
Fast Mining of High Dimensional Expressive Contrast
Patterns Using Zero-Suppressed Binary Decision

Diagrams

Elsa Loekito and James Bailey
NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
University of Melbourne, Australia

{eloekito, jbailey}@csse.unimelb.edu.au

ABSTRACT
Patterns of contrast are a very important way of comparing multi-
dimensional datasets. Such patterns are able to capture regions of
high difference between two classes of data, and are useful for hu-
man experts and the construction of classifiers. However, mining
such patterns is particularly challenging when the number of di-
mensions is large. This paper describes a new technique for min-
ing several varieties of contrast pattern, based on the use of Zero-
Suppressed Binary Decision Diagrams (ZBDDs), a powerful data
structure for manipulating sparse data. We study the mining of
both simple contrast patterns, such as emerging patterns, and more
novel and complex contrasts, which we call disjunctive emerging
patterns. A performance study demonstrates our ZBDD technique
is highly scalable, substantially improves on state of the art mining
for emerging patterns and can be effective for discovering complex
contrasts from datasets with thousands of attributes.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications-Data Mining

General Terms: Algorithms, Design, Performance

Keywords: Contrast Patterns, Disjunctive Emerging Patterns, Zero-
Suppressed Binary Decision Diagrams

1. INTRODUCTION
The discovery of distinguishing characteristics and contrasts be-

tween classes of data is an important objective in data mining. Such
patterns are very useful for human experts and can also be used to
build powerful classifiers [18, 20]. In this paper, we propose a new
technique for mining contrast patterns in high dimensional space.
It is able to mine both simple contrasts, such as emerging patterns
[8] and also more complex types of contrasts, whose descriptions
allow disjunction, as well as conjunction.

A novel feature of our contrast mining technique is that it is
based on the use of Zero-Suppressed Binary Decision Diagrams

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

(ZBDDs) [23] as the core data structure. Binary decision diagrams
[6] are a graph based data structure which allow efficient represen-
tation and manipulation of boolean formulae, and they have proved
extremely effective in diverse fields of computer science, such as
SAT solvers [7, 2], VLSI and reliability [29]. ZBDDs are an im-
portant variation of binary decision diagrams and are particularly
appropriate for compactly representing sparse data.

Challenges: A key focus of our study is the mining of contrasts
for high dimensional data, such as gene expression datasets, where
the number of dimensions can be in the thousands and the search
space is huge. Previous techniques for mining contrasts in such
datasets, e.g. [12, 9, 18], have been unable to handle more than
about 60 dimensions. Another challenge arises when contrast pat-
terns are allowed to be expressed using disjunction, as well as con-
junction. This means the pattern search space is considerably larger
and therefore, mining becomes even more challenging.

Contributions: We make several important contributions in the
paper.

• We show ZBDDs can be employed as a feasible tool for min-
ing contrast patterns, by supplementing them with bit-vectors
for support checking and by pushing the support constraints
inside the ZBDD manipulation routines. This provides an
interesting alternative to popular structures such as the fre-
quent pattern tree [14], whose variants have previously been
proposed as an effective contrast mining method [3, 12]. Fur-
thermore, our approach is quite general, in the sense that it is
adaptable to a range of other mining objectives.

• We present an algorithm that uses ZBDDs to mine a well-
known, simple type of contrast pattern, known as the emerg-
ing pattern [8]. Experimental evaluation shows this tech-
nique achieves very large speedups over a state of the art
emerging pattern miner, based on pattern trees [12].

• We investigate more complex contrast patterns which gen-
eralise emerging patterns, by allowing disjunction as well
as conjunction. We call these patterns disjunctive emerging
patterns. We establish the formal characteristics of such pat-
terns, show that our ZBDD mining technique can be adapted
to this more complex scenario, and provide experimental ev-
idence that it can be practically feasible for mining very high
dimensional datasets. We are not aware of any other work
which is suitable for mining this kind of contrast pattern.

Table 1: Example Dataset
Positive Class Negative Class

A1 A2 A3 A1 A2 A3

{a, b, c} {d, e, f} {g, h, i} {a, b, c} {d, e, f} {g, h, i}

a e g a f g
a d i b d h
b f h b f h
c e h c e g

Organisation: An outline of the remainder of this paper is as fol-
lows. Some basic definitions and terminology are given in Section
2. The ZBDD method for mining emerging patterns is described in
Section 3. We show in Section 4 how the mining technique gener-
alises to more complex types of emerging patterns, which we call
disjunctive emerging patterns. This is followed by a performance
analysis in Section 5, a discussion in Section 6 and a description of
related work in Section 7.

2. PRELIMINARIES
Assume we have a dataset D defined upon a set of k attributes

(also referred as dimensions) {A1, A2, . . . , Ak}. Assume a parti-
tion of D into two sets, Dp (the positive class) and Dn (the neg-
ative class). These are the classes that will be contrasted. For
every attribute Ai, the domain of its values (or items) is denoted
by dom(Ai). We require domains to be discrete, but they may or
may not be ordered. Let |Ai| denote the number of elements in
dom(Ai). Let I be the aggregate of the domains across all the at-
tributes, i.e. I =

Sk

i=1 dom(Ai). An itemset is a subset of I . Let p
and q be two itemsets. We say p contains q if q is a subset of p, i.e.
q ⊆ p. The complement of an itemset p, p, is the itemset (I − p).
A dataset is a collection of transactions, where each transaction T

is an itemset and we require T to contain exactly one value from
the domain of each attribute. The support of an itemset p in dataset
D, support(p,D), is the fraction of the transactions in D which
contain p (0 ≤ support(p,D) ≤ 1). We next recall the definition
of emerging patterns [8] 1, a special type of contrast patterns.

Definition 1. Given a positive dataset Dp, a negative dataset Dn,
and support thresholds α and β. An Emerging Pattern (EP) is an
itemset p satisfying two support constraints, i) support(p,Dn) ≤
β and ii) support(p,Dp) ≥ α. Furthermore, p is a minimal EP if
p does not contain any other itemset that satisfies constraints i-ii.

e.g. Consider Table 1 and suppose α = 0.25 and β = 0. The
minimal emerging patterns include {a, e}, {i}, {c, h}.

Emerging patterns have proved to be very useful for building
accurate classifiers, as well as providing intuitive descriptions of
sharp differences between classes of data [10]. They have also
been used for bioinformatics applications, such as understanding
leukaemia [18]. Indeed, their popularity is evidenced by the fact
that over 50 papers have so far been published in the area. Tech-
niques for finding emerging patterns can be found in [9, 12, 4, 3].

3. MINING EMERGING PATTERNS USING
ZERO-SUPPRESSED BDDS

In this section, we will describe our approach for mining emerg-
ing patterns using Zero-suppressed Binary Decision Diagrams (ZB-
DDs). Firstly, we need to present some background material.

1In [8], emerging patterns were defined using an α threshold and
a minimum growth rate ρ. We use α and β thresholds instead,
believing it to be more intuitive.

(a) (b)

Figure 1: (a)Merging rule; (b)Zero-suppression rule

3.1 Binary Decision Diagrams
Binary Decision Diagrams (BDDs) are canonical directed acyclic

graphs which are efficient representations of boolean formulae, and
they allow logical operations (AND, OR, XOR, etc.) to be per-
formed in polynomial time with respect to the number of nodes.
A Zero-suppressed BDD (ZBDD) is a special type of BDD, in-
troduced by Minato in [23] for set-manipulation in combinatorial
problems. In particular, this structure has been shown to be very
efficient for manipulating sets of sparse combinations. ZBDDs are
popular in boolean satisfiability solvers [7, 2] and in the field of
reliability engineering for fault-tree analysis [29]. However, they
have received very little attention in data mining (to be discussed
more in Section 7). A survey on ZBDD applications can be found
in [24].

More formally, a BDD is a canonical directed acyclic graph con-
sisting of one source node, multiple internal nodes, and two sink
nodes sink-0 and sink-1. Nodes in a BDD are labelled, and they
are ordered. An internal node N with a label x, denoted N =
node(x, N1, N0), encodes the boolean formula N = (x ∧ N1) ∨
(x ∧ N0). N1 (resp. N0) is called the 1-child (resp. 0-child) of N .
The edge connecting a node to its 1-child (resp. 0-child) is called
the true-edge (false-edge). In the illustrations shown shortly, the
solid lines correspond to true-edges and dotted lines correspond to
false-edges. Each path from the root node to sink-1 (resp. sink-0)
gives a true (resp. false) assignment for the boolean formula.

Two important properties of a BDD which account for the effi-
ciency of its operations include: 1. identical subtrees are shared, 2.
intermediate results from past computations are stored and can be
recalled as needed. Moreover, most BDD operations have a poly-
nomial worst-case complexity with respect to the number of nodes.

A ZBDD is a special type of BDD for set combinatorial prob-
lems which employs two reduction rules (see Fig.1): 1. Merging
rule: equivalent subtrees are shared (to obtain canonicity); 2. Zero-
suppression rule: nodes whose true-edge points to These rules al-
low a high compression of boolean formulae, i.e. for an n-variable
formula, the space of possible truth values is 2n, the corresponding
(Z)BDD can have exponentially fewer nodes.

We follow the ZBDD encodings for representing a collection of
itemsets using a strategy similar to work in [23]. An itemset p
can be represented by a n-bit binary vector X = (x1, x2, . . . , xn),
where xi = 1 if item i is contained in p. A set S of itemsets
can be represented by a characteristic function XS : {0, 1}n →
{0, 1}, where XS(p) = 1 if p ∈ S and 0 otherwise. In ZBDD
semantics, a node N = (x,N1, N0) represents a set S of itemsets
such that S = S0 ∪ (S1 × {x}), where S1 and S0 are the sets
of itemsets encoded by N1 and N0, respectively. An itemset p in
S is interpreted as a conjunction of the items contained in p and
yields a true assignment for the boolean formula encoded by N .
A ZBDD consisting of only the sink-0 node encodes the empty
set (∅), and a ZBDD consisting of only the sink-1 node encodes

(a) Variable ordering:
a < b < c < d < e

(b) Variable ordering:
c < d < a < e < b

Figure 2: ZBDD representations of a set of itemsets
{{a, b, c, e}, {a, b, d, e}, {b, c, d}}

Table 2: Primitive operations on ZBDDs P and Q
0 The empty set, ∅
1 The set of an empty itemset, {∅}
getNode(x, N1, N0) Creates node(x, N1, N0) and applies the

ZBDD reduction rules
change(P, x) Invert all occurrences of item x in P
P

T

Z Q Set-intersection of P and Q
P

S

Z Q Set-union of P and Q
P

S

Zmin
Q Minimal (w.r.t inclusion) itemsets of P

S

Z Q

P
S

Zmax
Q Maximal (w.r.t inclusion) itemsets of P

S

Z Q

P \ Q Subtraction of any itemset in Q from P
NotSupSet(P, Q) Subtraction from P of any itemset which is a

superset of an itemset in Q
CrossProd(P,Q) Pair-wise intersection of the itemsets in P and

Q
DotProd(P, Q) Pair-wise union of the itemsets in P and Q

Examples:
1. {{a, b}, {b}}

T

Z{{a, b}, {b, d}} = {{a, b}}
2. {{a, b}, {b}}

S

Z{{b, d}} = {{a, b}, {b}, {b, d}}
3. {{a, b}, {b}}

S

Zmin
{{b, d}} = {{b}}

4. {{a, b}, {b}}
S

Zmax
{{b, d}} = {{a, b}, {b, d}}

5. CrossProd({{a, b}, {a, d}}, {{b, d}}) = {{b}, {d}}
6. DotProd({{a, b}, {a, c}}, {{b, d}}) = {{a, b, d}, {a, b, c, d}}

the set of empty itemsets ({∅}). Basic set operations for ZBDDs
which will be used in our algorithm include set-union (A

S

Z B),
set-difference (A \ B), and set-intersection (A

T

Z
B). They have

been defined in [23, 26] and are polynomial in the number of nodes
in the ZBDD. They are listed in Table 2.

Example 1. The possible ZBDD encodings for set {{a, b, c, e},
{a, b, d, e}, {b, c, d}} are shown in Fig.2. Fig.2(a) follows a lexico-
graphic ordering, whilst Fig.2(b): c < d < a < e < b. In Fig.2(a),
itemsets {a, b, d, e}, {a, b, c, e} share a common prefix {a, b} and
a common suffix {e}. In Fig.2(b), itemsets {d, a, e, b}, {c, a, e, b}
share a common suffix {a, e, b}, and the suffix {b} is shared among
all the itemsets. This set can also be expressed as a DNF formula:
(a ∧ b ∧ c ∧ e) ∨ (a ∧ b ∧ d ∧ e) ∨ (b ∧ c ∧ d)

Variable Ordering: Depending on the function being represented,
the number of nodes in a ZBDD may be highly sensitive to its vari-
able ordering. Figure 2 illustrates the different compression that
can be achieved by using different variable orderings. The ZBDD
in Figure 2(b) contains only 6 non-sink nodes as opposed to the
ZBDD using lexicographic ordering which contains 8 nodes. Work

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a} {b} {c} {d}

{}

Figure 3: Example of pattern lattice for I = {a, b, c, d}
A bottom-up enumeration begins with the empty set {} and generates the
longer itemsets {a}, {a, b}, etc. as subsequent candidates. A top-down
enumeration begins with the complete set {a, b, c, d} and generates the
shorter itemsets {a, b, c}, {a, b}, etc. as subsequent candidates.

in [24] shows that a good variable ordering for compact BDDs (and
ZBDDs) has two properties: i. groups of inputs that are closely re-
lated should be kept near to each other; ii. inputs that greatly affect
the function should be located at higher positions in the structure.

A number of works have investigated various variable orderings.
One approach is based on heuristics and find the appropriate order-
ing before the BDD is constructed [13, 1, 32]. Another approach
decides an ordering initially, and allows the variables to be per-
muted during the construction of the BDD [31]. The latter approach
is usually more effective than the former but it may be longer to
compute. In this paper, we employ heuristics which are based on
the frequency of the variables in the input dataset.

3.2 ZBDD Mining Algorithm
This section describes our algorithm for mining EPs. ZBDDs al-

low compression of sparse itemsets and they also allow efficient set
operations. Here we use ZBDDs for generating pattern candidates,
and also for storing the output patterns. This is similar to exist-
ing methods which use structures such as FP-trees[14] and Pattern
trees[12].

The search space of EPs is dictated by the contents of the nega-
tive dataset and patterns are grown bottom-up in a depth-first fash-
ion. Figure 3 shows an example of pattern lattice for a given set of
items I = {a, b, c, d}. A bottom-up depth-first enumeration begins
with the empty set {}, and the subsequent candidates are the longer
itemsets, e.g. {a},{a, b}, etc. We will refer to the partially grown
patterns as prefixes. The output ZBDD stores the minimal EPs and
it is constructed incrementally. To further optimise the algorithm, a
number of pruning strategies are employed.

Early pruning of invalid candidates: In principle, our algorithm
could examine a search space covering all possible item combina-
tions. However, this is unnecessary and instead we traverse a search
space which avoids generating candidate patterns which could never
satisfy the β constraint. For any given prefix p (candidate), we can
partition Dn into the set of transactions not containing p (labelled
by Dp

n) and transactions which contain p (labelled by Dp
n). If p

needs growing, then it only needs to be extended by an item which
is not from at least one of the transactions in Dp

n, i.e. from the com-
plement of one of the transactions in Dp

n (otherwise a non minimal
pattern will result). It is therefore profitable for the input ZBDD
to consist of the complements of the transactions in Dn (i.e. Dn).
Traversing Dn ensures that the candidate generation space is much
smaller, which is particularly effective if |Dn| is relatively small,
as is often the case for biological data.

Algorithm 1 mineEP(P , prefix, Dp, Dn, α, β)

Call mineEP(Dn, {}, Dp, Dn, α, β) to begin mining initially.

Input: P : a ZBDD of the search space which is a projection of Dn

prefix : prefix of the patterns
Dp : bitmaps of the positive dataset
Dn : bitmaps of the negative dataset
α : a min support (wrt. Dp) threshold
β : a max support (wrt. Dn) threshold

Output: zOut : a ZBDD representing the set of minimal itemsets p satis-
fying support(p,Dp) ≥ α and support(p,Dn) ≤ β.

1: if P is a sink node, then
2: // The end of the search space for growing prefix is reached;
3: // return prefix as a minimal EP if it passes β constraint
4: if support(prefix,Dn) ≤ β then
5: return 1
6: else
7: return 0 // Remove prefix from the output ZBDD
8: end if
9: else

10: // Let P = node(x,P1, P0)
11: // Grow prefix with the next item in the search space
12: prefixnew = prefix ∪ {x}
13: if support(prefixnew, Dp) < α, then
14: // α-constraint pruning: prune prefixnew

15: zOutx = 0
16: else if support(prefixnew, Dn) ≤ β then
17: // β-constraint pruning: stop growing prefixnew

18: zOutx = 1
19: else
20: // Explore supersets of prefixnew from instances which do not
21: // contain x
22: zOutx = mineEP (P0, prefixnew , Dp,Dn, α, β)
23: end if
24:
25: // Mine patterns not containing x from the remaining search space
26: zOutx = mineEP (P0

S

Z P1, prefix,Dp, Dn, α, β)
27:
28: // Non-minimal pattern elimination
29: zOutx = NotSupSet(zOutx, zOutx)
30: zOut = getNode(x, zOutx, zOutx)
31: end if

α constraint pruning: This strategy is based on the well-known
anti-monotonicity, or a-priori principle. Any prefix which doesn’t
satisfy the α constraint should have its supersets pruned. Also, as
a pre-processing step, any item whose support(Dp) < α can be
deleted from Dp and Dn.

β constraint pruning: This strategy is based on the monotonicity
of the β constraint. If a prefix satisfies the β constraint, it is not
extended any further, since a non minimal pattern would result.

Non minimal pattern pruning: Due to the recursive decompo-
sition aspect of the algorithm, the generated patterns are locally
minimal for each recursion, but they may be non-minimal globally.
Hence, it is profitable to immediately prune any non-minimal pat-
terns after the completion of each decomposition.

Our algorithm for finding minimal EPs, namely mineEP, is shown
in Algorithm 1, which we will explain line by line. The first in-
put parameter, P , is a ZBDD which dictates the remaining candi-
dates. prefix is a partially grown pattern, which satisfies the α
constraint but fails the β constraint. Dp and Dn correspond to the
bitmaps from the respective datasets, and are used for computing
support. Note: the bitmap of itemset q in dataset D is denoted

bitmap(q,D); support(q,D) = num. of ones in bitmap(q,D)
|D|

.

Mining is invoked by calling mineEP (Dn, {}, Dp, Dn, α, β),
and then called upon recursive projections of Dn. Lines 1-8 state
the terminal condition of the recursion. When it reaches a sink
node, it has reached the end of the search space for growing the
given prefix. If prefix passes the β constraint, it is a satisfy-
ing minimal EP and the ZBDD sink-1 node is returned. Otherwise,
prefix cannot be part of the output ZBDD, so the sink-0 node is re-
turned. The core routines in the algorithm are: 1) compute zOutx,
which grows prefix with the next item x found in the candidates;
2) compute zOutx, which contains the patterns not containing x.
They will be the two subtrees of the ZBDD output (line 30).

Before attempting to grow prefix with the next item, x, the al-
gorithm first tests whether the α and β prunings can be performed.
Line 15 prunes prefixnew (= prefix ∪ {x}) and its supersets
by the α-constraint pruning. The support of prefixnew is calcu-
lated incrementally using bitmap(prefix) which has been com-
puted in the previous recursion, i.e. bitmap(prefix ∪ {x}) =
bitmap(prefix)∩ bitmap({x}). Line 18 uses β-constraint prun-
ing to stop prefix from being grown. Finally, if none of these two
cases is applicable, x is appended to the prefix and instances of P
which do not contain x are explored, storing the output in zOutx.

Line 26 computes zOutx from a projection of the database by
excluding x. Some itemsets in zOutx may be contained by some
itemsets in zOutx. The non-minimal patterns are pruned using a
primitive ZBDD operation notSupSet (line 29).

Optimisations: For the special case where β = 0, which cor-
responds to the jumping emerging patterns, the EPs must have at
least one item in common with each instance in Dn. Thus, Dn and
its projections can sufficiently be represented using their minimal
itemsets. This allows the computation of zOutx (line 26) to be op-
timised by processing (P0

S

Zmin
P1) instead. As a result, zOutx

only contains patterns which may be non-minimal by the item x.
Non-minimal pattern elimination (line 29) can thus be computed
using (zOutx \ zOutx) which is a simpler, thus faster, operation.

Optimal variable ordering: We investigated a number of heuris-
tics for finding the optimal variable ordering for efficient compu-
tation of mineEP, based on the item frequencies in Dp and Dn.
Three alternative strategies were worthy of consideration.

The first heuristic places the least frequent item in Dp at the top
of the ZBDD, with subsequent items being ordered by increasing
support in Dp. This aims to achieve early α-constraint pruning
which reduces the depth of the recursions, and in turn reduces the
number of database projections that are constructed.

The second heuristic places the least frequent item in Dn (i.e.
most frequent in Dn) at the top, with other items being ordered by
increasing frequency in Dn. This can be justified on two levels.
Firstly, consider line 22 in the algorithm. Having a smaller P0

is likely to be advantageous, particularly when the ZBDD at that
point is large. Using the most frequent item in Dn at the top level
means that P0 is likely to be small for the early recursive calls.
Secondly, this heuristic gives higher preference to the β constraint,
in a similar manner to that for the α constraint in the first heuristic,
the aim being to achieve early β-constraint pruning.

The third heuristic clusters items from the same attribute domain
because any emerging pattern contains at most one item from any
one attribute, allowing early pruning. Moreover, this ordering can
be combined with the other heuristics by ordering the items within
each attribute by increasing support in Dp (based on the first heuris-
tic), or by increasing support in in Dn (based on the second heuris-
tic). The attributes are then ordered by increasing minimum support
of its items.

s1 = {a1 , a3, b1, b2} s2 = {a1, a2, a3, b1, b2, c1, c2, c3}
(a) (b)

Figure 4: Geometric Representation of Disjunctive EPs

4. DISJUNCTIVE EMERGING PATTERNS
We now investigate a more general type of contrast patterns,

which we will hereafter refer to as a disjunctive emerging patterns.
Recall that emerging patterns correspond to conjunctions of items

that have high support in Dp and low support in Dn., e.g. a ∧ e
was an EP for Table 1, given α = 0.25 and β = 0. Disjunc-
tive emerging patterns (disjunctive EPs) generalise EPs by allow-
ing disjunctions as well as conjunctions for pattern descriptions.
They essentially correspond to a restricted class of CNF formulae,
which use items as variables and are a conjunction of disjunctions,
where each disjunction contains only items coming from the same
attribute domain. No negation is allowed and there must exist at
least one item from each attribute domain in the formula.

e.g. Given a dataset having three attributes A1, A2, A3, with do-
mains {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}. A valid disjunctive
EP may be represented by a formula f , where f = (a1 ∨ a3) ∧
(b1 ∨ b2) ∧ (c1 ∨ c2 ∨ c3). Without any ambiguity, we can alter-
nately represent f as an itemset {a1, a3, b1, b2, c1, c2, c3}, where
it is implicitly understood that conjunctions exist across attributes
and disjunctions exist within attributes. Henceforth, we will blur
the distinction between disjunctive formulae and their itemset rep-
resentations.

Given a formula describing a disjunctive emerging pattern, we
need to be able to calculate its support.

Definition 2. Let s be a disjunctive emerging pattern. The sup-
port of s in a dataset D, support(s,D), is the number of instances
from D which are contained in (the itemset representation of) s.

Using this revised definition of support, we can define appro-
priate α and β support thresholds for disjunctive EPs.

Definition 3. Given Dp, Dn and support thresholds α and β.
A disjunctive emerging pattern is an itemset d such that i) d
contains at least one item from the domain of every attribute, ii)
support(d,Dp) ≥ α, and iii) support(d,Dn) ≤ β. d is said to
be maximal if there does not exist another disjunctive emerging
pattern d′ such that d ⊂ d′.

Observe that a disjunctive EP corresponds to a region of high
contrast, i.e. a subspace which contains at least α instances from
Dp and at most β instances from Dn. (see Figure 4 for illustra-
tion of the geometric representation of itemsets given three attribute
domains {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}). Also, consider
again Table 1 and suppose α = 0.5 and β = 0. The maximal dis-
junctive EPs include {a, c, d, e, f, h, i} and {a, b, d, e, g, i}. From
a classification perspective, an unknown data instance seems more
likely to be from the positive class if is contained in one of these
itemsets.

It is possible to define variants of disjunctive EPs. One impor-
tant case arises for datasets with ordered domains. and effectively

corresponds to disjunctive EPs having contiguous ranges on each
attribute. Suppose an attribute Ai has an ordered domain of items.
We define a contiguous subset of dom(Ai) as a collection of items
which appear consecutively in the order of dom(Ai). An itemset is
contiguous if it does not contain any non-contiguous subsets from
the domain of each attribute. Consider again Figure 4, s1 is a not
contiguous, whilst s2 is contiguous.

Definition 4. Given datasets Dp and Dn, an itemset S is a max-
imal contiguous disjunctive emerging pattern if i) S is contigu-
ous, ii) support(S,Dp) ≥ α, iii) support(S,Dn) ≤ β, and iv)
There is no proper superset of S satisfying conditions i-iii.

Compared to disjunctive EPs, contiguous disjunctive EPs might
be considered more meaningful to humans, since their correspond-
ing regions are connected, i.e. do not contain any gaps or holes.

4.1 Relationships Between Emerging Patterns
and Disjunctive Emerging Patterns

We now examine the relationship between disjunctive EPs and
EPs in more detail. Broadly speaking, disjunctive EPs can be viewed
as generalisations of EPs, allowing more expressive contrasts.

THEOREM 1. Let p be an emerging pattern. Then p is con-
tained in some disjunctive emerging pattern using the same α and
β support thresholds.

Observe that the converse of this theorem does not hold. It is
often true that a disjunctive EP does not contain any EP. e.g. There
is no EP in Table 1 if α = 0.5 and β = 0, yet there exist several
disjunctive EPs satisfying these constraints.

Also observe that multiple EPs of lower support can be merged
together to form a disjunctive emerging pattern. e.g. Again looking
at Table 1, both {a, d} and {a, e} are EPs when α = 0.25 and β =
0. They correspond to the boolean formulae a ∧ d and a ∧ e, each
having support(Dp) = 0.25. These two EPs can be “unioned” to
yield a∧ (d∨ e), which is equivalent to the disjunctive EP a∧ (d∨
e)∧ (g∨h∨ i) (since g∨h∨ i is trivially true for any transaction),
having support(Dp) = 0.5 and support(Dn) = 0.

An interesting special case exists when the cardinality of the do-
main for every attribute is exactly two. In this circumstance, the
two types of EPs coincide.

To summarise, the key differences between emerging patterns
and disjunctive emerging patterns are:

• Disjunctive emerging patterns are more expressive. They can
capture contrast regions of greater complexity. This makes
them more suitable for ordered data, where it is frequently
desirable for the contrasts to include disjunctions of items
within specific dimensions

• For given thresholds α and β, it is often the case that a dataset
may contain many disjunctive emerging patterns but no emerg-
ing pattern

Being more expressive, disjunctive EPs are more complex to
compute. However, it turns out we can still accomplish this effi-
ciently using a technique similar to the algorithm in Section 3.2.

4.2 Mining Disjunctive EPs
We now describe how our mineEP algorithm can be adapted for

mining maximal disjunctive EPs. The algorithm is called mineDEP
(shown in Algorithm 2). Being similar to mineEP, we will only
point out their main differences.

Because of the generality of disjunctive EPs, they are likely to
contain many items. Our approach for mining disjunctive EPs ex-
plores the pattern lattice in a depth-first top-down manner, rather
than the bottom-up manner that was used for mining EPs. A top-
down enumeration of the patterns begins with the most general
itemset (i.e. containing all the items) and at each step, generate
shorter itemsets as candidates (refer to Figure 3 for illustration).
For efficiency purposes, it is better to work with pattern comple-
ments, which are likely to contain fewer items, rather than the pat-
terns themselves. So, candidates are generated by growing prefixes
in this complemented pattern space. The initial input ZBDD is built
from Dn. Again, this aims to eliminate the generation of invalid
candidates, but Dn is used here instead of Dn which was used in
mineEP since the enumeration of the maximal disjunctive EPs is
proceeding top-down, rather than bottom-up.

Pruning based on the α and β constraints is similar to that used
in mineEP. Support checking, however, must be done using pat-
tern complements and so intersection tests, rather than containment
tests are performed on the bitmaps. e.g. If a disjunctive EP p is re-
quired to have support(p,Dn) ≤ β, then its complement p must
satisfy cover2 (p, Dn) ≥ (1 − β). Similarly, the α constraint can
be translated to cover(p, Dp) ≤ (1 − α).

The conditions for α and β pruning are also different to that
of the previous algorithm. These conditions for α and β pruning
are inverted from mineEP, since maximal, rather than minimal pat-
terns are being computed. More precisely, exploration of the search
space stops if one of the following conditions is satisfied:
1) if support(prefixnew, Dp) < α, i.e. cover(prefixnew, Dp) >
(1 − α), then do α constraint pruning (line 15);
2) if support(prefixnew, Dn)≤ β, i.e. cover(prefixnew, Dn) ≥
(1 − β), then do β constraint pruning (line 18).
Finally, the terminal case tests whether support(prefix) ≤ β, i.e.
cover(prefix,Dn) ≥ (1 − β) (line 1-8). The algorithm is ini-
tialised by passing the negative dataset Dn to its first parameter,
i.e. mineDEP (Dn, {}, Dp, Dn, α, β).

Finally, the ZBDD variable ordering locates the item which most
frequently occurs in Dn at the top and items are ordered decreas-
ingly by their frequency in Dn thereafter. This is essentially the
inverse of the second ordering heuristic that was used for mineEP,
again due to the top-down nature of the search strategy.

4.3 Mining g-Contiguous Disjunctive EPs
As we have seen, contiguous disjunctive EPs are subclass of dis-

junctive EPs. We now define another more general subclass of dis-
junctive EPs, namely g-contiguous disjunctive EPs, and describe a
technique for mining them.

Suppose an attribute Ai has an ordered domain of items. We
define a g-contiguous subset of dom(Ai) as a collection of items
which appear in the same order in dom(Ai) and the gap between
any two consecutive items is not larger than g. An itemset is g-
contiguous if it does not contain any non-g-contiguous subsets from
the domain of each attribute. Furthermore, an itemset p is a maxi-
mal g-contiguous disjunctive EP if: i) p is a disjunctive EP, ii) p
is g-contiguous, iii) none of its proper supersets satisfies conditions
i-ii. When g = 0, p is a contiguous disjunctive EP.

We propose a post-processing operation, contigSplit, to derive
the maximal g-contiguous disjunctive EPs from the disjunctive EPs
found using mineDEP. It complements each of the input itemsets
and splits it into maximal subsets satisfying the given g and α con-
straints (it is guaranteed that they satisfy the β constraint). The
pseudo code is shown in Algorithm 3. It begins mining by calling

2cover(p,D) = the fraction of the transactions in D which contain
some item in p; cover(p, D) = 1 − support(p, D).

Algorithm 2 mineDEP(P , prefix, Dp, Dn, α, β)

Call mineDEP(Dn, {}, Dp, Dn, α, β) to begin mining initially.
Input: P : a ZBDD of the search space which is a projection of Dn

prefix : prefix of the patterns
Dp : Bitmaps of the positive dataset
Dn : Bitmaps of the negative dataset
α : a min support (wrt. Dp) threshold
β : a max support (wrt. Dn) threshold

Output: zOut : a ZBDD representing the set of minimal itemsets p satis-
fying cover(p,Dp) ≤ 1 − α and cover(p,Dn) ≥ 1 − β.

1: if P is a ZBDD sink node, then
2: // The end of the search space for growing prefix is reached
3: // prefix is a satisfying pattern if it passes β constraint
4: if cover(prefix,Dn) ≥ 1 − β then
5: return 1
6: else
7: return 0 // Remove prefix from the output ZBDD
8: end if
9: else

10: // Let P = node(x,P1, P0)
11: // Grow prefix with the next item in the search space
12: prefixnew = prefix ∪ {x}
13: if cover(prefixnew ,Dp) > 1 − α, then
14: // α constraint pruning: prune prefixnew

15: zOutx = 0
16: else if cover(prefixnew ,Dn) ≥ 1 − β then
17: // β constraint pruning: stop growing prefixnew

18: zOutx = 1
19: else
20: // Explore supersets of prefixnew from instances which do not
21: // contain x
22: zOutx = mineDEP (P0, prefixnew ,Dp, Dn, α, β)
23: end if
24:
25: // Explore candidates from the remaining search space
26: zOutx = mineDEP (P0

S

Z P1, prefix,Dp,Dn, α, β)
27:
28: // Non-minimal patterns elimination
29: zOutx = notSupSet(zOutx, zOutx)
30: zOut = getNode(x, zOutx, zOutx)
31: end if

contigSplit(ZdEP , attrDomains, g), where ZdEP is a ZBDD
of the complement of maximal disjunctive EPs, attrDomains is
a vector of ZBDDs, each of which contains the domain items from
each attribute, g is the gap size threshold. Conceptually, every dis-
junctive EP has a set of maximal g-contiguous subsets induced in
each dimension, computed using a splitComplement subroutine
which we will explain shortly, and these subsets across dimen-
sions are pair-wise unioned using an efficient ZBDD operation,
DotProd. The α constraint is pushed inside the routines in a sim-
ilar manner to that in the mineDEP algorithm.

The subroutine splitComplement complements a given item-
set Q with respect to a set of domain items D, and simultaneously
splits it into maximal subsets satisfying a g constraint. prefix is
the output candidate. Two ZBDDs containing Q and D, respec-
tively, are traversed in parallel, and prefix is grown by appending
items in D which do not occur in Q (line 13-14). The parame-
ter gapSize indicates the number of items that have been skipped
since the last item that was inserted to prefix (gapSize = 0
when prefix = {}). Thus, every sequential item occurring in
Q increments gapSize by 1 (line16). If gapSize has reached the
threshold, then prefix is a maximal g-contiguous subset, and a
new empty prefix is grown using the remaining items (line 18). Fi-
nally, if there are no items in Q, D gives the complement of Q
and it is a maximal contiguous subset of Q. Thus, the union of the
respective itemsets D and prefix is returned (line 3).

Algorithm 3 contigSplit(P ,attrDomains, g)
Input: P : a ZBDD of the complement of maximal disjunctive EPs,

attrDomains = [dom1, dom2 , ...domk]: domi is a ZBDD of
dom(Ai), where i ∈ [1, 2..k],
g: a maximum gap size constraint

Output: zOut: maximal g-contiguous disjunctive EPs
1: zOut = {} // initialisation
2: for all itemsets p in P do
3: // Compute projection of p in the domain of each attribute
4: for all i in 1,..k, pi = p ∩ domi

5:
6: // Compute split-complement of p in the dimension of each attribute,
7: // and conjugate the g-contig. subsets from across dimensions
8: prefixes = {{}}
9: for all i in 1,..k do

10: splitsi = splitComplement(pi, domi, {}, 0)
11: prefixes = DotProd(prefixes, splitsi)
12: end for
13: zOut = zOut

S

Zmax prefixes
14: end for
15: return zOut

splitComplement(Q, D, prefix, gapSize) =
Input: Q: a ZBDD containing the complement of the itemset to be split,

D: a ZBDD containing the domain items (Q ⊆ D),
prefix: a ZBDD containing a prefix itemset,
gapSize: gap size in prefix,

Output: zOut : the set of g-contiguous subsets of Q, w.r.t. D, which
satisfy the g constraint

1: if (Q is a ZBDD sink node) then
2: // Q contains an empty itemset; Q = D and it has no gap
3: zOut = DotProd(D, prefix)
4: else
5: // Let Q = node(x,Q1,Q0), D = node(y, D1,D0); Q0 = 0
6: // and D0 = 0 since each of Q and D contains only one itemset
7:
8: // Append y to prefix if it does not occur in Q (i.e. y occurs in Q);
9: // otherwise, increment gapSize, or, if gapSize = g,

10: // prefix is fully grown and a new empty prefix is grown.
11: if (x has higher index than y) then
12: // y is not in Q, turn on the bit of y in prefix
13: prefixnew = change(prefix, y)
14: zOut = splitComplement(Q,D1, prefixnew, 0)
15: else if (gapSize < g) then
16: zOut = splitComplement(Q1, D1, prefix, gapSize+1)
17: else if (gapSize = g) then
18: zOut = prefix

S

Z splitComplement(Q1,D1, {}, 0)
19: end if
20: end if
21: return zOut

5. PERFORMANCE STUDY
In this section we assess the performance of our techniques for

mining emerging patterns and disjunctive emerging patterns.
Our algorithms were implemented in C++ using the ZBDD li-

brary functions in the CUDD package [34] and EXTRA library
[26]. All experiments were conducted on a IBM eServer pSeries
650 (eight POWER4+ 1.45GHz CPU, 16 GB RAM) running AIX
5L 5.2 with a cpu-time limit 100,000 seconds. The ordering used
for our ZBDD algorithms was decreasing frequency in Dn, based
on the second heuristic. This section will conclude with a study
comparing the performance of mining disjunctive EPs using differ-
ent variable ordering heuristics.

We carried out experiments on two gene-expression datasets3,
the Leukaemia dataset ALL-AML, previously studied in [18] and
lung cancer. Table 3 shows their characteristics. Column 1 (resp.

3http://research.i2r.a-star.edu.sg/rp/

Table 3: Data Characteristics
Dataset # trans. in Dp # trans.in Dn # attr.

ALL-AML 27 (ALL) 11 (AML) 7129
lung cancer 16 (Mesothelioma) 16 (ADCA) 12535

Column 2) shows the class which was chosen as positive (resp.
negative) class and its corresponding number of instances. These
datasets were chosen due to their challenging characteristics. As
is common for biological data, they contain a huge number of di-
mensions but only have a few instances. Work in [19, 20, 18] have
studied mining minimal emerging patterns for these datasets.

Both datasets have continuous attribute domains. The values
were discretised using an entropy discretisation method, which had
the effect of removing some of the attributes. After discretisation,
the ALL-AML dataset is reduced to 865 attributes, lung cancer is
reduced to 2172 attributes. The discretised attributes are ordered
by decreasing entropy value.

5.1 EP Mining Performance
We study the scalability of our ZBDD technique for mining (min-

imal) emerging patterns and compare it against a state of the art
technique based on a variant of frequent pattern trees [12] (here-
after referred to as Pattern-Tree EP-miner). The authors of this pa-
per provided us with an implementation of their algorithm. Other
techniques for mining emerging patterns exist (e.g. [4, 3]), but have
similar, or inferior running behaviour to that of [12] and so we do
not include them in our comparison.

The first scenario uses the ALL-AML data with constraints α =
90% and β = 0, and an increasing number of dimensions. Look-
ing at Figure 5a and Figure 5b, the mining time of ZBDD EP-miner
is substantially faster than Pattern-tree EP-miner by a factor of ap-
proximately 100 times for between 40 and 68 attributes (the ZBDD
miner running time is very close to the x-axis in this region). For
more than 68 attributes, mining was impossible for the Pattern-
Tree EP-miner due to memory limits being exceeded, whereas the
ZBDD EP-miner was able to run effectively for up to 800 attributes.
This is in line with previously published results from [18, 9], where
EPs were only mineable for datasets with no more than around 70
attributes. For the Lung Cancer dataset which appears to be an eas-
ier dataset due to the smaller number of patterns, the Pattern-Tree
miner is able to mine EPs for a larger number of attributes. The
ZBDD EP-miner is substantially superior in running time to the
Pattern-Tree miner, giving speedups of over 100 times, and it was
able to run effectively for up to 1700 attributes.

5.2 Disjunctive EP Mining Performance
We now study the scalability of our ZBDD algorithm for mining

(maximal) disjunctive EP. In particular, we focus on its behaviour
as we vary number of attributes and the value of α. No comparison
is made against other systems, since we are not aware of any other
work that is suitable for mining these patterns.

Varying the number of dimensions. Figure 5c and Figure 5d
show the time for mining maximal disjunctive emerging patterns
as the number of attributes is varied for both datasets. Support con-
straints α = 90% and β = 10% are used. The number of patterns
output is shown in Figure 5e and Figure 5f. Not surprisingly, in-
cluding more dimensions increases the search space, the size of the
output patterns, and also the running time, exponentially.

Importantly though, the ZBDD technique is able to mine this
complex kind of patterns even when there are a very large num-
ber of attributes. The maximal disjunctive EPs for the lung cancer

dataset are mined in around 60000 seconds using all its attributes
(2172 attributes). For the ALL-AML dataset, up to 700 attributes
can be handled in around 1000 seconds. Mining beyond this at-
tribute limit was proved impossible because of memory limits be-
ing exceeded, due to the very large number of output patterns.

Since the output patterns are stored in a ZBDD, it is interesting
to reflect on the compression being achieved. Figure 5g shows the
number of ZBDD nodes in the output, for the lung cancer data with
respect to varying the number of attributes, given α = 90% and
β = 10%. When there are 2172 attributes, the ZBDD requires
1236100 nodes, to store the 2080960 maximal disjunctive emerg-
ing patterns. Figure 5h gives a more detailed picture, presenting
a histogram of the pattern lengths. We can see that most of the
patterns are close to the maximum length of 4371 items having an
average length of around 4367 items.

Varying the support thresholds. Figure 5i and Figure 5j show
the output patterns in ALL-AML dataset (using 1000 items) and in
lung cancer dataset (using 3500 items) according to an increasing
α constraint (given β = 0). We can see that for both datasets, the
number of patterns output is highly sensitive to α up to a certain
limit (around 45%), with its sensitivity thereafter decreasing.

Comparative pattern volumes and mining time: Finally, we
compare the volumes of the different kinds of EP in a given dataset.
Figure 5k looks at the lung cancer dataset, using 230 items and
β = 0, allowing α to vary. The figure shows the number of i) min-
imal emerging patterns, ii) maximal disjunctive emerging patterns,
and iii) maximal contiguous disjunctive emerging patterns. For this
scenario, it is clear that there exist fewer EPs than the disjunctive
EPs and their contiguous variants. This is expected, since EPs are
more specific versions of the disjunctive patterns. Though it is not
shown here, in our experience, it can often be the case that under
given support thresholds, a dataset may contain zero EPs, but may
contain hundreds of (possibly contiguous) disjunctive EPs.

The corresponding mining times for this dataset is shown in Fig-
ure 5l. The mining times for mining EPs and disjunctive EPs lie
on the x-axis, and the times for mining contiguous EPs are higher
due to the postprocessing splitting operation. It can be seen that
the splitting time is constant with respect to a varying number of
patterns from varying α. Indeed, all the algorithms have a roughly
constant time with respect to α for this scenario.

5.3 Variable Ordering
We also study the effect of using various variable orderings in the

ZBDD for mining disjunctive EPs. Figures 5m, 5n, and 5o show
a comparison between the different heuristics we considered. The
first heuristic is employed by ordering the variables by decreasing
frequency in Dp. The second heuristic is employed by ordering the
variables by decreasing frequency in Dn. Lastly, the third heuristic
is employed by arranging items from the same attribute close to
each other and two-level ordering is used, i.e. items within each
attribute are ordered by decreasing support in Dn and the attributes
are ordered by decreasing maximum support of its items.

Figure 5m shows that employing the second ordering on the ZB-
DDs achieves the fastest mining time as it reduces the complexity
of the decomposed subtasks. Shown in Figure 5n, the correspond-
ing input ZBDDs have similar sizes using either the second or the
third ordering, but the mining times for the third ordering grow ex-
ponentially as α decreases. The first ordering produces larger input
ZBDDs, which explains its mining time being the slowest. Fur-
thermore, Figure 5o shows that the output ZBDDs are the smallest
when the second and the third orderings are used.

6. DISCUSSION
The results in the previous section are only a snapshot of the

experiments we performed. We also tested our techniques on a
number of other biological datasets, with performance being simi-
larly pleasing overall. A general conclusion from our work is that
ZBDDs can be used for very effective mining of both emerging pat-
terns and disjunctive emerging patterns. A natural question to ask
is, what advantages does a ZBDD technique have over a frequent-
pattern tree (fp-tree) technique for mining contrasts? Here we pro-
vide some preliminary observations.

Both fp-trees and ZBDDs are tree-like structures for storing trans-
actions using a variable ordering. A structural difference between
the two is that ZBDDs allow sharing of transactions via fan-in,
whereas fp-trees do not allow fan in. The use of fan-in allows not
only prefix sharing but also suffix sharing, resulting a high com-
pression of both input and output. Furthermore, ZBDDs also allow
sharing between all structures throughout mining since it uses a
global variable ordering. In particular, it is possible for the input
ZBDD (the transactions), the input projection in the intermediate
mining steps, and the output ZBDD, to share subtrees even though
each of them represents different kinds of data! This provision of
increased opportunities for sharing and compression is particularly
important for high dimensional datasets, where the number of can-
didates can be very large and mining practicality may be dependent
on memory consumption considerations.

Another significance of our technique is in the recursive decom-
positions. When a ZBDD is recursively decomposed, its decompo-
sitions are able to share substructures with one another. A shared
structure is constructed only once and results from past manipula-
tions are re-used as needed. This is different from fp-trees, whose
recursive decompositions (conditional fp-trees) are created afresh
and do not share with one another.

A final important aspect of ZBDD is the existence of polynomial
time operations, such as set (minimal/maximal) union, set differ-
ence, etc, especially when there is a large amount of sharing within
the structure. One implication of this is an efficient removal of
non-maximal patterns. Considerable work has gone into develop-
ing efficient library implementations of these and our algorithms
make considerable use of them. It is an open question as to whether
provably efficient counterpart operations exist for fp-trees.

7. RELATED WORK
We have already referred to the general work in the area of ZBDD

in Section 3.1. However, we are only aware of one paper [25]
where ZBDD is used for pattern mining. They propose a method
for finding frequent patterns. Their approach is different from ours
in the sense that they explicitly store the support information by
constructing multiple shared-ZBDDs which groups itemsets based
on their (binary-encoded) supports. It enumerates every pattern oc-
curring at least once in the dataset, regardless of the input threshold
value α supplied by the user, making it inefficient for high values of
α or for mining in high dimensional data since millions of patterns
may exist. On the other hand, our proposal stores the input transac-
tions in a single ZBDD, reducing its overall memory consumption,
and pushes constraints deep inside the ZBDD operations. Addition-
ally, we use a secondary data structure such as bitmaps for counting
support, instead of storing support information inside the ZBDD.

Emerging patterns were introduced in [8], and have been suc-
cessfully used for constructing highly accurate classifiers [17]. In
particular, work in [10] have proposed a strong EP-based classi-
fier using an α support constraint and a minimum growth rate con-
straint. Moreover, emerging patterns have also been used for pre-

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

M
in

in
g

tim
e

(s
ec

)

Num of Attributes

ZBDD EP-Miner
Pattern-Tree EP-Miner

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

M
in

in
g

tim
e

(s
ec

)

Num of Attributes

ZBDD EP-Miner
Pattern-Tree EP-Miner

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700

M
in

in
g

tim
e

(s
ec

)

Number of Attributes

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500

M
in

in
g

tim
e

(s
ec

)

Number of Attributes

(a) Comparison between mining
time for finding minimal EPs using
Pattern-Tree and ZBDD w.r.t num.
of attr., ALL-AML dataset (α =
90%, β = 0)

(b) Comparison between mining
time for finding minimal EPs using
Pattern-Tree and ZBDD w.r.t num.
of attr., lung cancer dataset (α =
90%, β = 0)

(c) Mining time for mining max-
imal disj. EPs (sec.) w.r.t num.
of attr., ALL-AML dataset (α =
90%, β = 10%)

(d) Mining time for mining maxi-
mal disj. EPs (sec.) w.r.t Num.
of attr., lung cancer dataset (α =
90%, β = 10%)

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700

N
um

be
r

of
 P

at
te

rn
s

Number of Attributes

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500

N
um

be
r

of
 P

at
te

rn
s

Number of Attributes

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500

N
um

be
r

of
 N

od
es

 in
 Z

B
D

D
 O

ut
pu

t

Number of Attributes

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4360 4362 4364 4366 4368 4370

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

(e) Num. of maximal disj. EPs w.r.t
num. of attr., ALL-AML dataset
(α = 90%, β = 10%)

(f) Num. of maximal disj. EPs w.r.t
num. of attr., lung cancer dataset
(α = 90%, β = 10%)

(g) Num. of nodes in the ZBDD
output of maximal disj. EPs w.r.t.
num. of attr., lung cancer dataset (α
= 90%, β = 10%)

(h) Frequency histogram of maxi-
mal disj. EPs, lung cancer dataset
(4371 items; α = 90%, β = 10%)

 10000

 100000

 1e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 P

at
te

rn
s

Minsup in Positive Class

 100000

 1e+06

 1e+07

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 P

at
te

rn
s

Minsup in Positive Class

 880

 900

 920

 940

 960

 980

 1000

 1020

 1040

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 P

at
te

rn
s

Minsup in Positive Class

Disjunctive EPs
Contiguous disjunctive EPs

EPs

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M

in
in

g
tim

e
(s

ec
)

Minsup in Positive Class

ZBDD disjunctive EP Miner
ZBDD contig. disjunctive EP Miner

ZBDD EP Miner

(i) Num. of maximal disj. EPs w.r.t
minimum support in Dp, ALL-
AML dataset (1000 items; max sup-
port in Dn = 10%)

(j) Num. of maximal disj. EPs w.r.t
minimum support in Dp, lung can-
cer dataset (3500 items; max supp
in Dn = 10%)

(k) Comparison between the num-
ber of minimal EPs, maximal disj.
EPs, and maximal contig. disj. EPs
w.r.t minimum support in Dp, lung
cancer dataset (230 items; β = 0)

(l) Comparison between the mining
time for mining minimal EPs, max-
imal disj. EPs, and maximal contig.
disj. EPs using ZBDD w.r.t min-
imum support in Dp, lung cancer
dataset (230 items; β = 0)

 0.1

 1

 10

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

in
g

tim
e

(s
ec

)

Minsup in Positive Class

Decreasing frequency in Dp
Decreasing frequency in Dn

Attribute grouping

 1000

 10000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 Z

B
D

D
 n

od
es

 in
pu

t

Minsup in Positive Class

Decreasing frequency in Dp
Decreasing frequency in Dn

Attribute grouping

 10000

 100000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 Z

B
D

D
 n

od
es

 o
ut

pu
t

Minsup in Positive Class

Decreasing frequency in Dp
Decreasing frequency in Dn

Attribute grouping

(m) Comparison between the min-
ing time for mining maximal disj.
EPs using different variable or-
derings lung cancer dataset (1000
items; β = 0%)

(n) Comparison between the num-
ber of nodes in the ZBDD input
for mining disj. EPs using differ-
ent variable orderings; lung cancer
dataset (1000 items; β = 0%)

(o) Comparison between the num-
ber of nodes in the ZBDD output
of maximal disj. EPs using differ-
ent variable orderings; lung cancer
dataset (1000 items; β = 0%)

Figure 5: Performance Results

dicting the likelihood of diseases such as leukaemia [18] using
gene expression data [19]. A recent method for mining emerging
patterns with zero support in the negative dataset appears in [12],
based on modifications to fp-tree [14]. Fp-trees have also been
used as the basis for mining contrasts given other types of con-
straints, such as risk and odds ratio [16]. Connections between the
computation of certain kinds of emerging patterns and hypergraph
transversals are identified in [4].

Emerging patterns are closely related to association rules with
large confidence [37] and also to work on detecting group differ-
ences [5]. Quantitative association rules [36] aim to find contigu-
ous regions containing a minimum number of points. Moreover,
contiguous disjunctive emerging patterns are similar to quantitative
association rules having high confidence and a single item conse-
quent. Another related notion is version spaces [27, 15], which cor-
respond to emerging patterns with constraints α = 1 and β = 0. A
disjunctive version space [33] is a disjunction of version spaces, as
opposed to the disjunctive emerging patterns presented here, which
are a conjunction of disjunctions on attribute values. Several pa-
pers have examined the computation of empty regions or ‘holes’ in
datasets [11, 21]. A contiguous disjunctive emerging pattern with
β = 0 corresponds to a hole in Dn.

Recent work have examined mining of closed patterns from high
dimensional datasets using row, instead of column (item), enumer-
ation [28, 30, 22]. The emphasis on closed patterns, as opposed to
minimal patterns means this is not directly applicable for finding
minimal contrasts. However, alternative variants of emerging pat-
terns based on closure properties can certainly be defined, e.g. see
[35]. In contrast to the row enumeration work, our paper seeks to
investigate the limits of column-wise mining and indeed our results
showed that column-wise mining of contrasts in high dimensional
datasets is feasible using ZBDDs.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed efficient algorithms for mining

contrast patterns in high dimensional data. We presented an algo-
rithm based on the use of Zero Suppressed BDD as a data struc-
ture and demonstrated how mining constraints could be integrated
with the standard ZBDD library routines. Our experimental results
showed the technique scales well for a number of high dimensional
biological datasets and allows the computation of both simple con-
trasts such as emerging patterns, and also more complex type of
contrasts which use both disjunction and conjunction. We showed
our method substantially improves on a state of the art EP-mining
technique [12]. We are not aware of other work suitable for com-
puting the complex contrasts considered. As future work, we intend
to explore the use of ZBDDs for mining other types of patterns, and
also their use in row enumeration mining approaches.

Acknowledgements: We would like to thank Rao Kotagiri for his com-
ments, and Hongjian Fan for making the executable of Pattern-Tree EP-
miner available for us. This work is partially supported by National ICT
Australia. National ICT Australia is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Re-
search Council.

9. REFERENCES
[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah. MINCE: A static global variable

ordering for SAT and BDD. In Int’l Workshop on Logic Synthesis, 2001.
[2] F. A. Aloul, M. N. Mneimneh, and K. Sakallah. ZBDD-based backtrack search

SAT solver. In Int’l Workshop on Logic Synthesis, 2002.
[3] J. Bailey, T. Manoukian, and K. Ramamohanarao. Fast algorithms for mining

emerging patterns. In Proc. of PKDD 2002, pages 39–50.

[4] J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast algorithm for
computing hypergraph transversals and its application in mining emerging
patterns. In Proc. of ICDM, pages 485–488, 2003.

[5] S. D. Bay and M. J. Pazzani. Detecting group differences: Mining contrast
sets. Data Mining and Knowledge Discovery., 5(3):213–246, 2001.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[7] P. Chatalic and L. Simon. Multi-resolution on compressed sets of clauses. In
Proc. of ICTAI, pages 2–10, 2000.

[8] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proc. of ACM KDD, pages 43–52, 1999.

[9] G. Dong and J. Li. Mining border descriptions of emerging patterns from
dataset pairs. Knowledge and Information Systems, 8(2):178–202, 2005.

[10] G. Dong and X. Zhang and L. Wong and J. Li. CAEP: Classification by
Aggregating Emerging Patterns. In Proc. of the 2nd Int’l Conf. on Discovery
Science, pages 30–42, 1999.

[11] J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for empty spaces in
large data sets. Theor. Comput. Sci., 296(3):435–452, 2003.

[12] H. Fan and K. Ramamohanarao. Fast discovery and the generalization of
strong jumping emerging patterns for buildihng compact and accurate
classifiers. IEEE Transactions on Data Engineering, To appear.

[13] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering
methods for ordered binary decision diagrams. In Proc. of IEEE/ACM ICCAD
’93, pages 38–41, 1993.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the Int’l Conf. on Management of Data, pages 1–12,
2000.

[15] H. Hirsh. Generalizing version spaces. Machine Learning, 17(1):5–45, 1994.
[16] H. Li, J. Li, L. Wong, M. Feng, and Y. P. Tan. Relative risk and odds ratio: A

data mining perspective. In PODS, 2005.
[17] J. Li, G. Dong, and K. Ramamohanarao. Making use of the most expressive

jumping emerging patterns for classification. In Proc. of PAKDD 2000, pages
220–232.

[18] J. Li, H. Liu, J. R. Downing, A. Yeoh, and L. Wong. Simple rules underlying
gene expression profiles of more than six subtypes of Acute Lymphoblastic
Leukaemia (ALL) patients. Bioinformatics, 19:71–78, 2003.

[19] J. Li and L. Wong. Emerging patterns and gene expression data. In Proc. of the
12th Workshop on Genome Informatics, pages 3–13, 2001.

[20] J. Li and L. Wong. Identifying good diagnostic gene groups from gene
expression profiles using the concept of emerging patterns. Bioinformatics,
18(10):1406–1407, 2002.

[21] B. Liu, L. P. Ku, , and W. Hsu. Discovering interesting holes in data. In Proc.
of IJCAI, pages 930–935, 1997.

[22] H. Liu, J. Han, D. Xin, and Z. Shao. Top-down mining of interesting patterns
from very high dimensional data. In To appear in Proc. of ICDE’06.

[23] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proc. of the 30th Int’l Conf. on Design Automation, pages
272–277, 1993.

[24] S. Minato. Zero-suppressed BDDs and their applications. Int’l Journal on
Software Tools for Technology Transfer (STTT), 3(2):156–170, 2001.

[25] S. Minato and H. Arimura. Combinatorial itemset analysis based on
Zero-suppressed BDDs. In IEEE/IEICE/IPSJ Int’l Workshop on Challenges in
Web Information Retrieval and Integration (WIRI), pages 3–10, 2005.

[26] A. Mishchenko. An introduction to Zero-suppressed Binary Decision
Diagrams.

[27] T. M. Mitchell. Generalization as Search. AI, 18(2):203–226, 1982.
[28] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki. Carpenter: Finding

closed patterns in long biological datasets. In Proc. of KDD’03, 2003.
[29] A. Rauzy. Mathematical foundations of minimal cutsets. IEEE Transactions

on Reliability, 50(4), 2001.
[30] F. Rioult, J. Boulicaut, D. Crémilleux, and J. Besson. Using transposition for

pattern discovery from microarray data. In DMKD, pages 73–79, 2003.
[31] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

Proc. of the Int’l Conf. on CAD, pages 42–47, 1993.
[32] C. Scholl, B. Becker, and A. Brogle. The multiple variable order problem for

binary decision diagrams: theory and practical application. In Proc. of the
2001 Conf. on Asia South Pacific Design Automation, pages 85–90, 2001.

[33] M. Sebag. Delaying the choice of bias: A disjunctive version space approach.
In Proc. of ICML 1996, pages 444–452.

[34] F. Somenzi. CUDD: CU decision diagram package, 1997. Public software,
Colorado University, Boulder.

[35] A. Soulet, B. Crmilleux, and F. Rioult. Condensed representation of emerging
patterns. In Proc. of PAKDD 04, pages 127–132, 2004.

[36] R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In SIGMOD96, pages 1–12.

[37] G. I. Webb, S. Butler, and D. Newlands. On detecting differences between
groups. In Proc. of KDD03, pages 256–265, 2003.

