern q does not exist, and the algorithm is
complete.

Complexity analysis: To analyse the complexity of our mining algorithm,
we consider the space complexity for constructing the initial database, the final
output, and the conditional databases, in terms of the number of nodes. The time
complexity can be derived from the space complexity by Theorem 5.3, which is
O(N) where N is the number of nodes.

Given a SeqBDD P which represents a sequence database, and a SeqBDD S
which represents the frequent subsequences in P . Let L be the maximum length
of the sequences in P , k be the number of sequences in P .

Theorem 6.3. The total number of nodes for constructing the initial database
is O(k2.L).

Proof. The initial database is constructed by incrementally adding the SeqBDD
representation of each sequence to the database. Let A and B be two SeqBDDs,
where A contains the SeqBDD for the first n − 1 sequences, B contains the
SeqBDD for the n-th sequence, where n = {1, 2, . . . k},. Since |A| is bounded
by (n − 1).L, and |B| is bounded by L, then the output of add(A, B) contains
O(|A|+ |B|) nodes, which is equal to O(n.L). So, the overall time complexity to

build the complete database is
∑n=k

n=1 O(n.L), which is O(k2.L).

Theorem 6.4. The total number of nodes for constructing the conditional data-
bases is O(k2.L2.2L).

Proof. The number of frequent subsequences is O(k.2L), and each subsequence
contains O(L) elements. Therefore, the total number of nodes in the output
SeqBDD is O(k.L.2L), which corresponds to the number of conditional data-
bases. Since the size of an x-conditional database is bounded by the x-suffix
tree, let us consider the following cases when processing suffixTree(P ,x). Let
S = suffixTree(P, x). It is straightforward to show that |S| = O(|P |) if P is a
sink node or P contains only one sequence. If P is not a sink node, the out-
put is obtained by adding suffixTree(P1) (or P1 if the label of P is x) with
suffixTree(P0), each of which contains O(|P |) nodes. Hence, the overall size of
the output is O(|P |), which is O(k.L) by Theorem 5.4, and the total number of
nodes used by the conditional databases is O(k2.L2.2L).

Note: In practice, many nodes are shared across multiple conditional data-
bases, and many conditional databases are pruned by the infrequent database
pruning. Hence, the total number of nodes is much less than k2.L2.2L. Moreover,
SeqBDD’s caching principle avoids redundant node constructions by allowing any
of the computation results (the suffix trees and conditional database) for each
subtree to be cached and re-used when needed.

7. Performance Study

In this section we present experimental results to compare the performance of our
SeqBDDMiner algorithm, which is based on our proposed Weighted Sequence

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 23

Data set name |D| N L C Category

yeast.L200 25 4 129 35 Short
DENV1 9 4 50 50 Long

snake 174 20 25 25 Short
PSORTb-ccm 15 20 50 50 Long

gazelle 29369 1451 652 3 V.short
davinci 10016 1108 416 2 V.short

C2.5.S5.N50.D40K 17808 50 42 3 V.short

|D| = Number of sequences in the data set
N = Number of items in the domain
L = Maximum sequence length
C = Average sequence length
V.short = Very short

Table 5. Data set characteristics and a proposed categorisation based on the average sequence
length

Binary Decision Diagrams, with the state-of-the-art prefix-growth algorithms
such as PLWAP (Ezeife et al., 2005), and Prefixspan which has been shown su-
perior in (Pei et al., 2004). We implemented our SeqBDDMiner algorithm using
the core library functions from existing BDD package, JINC3. All implementa-
tions were coded in C++, all tests were performed on four 4.0 GHz CPUs with
32 GB RAM, running Redhat Linux 5, with a CPU time-out limit of 100,000
seconds per mining task. The JINC library provides some utility for maintaining
the uniqueness of each node, and for maintaining the cache tables for each type
of SeqBDD operations. We use the default table parameters as provided by the
author of the package.

Our experiments aim to analyze the following factors: 1) SeqBDD’s com-
pactness : the amount of data compression which can be achieved by the
(Weighted) SeqBDD due to its fan-out and fan-in; 2) Runtime performance:
the runtime performance of our SeqBDD-based algorithm in comparison to the
other encodings discussed in Section 4.3, and in comparison to the existing pre-
fix growth algorithms. We will also analyze the effects of increasing similarity of
the sequences, which would increase the length (and volume) of the patterns. 3)
Effectiveness of pattern caching and node sharing: how much database
projection is avoided due to pattern caching and the effects of node sharing in
the running time of SeqBDDMiner. We analyse three types of real data sets: i)
DNA sequence data sets, ii) protein data sets, and iii) weblog data sets. Their
characteristics are shown in Table 5. Detailed descriptions of each type of data
set are provided shortly. Note that the characteristics of these datasets push the
limits of state of the art frequent subsequence mining algorithms. It would not
be feasible to use datasets which contain both i) very long and ii) very many
input sequences, due to the massive number of output patterns that would need
to be generated.

DNA sequence data sets typically contain long sequences which are de-
fined over 4 letters, i.e. A, C, G, T . Due to the small alphabet size, the sequences
may be highly similar and a large number of long frequent subsequences ex-

3JINC was developed by the author of (Ossowski and Baier, 2006) for studying a different
type of weighted BDDs

24 E. Loekito et al

ist. We choose 2 data sets from the NCBI’s website (NCBI, n.d.): yeast.L2004,
which contains the first 25 sequences, with a maximum length of 200 elements,
and DENV15, which contains genes from dengue virus. We remove any sequence
duplicates for our experiments. Due to the large number of patterns, we only use
the first 50 elements from each sequence, to allow mining to complete within a
reasonable time with low support thresholds.

Protein sequence data sets are defined over 20 letters which are also rela-
tively dense. The two data sets are snake (Wang and Han, 2004), and PSORTb-
ccm (She et al., 2003) which is smaller and more dense. Due to the length of
the input sequences, we only use the first 25 elements from each sequence in the
snake dataset, and 50 elements from each sequence in the PSORTb-ccm data set.

Weblog data sets: Compared to the biological data sets, weblog data sets
have a larger domain and the sequences are relatively shorter. In particular,
mining frequent subsequences in the weblog data sets is challenging when the
minimum support is low due to the large number of sequences. We choose two
weblog data sets : i) gazelle (Wang and Han, 2004), ii) davinci (Ezeife and Lu,
2005).

The synthetic data sets were generated using the sequential synthetic
data generator in (IBM, n.d.) The first data set, C2.5.S5.N50.D40K consists of
40,000 sequences, defined over 50 items, with average sequence length of 2.5, and
the average length of maximal potentially frequent sequence is 5. This data set
contains shorter sequences than the weblog data sets, although it has a smaller
domain. Secondly, we use the synthetic data generator to generate data sets
with a varied value of N (i.e. number of items in the domain) to analyse the
effects of the alphabet size to the algorithm’s performance. Moreover, to analyse
the effects of the similarity of the sequences, we choose the protein PSORTb-ccm
and append an increasing length of synthetically-generated common prefixes and
common suffixes to each sequence.

7.1. Compactness of SeqBDDs due to fan-out and fan-in

In this subsection, we examine the compactness of SeqBDDs for compressing
a sequence database, due to their node fan-out and node fan-in. To calculate
the fan-out compression factor, we implement a Sequence Binary Decision Tree
(SeqBDTree), which is a relaxed type of SeqBDD with no node fan-in. We then
calculate the compression being achieved due to node fan-out, i.e. fanOut and
fanIn. 6, fanOut is the number of nodes in the SeqBDTree, counted as a propor-
tion of the the total number of elements in the data set. fanIn is the node-count
difference between SeqBDD and SeqBDTree, as a proportion of the total num-
ber of nodes in the SeqBDTree (which does not have fan-in). Table 6 shows for
each data set, the fanOut and fanIn compression factors. The mining times us-
ing either data structures for a few representative data sets will also be shown
shortly.

4yeast.L200 is obtained from NCBI’s website using query: yeast [organism] AND 1:200
[sequence length].

5DENV1 is obtained from NCBI’s website using query: dengue virus type 1 AND 1:100
[sequence length];

6fanOut = 1−
|SeqBDTree|

total number of elements
, fanin =

|SeqBDTree|−|SeqBDD|

|SeqBDTree| , |SeqBDTree| =

the number of nodes in the SeqBDTree

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 25

Dataset name fanOut fanIn Category

yeast.L200 0.22 0.12 Similar
DENV1 0.53 0.07 Similar

snake 0.52 0.10 Highly similar
PSORTb-ccm 0.024 0.004 Dissimilar

gazelle 0.42 0.16 Similar
davinci 0.59 0.03 Similar

C2.5.S5.N50.D40K 0.52 0.18 Highly similar

Table 6. Fan-out and Fan-in compression factors of SeqBDD and a proposed data set cate-
gorisation

We find that the compression factors are dependent on the similarity or the
length of the sequences. Intuitively, for data sets which contain long sequences,
the SeqBDDs are likely to have more node-sharing. But it is not always the
case. The PSORTb-ccm data set has very low fanOut and fanIn compared to
the other data sets, indicating that although the sequences are long, they do not
share many prefixes nor suffixes. On the other hand, there are data sets such as
davinci and C2.5.S5.N40.D40 which contain short sequences, but their SeqBDDs
have a significant node sharing as shown by their large fanIn or fanOut factors.
Based on these compression metrics, we roughly classify the data sets into the
following categories:

– Highly similar: fanOut ≥ 0.5 and fanIn ≥ 0.1.

– Similar: fanOut ≥ 0.5, or fanIn ≥ 0.1.

– Dissimilar sequences: fanOut < 0.5 and fanIn < 0.1.

7.2. Runtime performance of the mining algorithm

In Table 4 (Section 5.1), we showed some statistics in terms of the number
of nodes in (Weighted) SeqBDD, and in ZBDD (with two alternative itemset
encoding scheme) for representing the frequent subsequence patterns. We now
show the mining time comparison between either type of data representations
when they are used for mining frequent subsequences in snake and davinci data
sets. Figure 10 shows that SeqBDDMiner is uniformly superior in both data sets,
being at least 10 times faster than either ZBDD representation. Interestingly,
ZBDDnaive is faster than ZBDDbinary in the davinci data set, but slower in the
snake data set. The statistics in Table 4 show that ZBDDbinary is faster when
its size is not much larger than ZBDDnaive.

DNA sequence data sets: The runtime performance comparisons are
shown in Figure 11. In the yeast.L200 data set, SeqBDDMiner is 10 times slower
than PLWAP and 100 times slower than Prefixspan when the support threshold
is 70% or larger, but its running time grows exponentially slower as the thresh-
old decreases. SeqBDDMiner has, moreover, higher scalability since it can finish
mining given a support threshold as low as 5% in under 1000 seconds, whereas
both PLWAP and PrefixSpan could not finish within the CPU time limit given
a support threshold.

In the DENV1 data set, which contains similar sequences, SeqBDDMiner is

26 E. Loekito et al

0.1

1

10

100

1000

10000

100000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
P

U
 m

in
in

g
tim

e
(s

ec
on

ds
)

minsup

SeqBDD
ZBDD-naive

ZBDD-binary

0.1

1

10

100

1000

10000

100000

0 0.0005 0.001 0.0015 0.002

C
P

U
 m

in
in

g
tim

e
(s

ec
on

ds
)

minsup

SeqBDD
ZBDD-naive

ZBDD-binary

(a) snake (b) davinci

Fig. 10. Mining time comparison between SeqBDD, ZBDDnaive, and ZBDDbinary

substantially the most efficient, whereas PLWAP and Prefixspan are exponen-
tially slower with respect to a decreasing minimum support. For support thresh-
old values less than 60%, Prefixspan and PLWAP could not complete within the
CPU time limit. This shows the benefits of using SeqBDDs for mining highly
similar sequences, for which both PLWAP and Prefixspan have more limited
scalability.

Protein sequence data sets: The runtime performance comparisons are
shown in Figure 12. For both datasets, SeqBDDMiner is more scalable than the
other algorithms when the support threshold value is low. More specifically in
the snake data set, given a support threshold value as low as 2%, SeqBDDMiner
completes mining within 500 seconds which is 4 times faster than PrefixSpan,
and PLWAP could not complete mining within the CPU time limit. In general,
the runtimes of both PLWAP and Prefixspan grow exponentially slower than
SeqBDDMiner as the support threshold decreases. Similar trends are found in
the small and dense data set, PSORTb-ccm.

Weblog data sets: The runtime performance comparisons are shown in Fig-
ure 13. Overall, the runtime of SeqBDDMiner is slower than both PLWAP and
Prefixspan for high support threshold values, but SeqBDDMiner grows expo-
nentially slower than the other algorithms with respect to a decreasing support
threshold value.

In the gazelle data set, for support threshold larger than 0.05%, SeqBDD-
Miner is up to 10,000 times slower than the both PLWAP and Prefixspan. But
for a support threshold value as low as 0.02% (lower for PrefixSpan), SeqBDD-
Miner spends about 50,000 seconds, whilst PLWAP could not complete mining
within the CPU time limit. In the davinci data set, which has a larger fanOut
factor than gazelle, SeqBDDMiner is up to 100 times faster than PLWAP and
Prefixspan for support threshold 0.03% or lower.

Synthetic data sets: The mining time for mining frequent subsequences in
C2.5.S5.N50.D40K data set is shown in Figure 14(a). Prefixspan has the best
runtime performance in either data set, being 250 times faster than SeqBDD-
Miner. When compared against PLWAP, the runtime of SeqBDDMiner grows
slower than PLWAP as the support threshold decreases, and more specifically,
SeqBDDMiner is up to four times faster than PLWAP when the support thresh-
old is lower than 0.04%.

Figure 14(b) shows the effects of increasing the domain size on various syn-
thetic data sets, each of which is generated using a fixed S10.D10K parameter
and the domain size is varied between 4, 6, 8, 10, 20, 30, 40, and 50, with a min-
imum support threshold being 25%. Having fewer items in the domain conse-

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 27

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

0.1

1

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

(a) yeast.L200 (b) DENV1

Fig. 11. Mining times in DNA data sets

0.1

1

10

100

1000

10000

100000

0 0.05 0.1 0.15 0.2

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

(a) snake (b) PSORTb-ccm

Fig. 12. Mining times in protein data set

quently generates more similar sequences, and longer frequent subsequences. It
shows that PLWAP and Prefixspan have similar relative runtime performance,
but SeqBDDMiner becomes more competitive as the number of domain items
decreases.

Lastly, we analyse the effects of similarity of the input sequences to the al-
gorithms’ performance by appending an increasing length of synthetic common
prefix, or common suffix, to the PSORTb-ccm data set. Figure 14(c) and (d)
show the trends of running time for each scenario given a support threshold of
80%. It shows that SeqBDDMiner is superior, having an almost constant (i.e.
very small increase) in its mining time as the length of common prefix increases
up to 20 items, whereas PLWAP and PrefixSpan increase exponentially. As the
length of common suffix increases, SeqBDDMiner benefits from sharing of com-

0.1

1

10

100

1000

10000

100000

0.0001 0.001 0.01

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

0.1

1

10

100

1000

10000

100000

0.001

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

(a) gazelle (b) davinci

Fig. 13. Mining times in weblog data sets

28 E. Loekito et al

0.1

1

10

100

1000

10000

100000

0.0001 0.001

C
P

U
 ti

m
e

(s
ec

on
ds

)

Minsup

SeqBDDMiner
PLWAP

PrefixSpan

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

on
ds

)

Number of domain items

SeqBDDMiner
PLWAP

PrefixSpan

(a) C2.5.S5.N50.D40K (b) S10.NXX.D10K

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

(s
ec

on
ds

)

Length of common prefix (# of elements)

SeqBDDMiner
PLWAP

PrefixSpan

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

(s
ec

on
ds

)

Length of common suffix (# of elements)

SeqBDDMiner
PLWAP

PrefixSpan

(c) XX—PSORTb (d) PSORTb—XX

Fig. 14. Mining times in synthetic data sets

mon sub-trees with a linear growth of running time whilst the other algorithms
have an exponentially increasing running time.

7.3. Effectiveness of SeqBDDMiner due to pattern caching and
node sharing

In order to analyse the effectiveness of the BDD’s caching ability, we compare
the number of database projections performed by SeqBDDMiner against Pre-
fixSpan. For the case of SeqBDDMiner, if a conditional database exists in the
patternCache cache, then no further projections are performed for that database.
We also count the number of conditional databases for the case of just using a
prefix tree, which we refer to as SeqBDTreeMiner. As representative data sets,
we show the comparison for DENV1, snake, PSORTb-ccm, and gazelle data sets
in Figure 15. It shows that SeqBDDMiner always projects the smallest number
of conditional databases. Moreover, in cases where there is a huge reduction in
terms of the database projections, such as in DENV1 data set, and in other
data sets with low support threshold, SeqBDDMiner projects significantly fewer
databases than PrefixSpan. When compared to SeqBDTreeMiner, it shows that
the caching mechanism in SeqBDDMiner reduces the number of database projec-
tions by up to 12 times for all data sets, being more effective when the minimum
support threshold is low.

We now examine the hit rate of the cached patterns from each conditional
database, by counting the number of conditional databases which are skipped
because they exist in the cache table. Figure 16(a) shows that at a support
threshold as high as 90% in the highly similar DENV1 data set, SeqBDDMiner
is able to achieve a high hit rate of 53%.

In the snake data set which contains short sequences, and PSORTb-ccm data
set which contains long but dissimilar sequences, SeqBDDMiner achieves a low
hit rate except when the support threshold is relatively low (Figure 16(b) and

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 29

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 p

ro
ce

ss
ed

 d
at

ab
as

es

minsup

SeqBDDMiner
SeqBDTreeMiner

PrefixSpan

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 0.1 0.2 0.3 0.4 0.5 0.6

N
um

be
r

of
 p

ro
ce

ss
ed

 d
at

ab
as

es

minsup

SeqBDDMiner
SeqBDTreeMiner

PrefixSpan

(a) DENV1 (b) snake

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
um

be
r

of
 p

ro
ce

ss
ed

 d
at

ab
as

es

minsup

SeqBDDMiner
SeqBDTreeMiner

PrefixSpan

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.0001 0.001 0.01

N
um

be
r

of
 p

ro
ce

ss
ed

 d
at

ab
as

es

minsup

SeqBDDMiner
SeqBDTreeMiner

PrefixSpan

(c) PSORTb-ccm (d) gazelle

Fig. 15. Number of projected conditional databases

(c)). This shows that a large amount of node-sharing among the conditional
databases at a low support threshold value can still be achieved, even though
the sequences are short or dissimilar. In the gazelle data set which is highly
similar but contains short sequences, the hit rate does not even reach 30% for
a support threshold as low as 0.03% (Figure 16(d)), which corresponds to the
poorer time performance of SeqBDDMiner, except when the support threshold
value is low.

Figure 17 shows the respective mining times using either SeqBDDs, with or
without caching, and SeqBDTrees. The caching mechanism is not applicable for
SeqBDTrees (prefix trees), since it only has any effect when fan-in is allowed.
Firstly, to study the effects of the use of cache in SeqBDDMiner, for all of its in-
termediate computations, we compare its running times against SeqBDDMiner-
noCache in Figure 17. It shows that SeqBDDMiner is at least twice as fast as
SeqBDDMiner-noCache for the PSORTb-ccm data set, as well as for the snake
and gazelle data sets given low support threshold values, i.e. less than 20% for
the snake data set, and less than 0.04% for the gazelle data set, since the pat-
tern cache has a high successful rate in those circumstances (Figure 16(b)). For
the DENV1 data set, moreover, SeqBDDMiner is 1000 times faster, which is
explained by the high successful hit rate of the pattern cache for all support
thresholds (shown earlier in Figure 16(a)).

Secondly, to study the effects of node fan-in on the mining time of Seq-
BDDMiner, we compare the running times of SeqBDDMiner-noCache (with the
caching mechanism turned off) and SeqBDTreeMiner. Since both of them are
not using the caching mechanism, they differ only in the cost for building Seq-
BDDs or SeqBDTrees representing the conditional databases and the output
patterns. In all scenarios, SeqBDDMiner-noCache is at least 2-3 times faster
than SeqBDTreeMiner, and SeqBDTreeMiner could not complete when the sup-
port threshold is relatively low, due to excessive memory usage. Though they

30 E. Loekito et al

0.5

0.55

0.6

0.65

0.7

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
uc

ce
ss

fu
l h

it
ra

te

Minsup

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

0 0.05 0.1 0.15 0.2

S
uc

ce
ss

fu
l h

it
ra

te

Minsup

(a) DENV1 (b) snake

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
uc

ce
ss

fu
l h

it
ra

te

Minsup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0001 0.001 0.01

S
uc

ce
ss

fu
l h

it
ra

te

Minsup

(c) PSORTb-ccm (d) gazelle

Fig. 16. Hit rate of cached patterns in SeqBDDMiner

project the same number of conditional databases, it shows that building and
maintaining SeqBDDs, being more compact, is faster than SeqBDTrees, which
do not allow node fan-in.

Finally, to study the effects of node fan-out, we compare the running times
of SeqBDTreeMiner against PrefixSpan, where a SeqBDTree is similar to a pre-
fix tree which allows node fan-out (but not node fan-in), whilst PrefixSpan is
a memory-based algorithm. When there exist many sequences, such as in the
gazelle data set, the running time of SeqBDTreeMiner grows exponentially slower
than PrefixSpan as the minimum support decreases, having a similar running
time when the minimum support is less than 0.02% (Figure 17(d)).

8. Discussion

In this section, we provide a detailed discussion of the performance of our
SeqBDD-based algorithm in terms of the effectiveness of its caching utility which
is affected by the amount of node sharing between the databases, which leads us
to identify two interesting circumstances according to similarity characteristics
of the input data set.

(Highly) similar sequences: In a data set which contains (highly) similar
sequences, its input SeqBDD has a large amount of node fan-out or node fan-in
and the conditional databases are also more likely to share many nodes, especially
when the sequences are long.

Our experimental results show that SeqBDDMiner achieves a high hit rate
of the pattern cache and the best runtime performance when mining the highly
similar DNA or protein sequence data sets, especially at a low support threshold
if the sequences are relatively short. Consider the following situation. Suppose
p and q (p 6= q) are two frequent subsequences. If every sequence which con-

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 31

0.01

0.1

1

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDDMiner
SeqBDDMiner-noCache

SeqBDTreeMiner
PrefixSpan

0.01

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDDMiner
SeqBDDMiner-noCache

SeqBDTreeMiner
PrefixSpan

(a) DENV1 (b) snake

0.01

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDDMiner
SeqBDDMiner-noCache

SeqBDTreeMiner
PrefixSpan

0.01

0.1

1

10

100

1000

10000

100000

0.0001 0.001 0.01

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDDMiner
SeqBDDMiner-noCache

SeqBDTreeMiner
PrefixSpan

(c) PSORTb-ccm (d) gazelle

Fig. 17. Mining time comparison between SeqBDDMiner, with or without caching, and Seq-
BDTreeMiner

tains p also contains q, then both conditional databases are identical and the
pre-computed patterns can be re-used. Otherwise, the two conditional databases
may still share common sub-trees given the input sequences are highly simi-
lar. When performing database projections, the databases share a lot of similar
computations due to their large degree of node-sharing.

However, if the sequences are very short, the patterns are more likely to be
dissimilar and the amount of node-sharing among the conditional databases may
not be significant. This is proven by the poor hit rate of the cached patterns when
mining the weblog gazelle data set. In this circumstance, the construction of the
conditional databases is costly, whereas PLWAP or Prefixspan can have a better
performance since they do not physically build the conditional databases.

Dissimilar sequences: In a data set which contains dissimilar sequences,
its input SeqBDD has little node fan-out and node fan-in. In general, being
dissimilar, the conditional databases are also dissimilar and caching effectiveness
decreases, since not many node re-use is allowed. If the support threshold is low,
however, similarity of the frequent subsequences increases and the node-sharing
among the conditional databases also increases, as shown by the increased hit
rate of the pattern cache in our experiments with the DNA.Homologene554, and
DENV2 at a very low support threshold value.

Summary of results: In the beginning of this paper we posed three ques-
tions which we aim to answer in this paper, as follows:

Can a BDD be used for compactly representing sequences? We showed that
ZBDDs have a limited data compression ability for representing sequences. In
this paper, we have proposed a more suitable type of BDD, namely Sequence
BDDs, which allow sequences of various lengths to share nodes representing their
common prefixes as well as suffixes, through the sharing of common sub-trees. In
our experiments, we showed that a SeqBDD can be half as large compared to a
prefix tree representation. Furthermore, we found that the total amount of node

32 E. Loekito et al

sharing across the conditional databases is proportional to the compactness of
the initial SeqBDD database.

Can the use of a SeqBDD benefit frequent subsequence mining? The key
features of our proposed algorithm are SeqBDD’s canonical structure and its
caching ability. We performed experiments for examining the effects of caching
in our SeqBDDMiner, and showed that regardless of the compactness of the
initial SeqBDD database, maintaining the canonicity across multiple SeqBDDs
is advantageous since many of the intermediate databases do share common sub-
trees. Thus, redundancy can be avoided by allowing the same sub-trees to re-use
their computation results.

Can our proposed SeqBDD-based miner outperform state-of-the-art pattern
growth techniques in frequent subsequence mining? When the input sequences
are long and similar, SeqBDDMiner outperforms the state-of-the-art pattern
growth techniques such as PLWAP and Prefixspan. When the input sequences
are short, or dissimilar, SeqBDDMiner is less competitive due to the low node-
sharing across the conditional databases, except when the support threshold
value is low for which SeqBDDMiner has a higher scalability than the other
techniques.

9. Related Work

Sequential patterns are useful in a number of applications, such as sequence
classification (Exarchos, Tsipouras, Papaloukas and Fotiadis, 2008), and pro-
tein localization (Zaiane, Wang, Goebel and Taylor, 2006). Our mining tech-
nique is based on the prefix-growth framework which suits prefix-monotone con-
straints (Pei et al., 2002). Such constraints include the minimum frequency
(considered in this paper), minimum length, gap constraint (Ji, Bailey and
Dong, 2007), similarity constraint (measured by the longest common subse-
quences) (Mitasiunaite and Boulicaut, n.d.), and many more. There also exist
tough constraints (Pei et al., 2002), which are not prefix-monotone, such as sum
or average constraint, and regular expressions. Work in (Pei et al., 2002) showed
that the prefix-growth framework, as well as our technique, can be extended to
handle such constraints. Apart from the prefix-growth, there also exists a highly
scalable approach which is based on a sampling technique (Luo and Chung, 2008).
Their technique uses a prefix tree structure to accommodate frequency counting
of the candidate patterns. Our proposed data structure, the weighted SeqBDDs,
could possibly be adopted by such a technique.

Apriori, AprioriAll, AprioriSome (Srikant and Agrawal, 1996) were the first
techniques in sequential pattern mining, based on the apriori property of fre-
quent subsequences. Subsequently, more efficient techniques were proposed, such
as GSP (Agrawal, 1996), PSP (Masseglia, Cathala and Poncelet, 1998) and
SPADE (Zaki, 2001). Work in (Pei et al., 2004) shows that PrefixSpan is gen-
erally the most efficient and scalable for mining long sequences.

GSP (Generalized Sequential Pattern)(Agrawal, 1996) follows the APRIORI,
candidate generation-and-test, framework. It generates candidates of frequent
(k+1)-sequences by performing a join join on the frequent k-sequences. Support
counting is the major cost in the GSP algorithm, which requires one database
scan for each pattern candidate. PSP (Prefix Sequential Pattern) (Masseglia
et al., 1998) is similar to GSP, except that PSP introduces the use of prefix-tree
to perform the procedure. Work in (Lin and Lee, 2005), moreover, extends the

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 33

GSP algorithm to find sequential patterns with time constraints, such as time
gaps and sliding time windows.

SPADE, proposed in (Zaki, 2001), is based on decomposing the pattern lattice
into smaller sub-lattices, and the mining task is decomposed into mining in those
smaller sub-lattices. For counting support, SPADE uses a vertical, instead of a
horizontal, data representation . Each item, and consequently, each sequence is
represented using its id list where each id corresponds to an item and the time-
stamp. The support of a sequence is then obtained by joining the idlist of its
items.

Effective and efficient sequential pattern mining is generally tackled in two
orthogonal aspects. First, efficient algorithms are developed to enumerate se-
quential patterns and count the supports. Our approach falls into this category.
Second, pruning techniques are developed to narrow down the search space to
only the closed sequential patterns. CloSpan (Yang, Han and Afshar, 2003) and
BIDE (Wang and Han, 2004) are extensions of the prefix-growth framework for
closed subsequences. Extending our algorithm for mining closed subsequences is
also potentially possible, since suffixes of a sequence which have the same fre-
quency may share nodes in the weighted SeqBDD representation. Based on our
findings, SeqBDDs allow efficient processing of the conditional databases, which
is particularly beneficial when dealing with dense data which contains many
patterns. There also exists other work on mining closed subsequences with dif-
ferent constraints, such as top-k closed sequential patterns (Tzvetkov, Yan and
Han, 2005) which are based on minimum length constraint, top-k constraint, and
closure.

There appears to be little work that considers the use of BDDs for storing and
manipulating sequences. Work in (Kurai et al., 2007) addresses the problem of
capturing/enumerating all possible n-grams (sequences without gaps), such as in
a text file. Their approach is based on the use of ZBDDs and sequence-to-itemset
encoding. More discussion about this approach (and some of its limitations) can
be found in Section 4. Other BDD-variants exist for analysing sequential events
in fault-tree analysis (Sinnamon and Andrews, 1996), but they consider pseudo-
sequential events since any event does not occur more than once in each fault-
path. There exists a type of unordered BDD, namely the Free BDDs(Gergov
and Meinel, 1994), but unlike SeqBDDs, they do not allow a variable to appear
multiple times in any path.

The combinatorial pattern matching community has studied the use of sub-
sequence automata (Hirao, Hoshino, Shinohara, Takeda and Arikawa, 2000),
which are inspired by Directed Acyclic Subsequence Graphs (DASGs) (Baeza-
Yates, 1991), for solving subsequence matching problems. Similar to SeqBDDs,
identical sub-trees are merged, but every node in DASGs may have m outgoing
edges, where m is the size of the alphabet. Such a technique can be extended for
finding frequent subsequences, but it does not have SeqBDDMiner’s ability to
avoid infrequent candidate generations, and to re-use intermediate computation
results which we have shown to be particularly advantageous in our study.

10. Future Work and Conclusion

In this paper, we have introduced Weighted Sequence Binary Decision Diagrams
for efficient representation of sequences and shown how they may be used as
the basis for mining frequent subsequences. A primary objective has been to

34 E. Loekito et al

investigate situations where the use of a Sequence BDD is superior to the prefix
tree style approaches. In on our experimental results, we have shown that Seq-
BDDs can be highly effective in improving the efficiency of frequent subsequence
mining, for cases when the input sequences or intermediate computations are
similar, the sequences are long, or when the mining is at low support. Based
on this evidence, we believe SeqBDDs are an important and worthwhile data
structure for sequence data mining.

As future work, it would be interesting to investigate a hybrid style approach
that uses a combination of Prefixspan and SeqBDD, according to estimated
properties of the input data set. It is also promising to further extend our method
to mining closed sequential patterns.

Acknowledgements. This paper was partially supported by NICTA. NICTA is funded
by the Australian Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

References

Agrawal, R. (1996), Mining sequential patterns: Generalizations and performance improve-
ments, in ‘Proc. of the 5th Int’l Conf. on Extending Database Technology (EDBT’96)’,
pp. 3–17.

Aloul, F. A., Mneimneh, M. N. and Sakallah, K. (2002), ZBDD-based backtrack search SAT
solver, in ‘Int’l Workshop on Logic Synthesis’, University of Michigan.

Baeza-Yates, R. A. (1991), ‘Searching subsequences’, Theoretical Computer Science 78(2), 363–
376.

Bryant, R. E. (1986), ‘Graph-based algorithms for boolean function manipulation’, IEEE
Trans. on Computers 35(8), 677–691.

Bryant, R. E. and Chen, Y.-A. (1995), Verification of arithmetic circuits with binary mo-
ment diagrams, in ‘DAC’95: Proc. of the 32nd ACM/IEEE Conf. on Design Automation’,
pp. 535–541.

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C. and Fotiadis, D. I. (2008), ‘An optimized
sequential pattern matching methodology for sequence classification’, Knowledge and In-
formation Systems (KAIS) .

Ezeife, C. I. and Lu, Y. (2005), ‘Mining web log sequential patterns with position coded pre-
order linked WAP-tree’, Int’l Journal of Data Mining and Knowledge Discovery (DMKD)
10(1), 5–38.

Ezeife, C. I., Lu, Y. and Liu, Y. (2005), PLWAP sequential mining: open source code, in
‘OSDM’05: Proc. of the 1st Int’l Workshop on Open Source Data Mining’, pp. 26–35.

Ferreira, P. and Azevedo, A. P. (2005), Protein sequence classification through relevant se-
quences and bayes classifiers, in ‘Proc. of Progress in Artificial Intelligence’, Vol. 3808,
pp. 236–247.

Gergov, J. and Meinel, C. (1994), ‘Efficient analysis and manipulation of OBDDs can be
extended to FBDDs’, IEEE Trans. on Computers 43(10), 1197–1209.

Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.-K. and Dubey, P.
(2005), Cache-conscious frequent pattern mining on a modern processor, in ‘Proc. of the
31st Int’l Conf. on Very Large Data Bases’, pp. 577–588.

Han, J., Pei, J., Yin, Y. and Mao, R. (2004), ‘Mining frequent patterns without candidate
generation: A frequent-pattern tree approach’, Data Mining and Knowledge Discovery
8(1), 53–87.

Hirao, M., Hoshino, H., Shinohara, A., Takeda, M. and Arikawa, S. (2000), ‘A practical algo-
rithm to find the best subsequence patterns’, Discovery Science pp. 141–154.

IBM (n.d.), ‘Synthetic data generation code for association rules and sequential patterns. in-
telligent information systems, IBM almaden research center’.
URL: http://www.almaden.ibm.com/software/quest/resources

Ji, X., Bailey, J. and Dong, G. (2007), ‘Mining minimal distinguishing subsequence patterns
with gap constraints’, Knolwedge and Information Systems (KAIS) 11(3), 259–286.

A Binary Decision Diagram Based Approach for Mining Frequent Subsequences 35

Kurai, R., Minato, S. and Zeugmann, T. (2007), N-gram analysis based on Zero-suppressed
BDDs, in ‘New Frontiers in Artificial Intelligence (LNCS 4384)’.

Lin, M.-Y. and Lee, S.-Y. (2005), ‘Efficient mining of sequential patterns with time constraints
by delimited pattern growth’, Knowledge and Information Systems (KAIS) 7(4), 499–514.

Loekito, E. and Bailey, J. (2006), Fast mining of high dimensional expressive contrast pat-
terns using Zero-suppressed Binary Decision Diagrams, in ‘Proc. of the 12th Int’l Conf. on
Knowledge Discovery and Data Mining (KDD)’, pp. 307–316.

Loekito, E. and Bailey, J. (2007), Are Zero-suppressed Binary Decision Diagrams good for
mining frequent patterns in high dimensional datasets?, in ‘Proc. of the 6th Australasian
Data Mining Conf. (AusDM)’, pp. 139–150.

Luo, C. and Chung, S. M. (2008), ‘A scalable algorithm for mining maximal frequent sequences
using a sample’, Knowledge and Information Systems (KAIS) 15(2), 149–179.

Ma, Q., Wang, J., Sasha, D. and Wu, C. (2001), ‘DNA sequence classification via an expectation
maximization algorithm and neural networks: a case study’, IEEE Trans. on Systems, Man
and Cybernetics, Part C 31(4), 468–475.

Masseglia, F., Cathala, F. and Poncelet, P. (1998), ‘The PSP approach for mining sequen-
tial patterns’, Proc. of the 2nd European Symposium on Principles of Data Mining and
Knowledge Discovery 1510, 176–184.

Minato, S. (1993), Zero-suppressed BDDs for set manipulation in combinatorial problems, in
‘Proc. of the 30th Int’l Conf. on Design Automation’, pp. 272–277.

Minato, S. (2001), ‘Zero-suppressed BDDs and their applications’, Int’l Journal on Software
Tools for Technology Transfer (STTT) 3(2), 156–170.

Minato, S. (2005), Finding simple disjoint decompositions in frequent itemset data using Zero-
suppressed BDD, in ‘Proc. of ICDM Workshop on Computational Intelligence in Data
Mining’, pp. 3–11.

Minato, S. and Arimura, H. (2005), Combinatorial item set analysis based on Zero-suppressed
BDDs, in ‘IEEE Workshop on Web Information Retrieval WIRI’, pp. 3–10.

Minato, S. and Arimura, H. (2006), Frequent pattern mining and knowledge indexing based on
Zero-suppressed BDDs, in ‘The 5th Int’l Workshop on Knowledge Discovery in Inductive
Databases (KDID’06)’, pp. 83–94.

Mitasiunaite, I. and Boulicaut, J.-F. (n.d.), Looking for monotonicity properties of a simi-
larity constraint on sequences, in ‘Proceedings of the 2006 ACM Symposium on Applied
Computing’, pp. 546–552.

NCBI (n.d.), ‘Entrez, the life sciences search engine’.
URL: http://www.ncbi.nlm.nih.gov/sites/entrez

Ossowski, J. and Baier, C. (2006), Symbolic reasoning with weighted and normalized decision
diagrams, in ‘Proc. of the 12th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning’, pp. 35–96.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U. and Hsu, M.-C.
(2004), ‘Mining sequential patterns by pattern-growth: The PrefixSpan approach’, IEEE
Trans. on Knowledge and Data Engineering 16(11), 1424–1440.

Pei, J., Han, J., Mortazavi-asl, B. and Zhu, H. (2000), Mining access patterns efficiently from
web logs, in ‘PAKDD’00: Proc. of the 2000 Pacific-Asia Conf. on Knowledge Discovery and
Data Mining’, pp. 396–407.

Pei, J., Han, J. and Want, W. (2002), Mining sequential patterns with constraints in large data-
bases, in ‘Proceedings of the 11th International Conference on Information and Knowledge
Management (CIKM)’, pp. 18–25.

She, R., Chen, F., Wang, K., Ester, M., Gardy, J. L. and Brinkman, F. S. L. (2003), Frequent-
subsequence-based prediction of outer membrane proteins, in ‘Proc. of the 9th Int’l Conf.
on Knowledge Discovery and Data Mining (KDD)’, Washington D.C., pp. 436–445.

Sinnamon, R. M. and Andrews, J. (1996), ‘Quantitative fault tree analysis using binary decision
diagrams’, European Journal of Automation 13(8).

Srikant, R. and Agrawal, R. (1996), Mining sequential patterns: generalizations and perfor-
mance improvements, in ‘Proc. of the 5th Int’l Conf. on Extending Database Technology:
Advances in Database Technology’, pp. 3–17.

Tzvetkov, P., Yan, X. and Han, J. (2005), ‘Tsp: Mining top-k closed sequential patterns’,
Knowledge and Information Systems (KAIS) 7(4), 438–457.

Wang, J. and Han, J. (2004), BIDE: Efficient mining of frequent closed sequences, in ‘ICDE’04
Proc. of the 20th Int’l Conf. on Data Engineering’, p. 79.

Yang, X., Han, J. and Afshar, R. (2003), Clospan: Mining closed sequential patterns in

36 E. Loekito et al

large databases, in ‘Proceedings of the International Conference on Data Mining (SDM)’,
pp. 166–177.

Zaiane, O. R., Wang, Y., Goebel, R. and Taylor, G. (2006), ‘Frequent subsequence-based
protein localization’, Data Mining for Biomedical Applications pp. 35–47.

Zaki, M. J. (2001), ‘SPADE: An efficient algorithm for mining frequent sequences’, Machine
Learning 42(1-2), 31–60.

Author Biographies

Elsa Loekito Elsa Loekito received her Bachelor of Computer Science
(Hons) and PhD degree in Computer Science from the University of
Melbourne, Australia, in 2004 and 2009. She is currently a research
assistant in the Department of Computer Science and Software En-
gineering, University of Melbourne. Her main research interests are
pattern mining, contrast pattern mining, classification, and the use of
binary decision diagrams for data mining. She has published research
papers in the proceedings of a number of international conferences,
such as ACM SIGKDD 2006, ACM CIKM 2008, and PAKDD 2009.

James Bailey is a Senior Lecturer at the University of Melbourne.
He received his PhD from the University of Melbourne in 1998 and
BSc and BE from the same University in 1993 and 1994 respectively.
His research interests are in data mining and machine learning, bioin-
formatics, health informatics and database systems. He has published
over 80 papers in leading conferences and journals in computing and
has received best paper awards at IEEE ICDM in 2005 and IAPR
PRIB in 2008.

Jian Pei Jian Pei is an Associate Professor and the Director of Collab-
orative Research and Industry Relations in the School of Computing
Science at Simon Fraser University, which he joined in 2004. From 2002
- 2004, he was an Assistant Professor at the State University of New
York at Buffalo. He received his Ph.D. degree in Computing Science
from Simon Fraser University in 2002. He also received B. Eng. and M.
Eng. degrees from Shanghai Jiao Tong University in 1991 and 1993.
His research interests can be summarized as developing effective and
efficient data analysis techniques for novel data intensive applications.
Since 2000, he has published one monograph and over 120 research
papers in refereed journals and conferences. He is an associate edi-
tor of IEEE Transactions of Knowledge and Data Engineering and
a senior member of the ACM and IEEE. He is the recipient of the
British Columbia Innovation Council 2005 Young Innovator Award,
an NSERC 2008 Discovery Accelerator Supplements Award, an IBM
Faculty Award (2006), a KDD Best Application Paper Award (2008),
and an IEEE Outstanding Paper Award (2007).

Correspondence and offprint requests to: James Bailey, Department of Computer Science and

Software Engineering, University of Melbourne, Australia. Email: jbailey@csse.unimelb.edu.au

