A Reliable Computational Model For BDI Agents

Paolo Busetta
ITC-irst
38050 Povo, Trento - Italy

busetta@itc.it

General Terms
Reliability, Design

Keywords

BDI, multi-agent systems, ACID transactions, nested transactions

ABSTRACT

BDI (Belief, Desire, Intention) is a mature and commonly adopted
architecture for intelligent agents. However, the current computa-
tional model adopted by BDI has a number of problems with con-
currency control, recoverability and predictability. This has hin-
dered the construction of agents having robust and predictable be-
haviour.

To this end, we propose to integrate distributed transactions, a
well-established technology in distributed systems, into the compu-
tational model of multi-agent systems based on the BDI architec-
ture. Differently from common approaches, where so-called ACID
(Atomic, Consistent, Isolated, Durable) transactions are used sim-
ply to operate on external resources such as databases, in our model
transactions are the foundation of the operational semantics of in-
tentions and of collaborative tasks within team of agents. They
provide a predictable, well understood behaviour in case of partial
or total failure of intentions to achieve their goals or even crashes of
agents. Furthermore, distributed transactions provide a simple and
clear extension of the BDI semantics from the single-agent case to
teams of agents.

We discuss the development of an agent system having a compu-
tational model with well-defined correctness criteria. Instead of
hardwiring robustness and fault-tolerant behaviour into agent plans,
well defined notions of correctness exist at the semantic level. Ver-
ification can then be undertaken at the desired level of abstraction.

Two BDI interpreter prototypes have been developed to demon-

James Bailey and

Kotagiri Ramamohanarao

Department of Computer
Science
University of Melbourne
Victoria, 3010, Australia

{jbailey,rao} @cs.mu.oz.au

strate the feasibility of our approach. The first, TOMAS, is a Java
environment that execute intentions as nested transactions. The
second is a re-implementation of TOMAS within a J2EE applica-
tion server, which can be used to develop session beans (i.e., busi-
ness logic); it demonstrates how the model we propose nicely fits
into a state-of-the-art environment for mission critical systems in
domains such as e-business and Web services.

1. INTRODUCTION

Of the various agent architectures which have been proposed, BDI
(Belief, Desire, Intention) [15] is probably the most mature and has
been adopted in a number of research and industrial applications.

The BDI architecture has been used in some products and a number
of applications ranging from air traffic control to air combat sim-
ulations, from telephone call centres to the handling of malfunc-
tions on NASA’s Space shuttle [10]. The BDI approach is based
on the study of mental attitudes [15] and tackles the problems aris-
ing when trying to use traditional planning in situations requiring
real-time reactivity. The Beliefs represent the informational state
of a BDI agent, that is, what it knows about itself and the world.
Desires or goals are its motivational state, that is, what the agent is
trying to achieve. A typical BDI agent has a so-called procedural
knowledge constituted by a set of Plans which define sequences of
actions and tests (steps) to be performed to achieve a certain goal
or react to a specific situation. The Intentions represent the delib-
erative state of the agent, that is, which plans the agent has chosen
for eventual execution.

In addition to the characteristics which are commonly indicated as
distictive of intelligent agents (autonomy, social ability, reactivity
and pro-activeness [19, 18]) we argue that agents should possess
two additional properties - namely robustness and predictability.
However, the current computational model adopted by BDI has
many problems concerning concurrency control and recoverabil-
ity in general. This has hindered the construction of agents having
robust and predictable behaviour.

More specifically, the architecture lacks a paradigm for concur-
rency control amongst intentions performing conflicting operations,
such as trying to manipulate the same set of beliefs at the same time.
In theory, this problem is resolvable by writing context-specific
meta-plans [15]. However, in addition to being impractical, writing
meta plans which discover and handle race conditions in real-time
is a very challenging task. There is also the potential of duplication



of effort from a software engineering point of view.

Another important feature missing in the BDI architecture is an
exception handling mechanism. In particular, there is no prescribed
way to report faults concerning the infrastructure or other agents in
a team happening asynchronously with the execution of intentions.
It is left to the application developer to provide adequate failure
detection and recovery mechanisms.

It can also be argued that the current BDI architecture lacks an
adequate computational model expressing the activities an agent
is performing at a given time and how they relate to one another.
Consequently, tasks such as moving an agent to another host or,
analogously checkpointing to disk and recovering later are non triv-
ial. This is because the world may change in the meantime and its
new state must be taken into account by the reborn agent. Issues
such as whether the beliefs should reconstituted by the agent and
whether all goals and intentions should be moved become impor-
tant. Neither the architecture nor the existing languages help in
resolving these issues.

Furthermore, engineering large agent systems is a difficult task. So
although the BDI architecture allows for multiple agents each hav-
ing multiple threads of execution, the complexity of trying to de-
sign a multi-threaded, multi-agent system places high demands on
the programmer. Indeed, anecdotal evidence suggests that instead
of using these facilities to their full power, programmers often re-
sort to a programming style that closely resembles rule writing for
traditional ECA (Event-Condition-Action) systems, where a single
rule at the time is scheduled and executed atomically. Of course,
such a style dramatically simplifies the analysis of the behaviour
of an agent, which otherwise — lacking an adequate computational
model in particular concerning concurrency, as said above — be-
comes hard to understand and control.

To overcome the limitations mentioned above, we propose to in-
tegrate distributed transactions, a well-established technology in
databases and distributed systems, into the computational model
of multi-agent systems based on the BDI architecture. Differently
from common approaches, where ACID transactions (described in
Sec. 2.2 below) are used simply to operate on external resources
such as databases or tuple spaces, in our model transactions are the
foundation of the operational semantics of intentions and of collab-
orative tasks within team of agents. This provides a predictable,
well understood behaviour in the face of partial or total failure of
intentions to achieve their goals, or even crashes of agents. Fur-
thermore, distributed transactions provide a simple and clear ex-
tension of the BDI semantics from the single-agent case to a teams
of agents.

This paper is organized as follows. Next section provides back-
ground information on BDI and ACID transactions, and introduces
a running example used throughout the rest of the paper. Sec. 3
introduces the core of our approach, i.e. the integration of nested
ACID transactions with BDI intentions; Sec. 4 discusses its exten-
sion from the single to the multi-agent case. ACID transactions are
powerful but have limitations, mostly concerning long-term activi-
ties; Secs. 5 and 6 introduce alternative transaction models that may
be adopted in combination with BDI. A comparison between BDI
and active databases is provided in Sec. 7. Sec. 8 illustrates our
current implementation of transaction-based BDI systems. Finally,
we draw some comparison with works available in the liturature in
Sec. 9.

2. BACKGROUND
2.1 The BDI Agent Architecture

Figure 1, extracted from [10], shows the basic components of a typ-
ical BDI agent. The Beliefs represent the informational state of the
agent, that is, what it knows about itself and the world. Desires or
Goals are its motivational state, that is, what the agent is trying to
achieve. A typical BDI agent ([10, 14, 15] has a so-called procedu-
ral knowledge constituted by a set of Plans which define sequences
of action and test steps to be performed to achieve a certain goal or
react to a specific situation. The Intentions represent the delibera-
tive state of the agent, that is, which plans the agent has chosen for

eventual execution.
MONITOR
L

SENSORS
ENVIRONMENT
INTENTION

LEFFECTORS
STRUCTURE
COMMAND
GENERATOR

Figure 1. BDI Agent Structure

DATABASE
(BELIEFS)

KA LIBRARY
(PLANS)

INTERPRETER

(REASONER)

The agent reacts to events, which are generated by modifications to
its beliefs, additions of new goals, or messages arriving from the
external world. An event may invoke (trigger) one or more plans;
the agent commits to execute one or more of them, that is, they
become intentions.

Intentions are executed one step at a time. A step can query or
change the beliefs, perform actions on the external world, sus-
pend the execution until a certain condition is met, and submit new
goals. The operations performed by a step may generate new events
which, in turn, may start new intentions.

An intention succeeds when all of its steps have been completed; it
fails when certain conditions (either guarding its execution or being
tested by a step) are not met, or actions being performed report
errors, etc.

An agent applies a set of default policies when selecting which
plans become intentions, how to schedule the active intentions, etc.
These can be overridden by user defined policies, usually invoked
via the same event/plan/intention mechanism described above (meta-
level plan scheduling). Particularly important is the case of inten-
tion completion; at that time, the agent reconsiders the reason that
caused it to commit to the intention (that is, the agent examines the
triggering event). In the case of a goal, default policy is to con-
sider success as a sign that the goal has been achieved; on failure,
standard policy is to select and execute another plan until all alter-
natives have been attempted, at which point the goal is considered
as unachievable. This automatic retry-on-failure mechanism may
help in dealing with changes in the environment during execution,
lack of accurate information at the time of plan selection, and sim-
ilar cases.

In summary, BDI is the abstract architecture of a family of parallel
and distributed systems.



2.2 ACID transactions

We now discuss some concepts of transaction processing (TP).
This description is based on [11, 13]. Traditional transaction pro-
cessing systems prevent inconsistency and integrity problems by
satisfying the so-called ACID properties of transactions: Atomic-
ity, Consistency, Isolation, Durability.

Atomicity means that either all or none of transactions operations
are performed.

Consistency means that each transaction has to maintain the in-
tegrity constraints on the objects it manipulates.

Isolation means that a transaction executes as if it were running
alone, that is, without interference from concurrent transactions.
Durability means that all changes made by a successfully termi-
nated committed transaction become permanent, surviving any sub-
sequent failure.

In other words, the ACID properties define an abstract computa-
tional model in which each transaction runs as if it were alone and
there were no failure. The programmer can focus on developing
correct, consistent transactions, while the handling of concurrency
and failure is delegated to the underlying engine.

ACID transactions are supported by most, if not all, databases, in-
cluding all commercial relational databases we are aware of. Iso-
lation is commonly guaranteed by means of locks, while atomicity
and durability are managed by logging the operations performed by
atransaction and applying appropriate recovery or roll-back actions
in the event of a failure.

ACID and nested transactions, as well as various other transac-
tion models (including those described later), are also commonly
adopted in distributed systems to achieve reliable behaviour. For in-
stance, many state-of-the-art J2EE-compliant! distributed transac-
tion systems by major software vendors provide JTA/JTS-compliant?
transaction management. J2EE platforms commonly coordinate
multiple databases and application servers. It also worth notic-
ing that some tuple-based communication platforms often used for
agents, such as TSpaces or JavaSpaces, provide transactions for
safe tuple manipulation (a good overview on the matter can be
found in [16]).

2.3 Air-Traffic Example

We now describe a scenario which will be used as a running exam-
ple in the remainder of the paper. The scenario being simulated is
an airport with several runways and an air traffic controller agent
looking after the arriving aircraft. An arriving aircraft notifies its
current position and its earliest arrival time; it asks the controller
when and on which runway to land. An aircraft may notify an emer-
gency situation, requiring prompt allocation of the earliest possible
time on a desired runway.

3. NESTED TRANSACTIONS AS SEMAN-
TICS OF INTENTIONS

Nested transactions are an extension of ACID transactions. In a
nutshell (based, as above, on [11, 13]), the idea is to break down
normal ("flat”) ACID transactions into a main (root) transaction
and a number of subtransactions (or descendants) invoked by the
root; recursively, subtransactions can invoke other subtransactions.

1Java™?2 Enterprise Edition, ht t p: // j ava. sun. con j 2ee/

2Java Transaction API and Service,
http://java. sun. conlj2ee/transactions. ht m

The set of transactions comprising a root and all its descendants
forms a family ((or tree).

When a subtransaction commits (i.e., terminates successfully), its
effects do not become durable but are simply added to those of
its parent; simply put, the subtransaction “merges” with its parent.
This applies recursively up to the root transaction, whose final com-
mit is the only one that makes all changes durable. A subtransaction
can fail, causing all the work it and its descendants did to be rolled
back, i.e. all resources are returned to their original state; however,
neither siblings nor its parent are affected, and the latter can take
recovery actions, including running alternative subtransactions.

Top-level (root) transaction Subtransaction Subtransaction

Ti1 Tkl
“"| BEGIN WORK

Tk /| BEGIN WORK
BEGIN WORK /| Invoke subtransaction
. ) Invoke subtransaction

, COMMIT WORK N
- VN TKI2

“~._ | ROLLBACK WORK

Invoke subtransaction \ BEGIN WORK

Tk2 .| Invoke subtransaction

_-~"| BEGIN WORK NE
. .| COMMIT WORK

\

Invoke subtransaction

" | coMMIT WORK

Invoke subtransaction
TS0 TK3
BEGIN WORK

Tk31
" | BEGIN WORK

COMMIT WORK

Invoke subtransaction
.| COMMIT WORK

"< _ | cOMMIT WORK

Figure2: Nested Transaction Model

As afirst step, we propose the use of nested transactions as a frame-
work for the execution of plans, i.e. as the underlying semantics of
intentions. Nested transactions, combined with the automatic retry-
on-failure mechanism for goals described in Sec. 2.1, can provide a
flexible framework for managing partial failures. Figure 2 shows an
example of a nested transaction. When subtransaction Tk11 fails,
all the actions that it performed are aborted, but neither its sibling
Tk12 nor its parent Tk1 are affected. It is worth to stress that “ac-
tions” include any manipulation on resources, including those in-
ternal to an agent such as its own beliefs.

Figure 3 shows an example of a nested transaction inside a single
agent. Returning to our air-traffic example: Suppose a plane enters
the airport airspace and sends a message to the air traffic controller
agent requesting a landing slot. In response to this event, the agent
controller executes Plan A as a top level transaction with the goal of
arranging a slot booking for this plane. Two of the sub-goals in this
top level transaction are carried out as two subtransactions: Plan B
in transaction 2 does the work of scheduling a slot, by finding a free
slot and then locking this entry in the data structure that records slot
usage. Plan C in transaction 3 sends a message to the pilot of the
aircraft and confirms whether he is willing to take the offered slot.
Plan D in transaction 4 writes a record of the interaction between
the controller and the pilot to a log file.

If Plan B fails (i.e. the agent is unable to find a free slot, perhaps
because this plan only examines runways of length < 1000m and
these have all been allocated), this need not cause failure of trans-
action 1 as a whole. Instead, an alternative plan (e.g. Plan B’ which
searches for free runways of length > 1000m) could be launched



of 1 Transaction 2

= Plan B
Transaction 1
St ep0
Plan A root transaction @ St egl 8
Step2 {}
St ep0 &} Coal 1, Goal 2
Stepl
}
2)
@ Transaction 3
> Plan C
subtransaction of 1
N Step0 {}
Transaction 4 Stepl {
Plan D
subtransaction of 3
StepO {} (©)]
Stepl {}
Step2 {}
Goal 3

Figure 3: A Nested Transaction inside a single agent

as a subtransaction. This Plan B’ may then be able to obtain a free
slot.

Suppose Plan B succeeds, but plan C in transaction 3 fails (perhaps
because the pilot decides that he doesn’t need to land at this airport
after all 1). Suppose also that transaction 1 includes the constraint
that if Plan C fails, then transaction 1 itself fails. Abort of transac-
tion 1 would then cause rollback of Plan B, which has the effect of
freeing up the slot entry which was locked earlier.

Observe that the agent may also be running other top-level transac-
tions concurrently with transaction 1. These could be in response
to events that are caused by the arrival of other aircraft that request
runway slots. The handling of this concurrency is done automati-
cally by the engine of the agent managing the transactions; i.e., it
is not necessary to explicitly write code that checks for the exis-
tence/behaviour/interference of other intentions (parallel threads).
For example, there could exist two separate top level transactions
holding locks on the slot data structure, one locking all slots with
runways of length < 1000m and the other locking all slots with
runways of length > 1000m. Neither of these transactions need
explicitly be aware of the other.

Transactionality as semantics for intentions gives also some sig-
nificant advantage in terms of meta-level programming. Consider,
for instance, that intentions can be safely aborted and resubmitted,
as often done in transactional systems on deadlock detection; thus,
an agent can apply this technique when faced with emergencies
or other situations that force the execution of some higher priority
activity. A similar mechanism has been proposed for agent mobil-

ity [9].

4. NESTED TRANSACTIONS FOR TEAMS
OF AGENTS

As mentioned in Sec. 2.2, ACID transactions are commonly used
to coordinate distributed systems. Propagation mechanisms that
extend transactions from one process to another are normally built

into the communication protocols, so that all systems involved in a
common distributed activity participate to a single transaction. So-
called transaction monitors are in charge of coordinating all sys-
tems involved in a transaction when commiting or rolling back;
to this end, the well-known Two Phase Commit protocol [11] is
commonly adopted and implemented by popular distributed system
platforms such as Jini®. Transaction monitors may be distributed
themselves, i.e. more than one may be involved in managing a sin-
gle transaction.

We apply the same approach, and extend the transaction-based se-
mantics of intentions described in Sec. 3 by augmenting each mes-
sage sent by an agent with information on the transaction being
executed by the sending intention. The receiver becomes partner
of the caller in managing the transaction, which means that any
intention handling the message becomes a sub-transaction of the
sender’s. In other words, the nested transaction family is propa-
gated to both agents; further messages extend the nested transaction
tree to other agents. The effect of this — apparently simple — exten-
sion is far-reaching, both theoretically and practically. Indeed, the
intentions of all members of a team directed towards a common ob-
jective are now related by a common distributed nested transaction
family. The same concurrency control and reliability characteris-
tics of transactions within a single agent mentioned in Sec. 3 are
now extended to all agents participating to concurrent distributed
computations.

A couple of notable implications are worth highlighting. First, if
a message is not handled successfully by its receiver, the sender’s
transaction fails, in turn causing the sender’s intention to fail and
eventually the BDI retry-on-failure mechanism to trigger. This be-
haviour automatically catches a large class of problems that other-
wise should be handled explicitly, saving many acknowledgements
and synchronization actions: for instance, the receiver of a mes-
sage may not know how to handle it, or its sub-goals might not be
achievable — possibly because of the failure of other agents —, or it
may crash before the transaction commits.

The second important implication derives directly from the nested
transaction model, as explained in Sec. 3: when a sub-transaction
commits, its effects do not become durable but are simply added
to those of its parent, until the root eventually commits. A conse-
quence of this model is that a crash of an agent any time after it
successfully reacted to a message, but before the root transaction
commits, causes a partial failure that affects the branch of the fam-
ily in which it was involved up to the highest not-yet-committed
sub-transaction — possibly the root itself, i.e. the entire transaction
family.

The example in Fig. 4 shows a transaction family spanning three
agents. In our air-traffic control example, A; may be an arriving
aircraft that asks for a landing time and a runway to air-traffic con-
troller Ay; in turn, this delegates the runway scheduler Az of taking
a decision; eventually, Az contacts aircraft A; to notify it of the
allocated slot.

The root transaction, T1, has been created for the intention exe-
cuting plan Py, attempting to achieve the high-level team objective
(letting the aircraft to land). Observe how sub-transaction T,, look-
ing after plan P, (whose goal is to contact the air-traffic controller)

3In Jini, the transaction monitor is called transaction man-
ager. See the “Jini Technology Core Platform Specification”,
http://wws. sun. con sof tware/jini/specs/



agent A, agent A, agent A,
Transaction Ty
plan P
Try(G o)
goa G
Transaction T,
plan P, message M
Request(M 1‘A2)
Transaction Ty
plan Py
message M

Tell(M A9

Transaction T,

plan P,

message M

Tell(M 5A )

Transaction Tg

plan Py

Figure4: A Nested Transaction in a Team

is extended by message Mj to Ay; its descendent T3 is created for
the intention reacting to M;. The same happens with T3, extended
by My, and T4, extended by Ms. Ts, which runs for Ps (reacting
to the scheduling notification), is particularly interesting since it is
executed by the same agent that is controlling the root; a failure
of plan P4 by Az mid-way its transaction (for instance, because an
emergency landing has been required) will cause the effect of Tg to
be rolled back, but without affecting the rest of the work of A;.

Observe that simultaneous allocation requests to the controller from
different aircrafts are automatically serialized whenever they may
need to modify the same beliefs or data structures (most likely
to happen within A3). An emergency request may be handled by
A, by forcing the failure of all its intentions executing the same
plan P3 (this may be easily obtained with an appropriate guard
on the plan, the so-called maintenance condition), thus forcing all
on-going scheduling to be rolled back, and letting an emergency-
handling intention running at high priority while re-submitting all
aborted scheduling requests.

Another interesting failure case to analyze is a communication break
down between the aircraft A; and the controller A, while the trans-
action is on-going. Since the distributed commit necessarily fails,
all effects of plans P, to Ps are automatically rolled back; P; now
has to handle the failure in getting a runway and behave conse-
quently (perhaps simply by resubmitting the same request after a
while).

As shown above, the distributed nested transaction model is power-
ful, but clearly it is not directly applicable to all types of distributed
computations, such as anything requiring long-term collaborations.
To this end, our initial prototype, TOMAS (Sec. 8), allowed the
agent to choose which transaction policy to apply for each inten-

tion by means of a simple meta-level decision. Moreover, TOMAS
allowed selected beliefs not to be treated as resources under trans-
action control, and supported two different types of messaging, one
propagating and the other not propagating transactions. Before
discussing our current implementations, we illustrate a couple of
transaction models that tackle some of the inflexibilities of ACID
transactions.

5. COMPENSATING TRANSACTIONS

In the transaction scheme discussed in Section 3, errors during
transaction execution result in the transaction being “rolled” back
to its initial state. A disadvantage of this is that the actions an agent
takes cannot always be rolled back, since they may have affected
the state of the real world and they can be no longer undone. In
such a case, it may be inappropriate to model these as subtrans-
actions and instead they should become top-level transactions, ac-
companied by compensating transactions whose job it is to perform
something similar to “rollback” if failure occurs, by revising the ef-
fect of the committed transaction.

Returning to our aircraft example from Section 3, let us impose the
constraint that once a slot has been reserved (using Plan B), if con-
firmation is not received from the pilot within 3 minutes, then the
pilot is assigned that slot regardless of his preference. Now con-
sider what will happen under the nested transaction model if the
pilot takes 5 minutes to respond to the confirmation request sent in
Plan C. Plan C will fail and transaction 1 itself will fail (recall we
have included the constraint that if plan C fails, transaction 1 as a
whole fails). This would also cause rollback of Plan B in transac-
tion 2, but this does not conform with our desired semantics.

The solution we propose is to allow the user to define an entity
known as a compensating transaction. This has the effect of taking
the agent to a state where various constraints are guaranteed to hold.
These constraints may depend on the goals the agent possesses.

Thus, each compensatory transaction T* is associated with another
transaction T and it provides logic to undo (or alternatively com-
pensate for) the actions of T, if T has failed, otherwise it does noth-
ing. By definition, a compensating transaction should itself never
fail.

Returning to our example, we remodel the logic as the top level
transaction sequence Ty; Ty. Tx is a transaction that executes Plan B
(find and reserve a slot) and is followed by Ty, which sequentially
executes two subtransactions T; and T,’. T, executes Plan C (con-
firm with pilot), whereas T is a compensating transaction for plan
B. Ty has the following logic:

T« if received_confirmation or response_time > 3 then {null}
else free(slot_reserved_by_Plan_B);

The key point is that rollback of Plan B no longer automatically
occurs when (conceptually) Plan A fails (as in the non-conforming
example just highlighted). Rather, it is conditional on the response
time of the pilot, as desired.

Thus, compensating transactions allow additional flexibility in mod-
elling dependencies between failures of actions. Of course, com-
pensating transactions may not exist for some types of actions.
Therefore, an important open area of research is to investigate the
types of transactions for which it is possible to define associated
compensating transactions. Work in [7] discusses this from a database



perspective. Another important question is to determine how a
nested transaction may be remodelled as several top level transac-
tions, plus associated compensating transactions. The next section
describes one possible technique.

6. TRANSACTION CHOPPING

Modelling the execution of plans within (sub)transactions can give
rise to another difficulty in addition to the challenge of rollback for
certain types of actions. The difficulty arises because locks taken
on objects need to be held for the duration of the transaction (in
case the transaction itself should fail).

The consequences are:

e For long-running transactions, keeping such locks for the du-
ration of the transaction can result in more contention for re-
sources (from other transactions waiting to access them).

e Execution of an entire plan within a transaction may not be
sufficiently responsive in a dynamically changing world, since
the effects of the transaction may not be visible until the
transaction has completed.

A way to address these issues that increases performance and also
increases interactivity with the outside world, is to use a technique
known as transaction chopping [17]. Chopping transactions is a
well known idea in database systems theory for shortening trans-
actions. A single (longer) transaction is automatically decomposed
into a series of smaller transactions. These smaller transactions
may run concurrently, thus increasing performance and potentially
separating out problematic interactions into different transactions.

For example, let us consider a reworking of the running air-traffic
example. Suppose a plane enters the airport airspace and sends a
message to the air traffic controller agent requesting a landing slot.
In response to this event, the agent controller executes a top level
transaction T=t1;t2 where t2 is a subtransaction that finds and con-
firms a slot with the pilot and t1 is a subtransaction that assigns a
docking bay for the plane for when it finally lands. In this case, t2
cannot complete until t1 has completed. So, if execution of t1 is
subject to a lengthy delay, then the pilot will not be given a con-
firmed landing slot in a timely manner. Of course the solution in
this case is to chop t1 and t2 up into separate top-level transac-
tions, which may run independently and concurrently. Techniques
for transaction chopping can provide an automated technique for
achieving this [17].

Transaction chopping also has potential in the production of com-
pensatory plans. A desirable goal would be if the user could specify
points within a transaction where compensation may be required.
The system would then automatically chop up the original transac-
tions and merge them with some additional compensating transac-
tions.

7. ACTIVE DATABASES

Another important facility of database systems that relates to agents,
is the use of rules which can evaluate conditions and perform ac-
tions in response to events. Such rules execute within a well-defined
transaction context. Databases with such rules are called active
databases [3]. An interesting direction of research therefore aims
at the integration of active database technology with agent technol-
ogy. The intention being, to identify features of an agent language

for which it possible to do a translation into the “lower” level form
of active rules, while retaining the desired semantic correctness
properties. We can then employ methods for active rule analysis
and optimisation [1, 2, 5, 6, 4] to assist with analysis of the higher
level agent(s).

8. TRANSACTION-BASED, MULTI-AGENT
BDI PLATFORMS

In previous work [9] (expanded and more formally described in
[81), a first attempt was undertaken on the development of a trans-
action oriented multi-agent system (TOMAS). This resulted in a
proof of concept system using a BDI agent architecture with a
nested transaction model spanning teams of cooperative agents. In
TOMAS, every agent acted as monitor of its own transactions. 1so-
lation of operations on beliefs were guaranteed via a locking mech-
anism. Two types of actions were available for messaging: send
and post. Sent messages were extended with transaction infor-
mation, so that distributed nested transactions were supported by
a truly distributed transaction management; the Two-Phase Com-
mit protocol ran every time an intention finished its execution. By
contrast, posted messages acted on transactional queues (similar to
those compliant with the JMS specifications?), that means that a
message was actually sent only if and when its posting transaction
committed.

At the core of TOMAS, a meta-level framework allowed the pro-
grammer to select the underlying semantics (called policy) for in-
tention execution; plain, non-recoverable as well as nested ACID
transaction policies were analyzed and prototyped. TOMAS didn’t,
however, have a specific programming language associated with it,
nor tools for system analysis and development. Consequently, an
area of further investigation is to extend these ideas by designing
and implementing an agent language based on extended transac-
tional notions of correctness (drawn from database system theory)
and exhibiting properties of reliability and predictability.

TOMAS has been recently revised for a J2EE (Java 2 Enterprise
Edition) environment. This environment is particularly suitable for
robust agent systems, due to its automatic support for messaging
and transactions.

Within the environment, agents act as an intelligent session Enter-
prise Java Beans. Under the J2EE model, a session bean is a com-
ponent containing logic associated with a particular client session
or task. Programmers may create these intelligent session beans
by extending an existing agentbean class and providing the agent
with a set of initial beliefs, goals and plans. Agents run on a J2EE
application server, which automatically provides both messaging
via JMS and transaction functionality. This design is a natural
extension of native J2EE features and greatly simplifies the origi-
nal structure of TOMAS. The BDI-agent adds "intelligence” in the
sense of rule-based and intention-based behaviour, with the agents
providing the session bean application logic. Possible application
domains for this design include all e-commerce, web services, any
kind of Internet or wide-area network based control system includ-
ing many telecom services.

9. RELATED AND FUTURE WORK

To our knowledge, there is no previous work on designing a lan-
guage for BDI agents with a transactional/database flavour. This

4Java Message Services, ht t p: // j ava. sun. cond product s/ j ms/



is because, to a significant extent, the database and Al commu-
nities have tended to operate independently. Indeed, research in
Al has tended to emphasise exciting features such as the “intelli-
gence” of agents, whilst work on aspects such as recoverability and
predictability has lagged behind.

ACID and compensatory transactions are used in combination with
agents in the work presented in [12]. In this setting, a planning
agent creates transaction trees, possibly in cooperation with other
planning agents when working on a joint goal. A tree is composed
of simple agent actions, each encapsulated within its own an ACID
transaction. A tree contains control parameters and control flow
rules connecting its actions; these may include also contingency
actions, i.e. compensatory transactions to be taken in the event of a
failure of the plan to achieve its original goal or one of its subgoals.
A tree is passed to an execution agent, which performs its actions
by traversing the tree in the order specified by its controls. The
system has been applied to distributed database environments, and
the actions perfomed by agents consists of queries and updates.

On the database side, there has been much work on extending trans-
actional models to cater for workflow applications. This is certainly
relevant to our aims, but doesn’t directly address the models used
by BDI agents. We hope that the line of work contained in this pa-
per will help promote cross fertilisation of results between the two
disciplines.

In other relevant work [3], we identified a correspondence between
BDI agents and active databases. These are databases contain-
ing rules which can evaluate conditions and perform actions in re-
sponse to events. Similar to agent systems, methods of analysing
the behaviour of active rules are highly desirable and in a series
of papers we have presented fundamental results on rule analysis,
ranging from decidability issues to approximate methods based on
abstract interpretation [1, 2, 5, 6, 4].

10. CONCLUSIONS

We have described the use of transactional notions for designing
BDI agents. Transactions are well understood in the database com-
munity and possess ACID properties which help the designer un-
derstand the semantics of execution. Since well-defined correctness
notions exist at the semantic level, it is not necessary to hardwire
robust and fault tolerant behaviour into agent plans.

Nested transactions appear to provide a good facility for the exe-
cution of agent plans. For situations where transaction granularity
causes a loss of flexibility, efficiency, or responsiveness, we have
discussed the use of compensatory plans and transaction chopping.

11. REFERENCES
[1] J. Bailey, G. Dong, and K. Ramamohanarao. Structural
issues in active rule systems. In Proceedings of the Sixth
International Conference on Database Theory, LNCS 1186,
pages 203-214, Delphi, Greece, 1997.

[2] J. Bailey, G. Dong, and K. Ramamohanarao. Decidability
and undecidability results for the termination problem of
active database rules. In Proceedings of the 17th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 264-273, Seattle, Washington,
1998.

[3] J. Bailey, M. Georgeff, D. Kemp, D. Kinny, and
K. Ramamohanarao. Active databases and agent systems - a

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

comparison. In Proceedings of the Second International
Workshop on Rules in Database Systems, LNCS 985, pages
342-356, Athens, Greece, 1995.

J. Bailey and S. Mikulas. Expressiveness issues and decision
problems for active database rules. In Proceedings of the 8th
International Conference on Database Theory LNCS 1973,
pages 68-82, London, 2001.

J. Bailey and A. Poulovassilis. An abstract interpretation
framework for termination analysis of active rules. In
Proceedings of the 7th International Workshop on Database
Programming Languages LNCS 1949, pages 249-266,
Kinloch Rannoch, Scotland, 1999.

J. Bailey and A. Poulovassilis. A dynamic approach to
termination analysis for active database rules. In Lecture
notes in Computer Science 1861. Proceedings of the 1st
International Conference on Computational Logic (DOOD
stream), London, 2000.

P. Bernstein and E. Newcomer. Principles of transaction
processing for the systems professional. Morgan Kaufmann,
1996.

P. Busetta. A transaction based multi-agent architecture.
Master’s thesis, Department of Computer Science,
University of Melbourne, 1999.

P. Busetta and Kotagiri R. An architecture for mobile BDI
agents. In J. Carroll, G. B. Lamont, D. Oppenheim, K. M.
George, and B. Bryant, editors, Proceeding of the 1998 ACM
Symposium on Applied Computing (SAC’98). ACM Press, 27
February - 1 March 1998. An extended version appears as
Technical Report 97/16, Department of Computer Science,
The University of Melbourne, Australia, 1997.

M. P. Georgeff and F. F. Ingrand. Decision - making in an
embedded reasoning system. In Proceedings of the
International Joint Conference on Artificial Intelligence,
Detroit, Mi., USA, 1989.

J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, Inc., 1993.

Khaled Nagi. Modeling and Simulation of Cooperative
Multi-Agents in Transactional Database Environments. In
Proceedings of the Second workshop on Infrastructure for
agents, multi-agent systems and scalable multi-agent
systems, at the Fifth International Conference on
Autonomous Agents (Agents2001), Montreal, Canada, June
2001.

Krithi Ramamritham and Panos K. Chrysanthis. Advances in
Concurrency Control and Transaction Processing - An
Executive Briefing. IEEE Computer Society Press, 1996.

Anand S. Rao. AgentSpeak(L): BDI Agents speak out in a
logical computable language. In MAAMAW’96: 7th
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, LNAI 1038. Springer-Verlag, January
1996.

Anand S. Rao and Michael P. Georgeff. An Abstract
Architecture for Rational Agents. In W. Swartout C. Rich
and B. Nebel, editors, Proceedings of the Third International
Conference on Principles of Knowledge Representation and
Reasoning (KR’92), San Mateo, CA, 1992. Morgan
Kaufmann Publishers.



[16]

[17]

(18]

[19]

Davide Rossi, Giacomo Cabri, and Enrico Denti.
Tuple-based technologies for coordination. In Andrea
Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors, Coordination of Internet Agents: Models,
Technologies, and Applications, pages 83-109.
Springer-Verlag, 2001.

D. Shasha, F. Llirbat, E. Simon, and P.” Valduriez.
Transaction chopping: Algorithms and performance studies.
ACM Transactions on Database Systems, 20(3):325-363,
1995.

Yoav Shoham. Agent-Oriented Programming. Artificial
Intelligence, 60(1):51-92, 1993.

M. Wooldridge and N. R. Jennings. Intelligent Agents:
Theory and Practice. The Knowledge Engineering Review,
10(12):115-152, 1995.



