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ABSTRACT
Discovery of alternative clusterings is an important method
for exploring complex datasets. It provides the capability for
the user to view clustering behaviour from different perspec-
tives and thus explore new hypotheses. However, current
algorithms for alternative clustering have focused mainly on
linear scenarios and may not perform as desired for datasets
containing clusters with non linear shapes. Our goal in this
paper is to address this challenge of non linearity. In par-
ticular, we propose a novel algorithm to uncover an alterna-
tive clustering that is distinctively different from an exist-
ing, reference clustering. Our technique is information the-
ory based and aims to ensure alternative clustering quality
by maximizing the mutual information between clustering
labels and data observations, whilst at the same time en-
suring alternative clustering distinctiveness by minimizing
the information sharing between the two clusterings. We
perform experiments to assess our method against a large
range of alternative clustering algorithms in the literature.
We show our technique’s performance is generally better for
non-linear scenarios and furthermore, is highly competitive
even for simpler, linear scenarios.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering

General Terms
Algorithm

Keywords
Alternative Clustering, Information Theoretic Learning, Parzen-
window technique

1. INTRODUCTION
Data clustering aims at discovering novel patterns and

structures from data. Its objective is to categorize similar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

data instances into the same classes (or clusters). However,
while it may be reasonable to refer to a “best” model in su-
pervised classification, it is less useful to make statements
about a single, best clustering [5]. When exploring com-
plex data, different clusterings can exist and they may each
be reasonable. For example when analyzing a document
dataset, one may find that it is possible to categorize ac-
cording to either topics or writing styles; or when clustering
a gene dataset, it is found that grouping genes based on their
functions or structures is equally useful [6]. This challenge
has recently stimulated the growing research area of alter-
native clustering, where the goal is to generate different, yet
high quality clusterings or groupings of a given dataset.

Several algorithms have been developed for the task of
alternative clustering. Given an input, the reference clus-
tering, the task is to generate another clustering, which is
dissimilar from the reference one, yet it is still plausible (i.e.
has high quality). It is this dual objective of achieving both
dissimilarity and quality that makes the task challenging.

In this paper, we explore another aspect of the alterna-
tive clustering problem. We focus on the scenario of non
linearity, where cluster shapes may have unusual and non-
Gaussian shapes and the border between clusters may not
be linearly separable. We show that current algorithms
for alternative clustering tend to underperform in this sce-
nario. This motivates us to develop a new algorithm, called
NACI (Non-linear Alternative Clustering with Information
theory). NACI is a hierarchical technique which uses in-
formation theoretic methods to optimize the dual objective
functions of both quality and dissimilarity.

In particular, given a predefined (reference) clustering,
the NACI algorithm aims to discover an alternative clus-
tering for which i) the mutual information between its clus-
ter labels and data observations is maximized, whereas at
the same time ii) the mutual information between the alter-
native clustering and the reference clustering is minimized.
Objective i) helps to reduce the uncertainty within each clus-
ter of the alternative clustering, by ensuring there is a strong
(probabilistic) relationship between the cluster labels and
the data instances. We later motivate this clustering objec-
tive through the use of Fano’s inequality. On the other hand,
objective ii) helps to ensure that the alternative clustering
is independent (different) from the reference clustering.

The principal technical contribution of our work is the for-
mulation of a well founded alternative clustering objective
function, that is purely information theoretic. The advan-
tage of using an information theoretic approach is that it
can adapt well to the presence of non linearities. However,



the technical development is not straightforward, requiring
the use of Parzen windows for probability density estima-
tions, as well as approximations based on quadratic mutual
information.
Through an experimental analysis, we show that NACI

performs particularly strongly when finding alternative clus-
terings for non-linear datasets, improving over the state of
the art. Furthermore, even for simpler, more linear datasets,
NACI is able to discover desirable alternative clusterings,
possessing high quality and high dissimilarity to the refer-
ence clustering.

2. RELATED WORK
There are several works related to our research. The clos-

est are those developed in [13, 2, 8, 10], which exploit various
forms of negative information toward the desired clustering
(as opposed to those using prior knowledge to improve clus-
tering results [17, 22, 4]). In [13], the authors proposed
a conditional information bottleneck (CIB) method, which
treats class labels of a given clustering as negative infor-
mation in seeking an alternative clustering. The new data
partition is found by maximizing the information sharing
between the cluster labels and the data features (describ-
ing for data objects), but conditioned on the given refer-
ence clustering. This method, though similar to our work
in that both address the problem from an information the-
ory viewpoint, is rather different in two important aspects.
First, our approach makes no assumption regarding the data
density distribution, whilst CIB requires the availability of
the joint distribution information between cluster labels and
the features, which is known as being hard to formalize[10].
Second, while our algorithm directly minimizes the mutual
information between two clusterings to ensure their inde-
pendence, the CIB approach only conditions on the refer-
ence clustering in the process of encoding properties of the
data features into the new clustering. In other words, it
uses mutual information in a completely different way to
our approach. Another approach, which exploits the effec-
tiveness of pairwise constraints for data clustering [22, 3],
is the COALA technique [2]. From the reference clustering,
COALA generates a set of cannot-link constraints between
pairs of data samples and attempts to find a different clus-
tering that satisfies as many as possible of these constraints.
On the other hand, a line of work developed in [8, 10] takes a
rather different approach to alternative clustering by relying
on the notion of orthogonality. In [8], the authors develop
two techniques to find an alternative clustering using or-
thogonal projections. In the first one, data is projected onto
a space that is orthogonal to the space spanned by the set
of mean vectors in the given clustering, while in the second
technique, such a representative vectors are replaced by the
feature space. An alternative clustering is then found by
simply applying a clustering algorithm on this new trans-
formed data. A similar approach is developed in [10] by
which the transformation is applied on the distance matrix
learnt from the provided clustering. In comparison, this
work has an advantage compared to[8], since it avoids prob-
lems when the data dimension is smaller than the number
of clusters (e.g., spatial datasets).
Another series of works addressing the alternative clus-

tering problems are those developed in [15] and [9]. Unlike
the work above, these methods attempt to seek two alter-
native clusterings at the same time. In the first work, two

algorithms named Dec-kmeans and ConvEM are developed
which attempt to derive two sets of mean vectors that are
pairwise orthogonal, whereas in the second work [9], an al-
gorithm, known as CAMI seeks two clusterings that share
minimal mutual information. A clear distinction between
these algorithms and ours in this paper is that our algo-
rithm is not limited to spherically shaped clusterings, i.e. it
is able to seek alternative clusterings for non linear datasets.
We provide experimental comparisons with all the above al-
gorithms in Section 5 of the paper.

3. PRELIMINARIES

3.1 Entropy and Mutual Information
In information theory, the quantity entropy plays a cen-

tral role and is a measure of the uncertainty of a random
variable. Mathematically, let X be a continuous random
variable characterized by the probability distribution p(x),
the Shannon entropy of X is:

H(X) = −
∫

p(x) log p(x)dx (1)

When a variable is known and another is not, the remain-
ing uncertainty is measured by the conditional entropy:

H(Y |X) = −
∫∫

p(x, y) log p(y|x)dxdy (2)

A related concept to the entropy is the Kullback-Leibler
divergence. It is a measure of the distance between two
distributions p(x) and q(x) and is defined by:

KL(p∥q) =
∫

p(x) log
p(x)

q(x)
dx (3)

Mutual information, which is of importance in our work,
turns out to be a special case of the KL divergence. It mea-
sures the information shared between two objects or in other
words, it accounts for the amount of information that one
random variable contains about another variable. In spe-
cific form, let X and Y be two random variables with a joint
probability density function p(x, y) and marginal probabil-
ity density functions p(x) and p(y), the mutual information
I(X;Y ) is the KL distance between the joint distribution
and the product of two marginal distributions p(x) and p(y):

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy

= KL(p(x, y)∥p(x)p(y)) (4)

which is obviously symmetric and non-negative. Impor-
tantly, two random variables have zero mutual information
if and only if they are statistically independent.

3.2 Problem Definition
Given the above definitions, an intuitive problem state-

ment is as follows:

Definition 1. Given a dataset X = {x1, x2, ..., xn} where
each xi is in d-dimensional space and for which there is an
existing reference clustering C−, find a new alternative clus-
tering C+ from X , such that C+ is not only high quality but



also as independent (i.e., different) from C− as possible. The
independence between two clusterings can be quantified by
the information sharing between them.

The number of clusters within each clustering C+ and C−

may be different. In our work, for easy of presentation, we
assume that they are the same and use k to denote this
number. However our methods can be easily adapted to the
more general case.

4. CLUSTERING METHOD

4.1 Criterion Function Optimization
For any learning algorithm, the learning process should

ultimately transfer the information carried in the data sam-
ples into the system’s parameter [20]. It is therefore natural
to find an objective function that directly manipulates in-
formation. Since mutual information is an essential tool to
quantify the statistical relationship between any two random
variables, it is intuitive to create a clustering cost function
that relies on it. In the particular case of cluster analysis,
we would like to find a clustering solution that has a strong
probabilistic relationship with the data observation X. This
implies that the clustering label variable C+ has little un-
certainty given the data observation X or in other words,
the observations contain much of the information about the
clustering label C+ and we can infer the value of C+ from
the observations with small error. Theoretically, this ob-
jective can be justified by the well-known Fano’s theorem
from information theory, which provides a lower bound for
the probability of error when guessing discrete values of a
random variable C+ from the random variable X. More
specifically, let H(C+|X) be the conditional entropy of C+

given X, then Fano’s inequality states that:

Pr(c+ ̸= ĉ+) ≥ H(C+|X)− 1

log(|C+|) =
H(C+)− I(C+;X)

log(|C+|) (5)

in which c+ and ĉ+ are respectively the true and guessed
cluster labels of C+, after observing a sample of X. Thus,
the lower bound on error probability is minimized when
the mutual information between the cluster label C+ and
the data observation X is maximized. In this respect, it is
possible to say that mutual information corresponds to the
amount by which knowledge provided by the data observa-
tion X decreases the uncertainty about the cluster.
Therefore, combining the use of information theory to en-

sure cluster quality, with our objective of minimizing the
mutual information between two clustering solutions, it is
possible to form an alternative clustering objective function
as follows (with a constraint of k final clusters within C+):

C+ = argmax
C+

{I(C+;X)− ηI(C+;C−)} (6)

The parameter η regulates the relative importance of each
of the clustering objectives.

4.2 Alternative Clustering with Quadratic Mu-
tual Information

When a data instance is assigned to one of several clusters,
it incurs a variation on the mutual information cost. Opti-

mizing this variation could be used as an evaluation function
for clustering. In working toward optimizing the objective
function in Eq.(6), one possible way is to employ an ag-
glomerative hierarchical clustering technique. This type of
algorithm typically begins by placing each data sample into
its own cluster and then successively merges pairs of clusters
until all samples are grouped into a single cluster. However,
unlike most of the existing agglomerative techniques, where
the merging between two clusters is decided based on their
similarity (e.g., Euclidean distance), in our work, two clus-
ters in C+ are merged if such a combination makes the global
mutual information I(C+;X) maximally increased, while at
the same time it minimizes the amount of I(C+;C−). This
evaluation requires the estimation of the mutual information
at each merging step of the algorithm. In the following, we
present an approach that can help to estimate mutual in-
formation directly from data, while making no assumption
about the data density distribution.

As mentioned in Section 3.1, mutual information defined
in Shannon’s entropy can be viewed as the KL divergence
between the joint distribution and the product of the two
marginal distributions of two variables. However, computing
this divergence is not an easy task in practice since it requires
the availability of all variables’ probability density functions.
Furthermore, the numerical integration of these functions
also leads to very high computational complexity.

Fortunately, notice that our clustering objective is to op-
timize the mutual information, rather than computing it ex-
actly. It has been shown in [16, 20] that as long as a learning
process does not require to compute an exact value of the
mutual information, but rather to maximize or minimize it,
then other practical divergences can be used. Importantly,
the extrema of these divergences are also coincident with
those of the KL divergence and therefore, the objectives of
optimization are not compromised. One of such divergence
is presented in [16]:

D(p||q) = 1

α(α− 1)

n∑
i=1

(pα(xi)− α
p(xi)

q1−α(xi)
+ (α− 1)qα(xi))

where α ̸= 0, 1.

Based on this, a quadratic form of mutual information can
be derived by selecting α = 2 and extending the equation
to continuous densities (the first constant term can be omit-
ted):

IR2(X;Y ) =

∫∫
(p(x, y)− p(x)p(y))2 dxdy (7)

It is easy to prove that all essential properties of the diver-
gence are preserved, i.e., IR2 is always non-negative, sym-
metric and equal to 0 if and only if p(x, y) = p(x)p(y).

When applying this quadratic form of mutual information
to our alternative clustering problem, it is possible to derive
the information sharing between two discrete variables C+

and C− as follows:



IR2(C
+;C−) =

∑
c+i

∑
c−j

(
p(c+i , c

−
j )− p(c+i )p(c

−
j )
)2

=
∑
c+i

∑
c−j

p(c+i , c
−
j )

2 +
∑
c+i

∑
c−j

p(c+i )
2p(c−j )

2

− 2
∑
c+i

∑
c−j

p(c+i , c
−
j )p(c

+
i )p(c

−
j ) (8)

and the quadratic mutual information between the continu-
ous variable X and the discrete variable C+:

IR2(C
+;X) =

∑
c+i

∫
x

(
p(c+i , x)− p(c+i )p(x)

)2
dx

=
∑
c+i

∫
x

p(c+i , x)
2dx+

∑
c+i

∫
x

p(c+i )
2p(x)2dx

− 2
∑
c+i

∫
x

p(c+i , x)p(c
+
i )p(x)dx (9)

where the prior probabilities p(c+i ) and p(c−j ) are estimated
by the number of data samples in each cluster (over n), i.e.,
respectively ni/n and nj/n. Similarly, the joint probabil-
ity between c+i and c−j is estimated by the number of data

samples belonging to both c+i and c−j , i.e., nij/n.
Notice that computing the mutual information in Eq.(9)

requires the estimation of variables’ probability density func-
tion. Nonetheless, an appealing property of the quadratic
mutual information is that it is possible to combine it with
the Parzen window method, an effective non-parametric den-
sity estimation technique, to simplify the computation. This
involves placing a kernel function at each data sample. The
density is accordingly evaluated by the sum of kernels. When
using a Gaussian function for the kernel, it follows that:

p(x) =
1

n

n∑
i=1

G(x− xi, σ
2) (10)

where G(x− xi, σ
2) =

1

(2πσ)d/2
exp

{
−||x− xi||2

2σ2

}
is the Gaussian in a d-dimensional space. An important
property with this kernel is that the convolution of two
Gaussians remains a Gaussian function:

∫
x

G(x− xi, σ
2)G(x− xj , σ

2)dx = G(xi − xj , 2σ
2) (11)

This equation can be interpreted as the information poten-
tial between xi and xj . Therefore, when combining the non-
parametric density estimation method with the quadratic
mutual information, the computational complexity can be
greatly reduced. Specifically, according to the Parzen win-
dow method:

p(x|c+i ) =
1

ni

ni∑
ℓ=1

G(x− xℓ, σ
2) (12)

where ni is the number of data points belonging to clus-
ter c+i . Followed by Bayes theorem, the joint probability
between x and c+i is:

p(c+i , x) = p(c+i )p(x|c
+
i ) =

1

n

ni∑
ℓ=1

G(x− xℓ, σ
2) (13)

The quadratic mutual information in Eq.(9) thus can be
decomposed into three terms:

Tin =
∑
c+i

∫
x

p(c+i , x)
2dx =

1

n2

∑
c+i

ni∑
ℓ=1

ni∑
m=1

G(xℓ − xm, 2σ2)

Tin is interpreted as the sum of all information potentials
within each of clusters.

Tall =
∑
c+i

∫
x

p(c+i )
2p(x)2dx

=

∑
c+i

(ni

n

)2( 1

n2

n∑
ℓ=1

n∑
m=1

G(xℓ − xm, 2σ2)

)

Tall can be described as the sum of all information poten-
tials, regardless of their cluster and weighted by the cluster
prior. And

Tbtw =
∑
c+i

∫
x

p(c+i , x)p(c
+
i )p(x)dx

=
1

n2

∑
c+i

ni

n

(
ni∑
ℓ=1

n∑
m=1

G(xℓ − xm, 2σ2)

)

Tbtw is seen as the sum of information potentials between
each cluster’s data points and all data points, weighted by
the cluster prior.

Given the computations above, it is clear that the local
interaction, as defined by the kernel in Eq.(11), between
any two data instances needs to be computed. Therefore, a
matrix G having size of n×n is generated in which at row i
column j, the information potential term G(xi − xj , 2σ

2) is
computed. Notice that, in practice, only half the number of
these interactions need to be evaluated due to the symmetry.

In addition to the G matrix, two other matrices Din and
Dbtw, which respectively account for the variation in IR2(C

+;X)
and IR2(C

+;C−) incurred by merging any pairs of clusters
in C+, are utilized. Indeed, the combination of these two
matrices acts as the similarity matrix in a classical agglom-
erative clustering technique. Notice that, different from G
whose elements do not change during the clustering process,
elements of these two matrices are updated regularly and
their size is reduced one upon each merging step of the algo-
rithm. These two matrices are initialized by computing the
variation in mutual information when grouping any pair of
data samples.

Under the hierarchical clustering framework, there are
n− k iterative steps to merge clusters. Specifically, at each
iterative step of this agglomerative clustering, the maximum
element from the combined matrix is selected:



(α, β) = argmax
i,j

{Din − ηDbtw} (14)

Subsequently, cluster c+β is grouped into cluster c+α and
this means that the merging leads to the maximum variation
in our global objective function. Upon this union, elements
located at column and row β will be removed from Din and
Dbtw and it is necessary to update elements in column and
row αth of these two matrices. That means a new varia-
tion on the mutual information is computed if the updated
cluster c+α is combined with any of the rest clusters in C+.
For simplicity, we re-use the cluster index notations and

denote c+γ for the new cluster by merging c+α with any cluster

c+β in C+, then it is clear that:

p(c+γ ) = p(c+α ) + p(c+β )

p(c+γ , c
−
j ) = p(c+α , c

−
j ) + p(c+β , c

−
j ) and

p(c+γ , x) = p(c+α , x) + p(c+β , x)

Upon these, the variation in the mutual information can
be simply computed. Specifically, the variation of mutual
information with respect to each cluster c−j in C− is:

∆IR2(C
+; c−j )

=
(
p(c+γ , c

−
j )− p(c+γ )p(c

−
j )
)2 −(

p(c+α , c
−
j )− p(c+α )p(c

−
j )
)2 − (p(c+β , c−j )− p(c+β )p(c

−
j )
)2

= 2
(
p(c+α , c

−
j )p(c

+
β , c

−
j ) + p(c+α )p(c

+
β )p(c

−
j )

2−

p(c+α )p(c
+
β , c

−
j )p(c

−
j )− p(c+β )p(c

+
α , c

−
j )p(c

−
j )
)

The entire variation on IR2(C
+;C−) is therefore:

∆IR2(C
+;C−) =

∑
j

∆IR2(C
+; c−j ) (15)

Analogously, the variation on IR2(C
+;X) can be derived

by interchanging summations and integrations:

∆IR2(C
+;X)

= 2

(∫
p(c+α , x)p(c

+
β , x)dx+

∫
p(c+α )p(c

+
β )p(x)

2dx−∫
p(c+α )p(c

+
β , x)p(x)dx−

∫
p(c+β )p(c

+
α , x)p(x)dx

)
(16)

in which:

∫
p(c+α , x)p(c

+
β , x)dx =

1

n2

nα∑
k=1

nβ∑
ℓ=1

G(xk − xℓ, 2σ
2)

∫
p(c+α )p(c

+
β )p(x)

2dx =
nαnβ

n4

n∑
k=1

n∑
ℓ=1

G(xk − xℓ, 2σ
2)

and

∫
p(c+α )p(c

+
β , x)p(x)dx =

nα

n3

nβ∑
k=1

n∑
ℓ=1

G(xk − xℓ, 2σ
2)

∫
p(c+β )p(c

+
α , x)p(x)dx =

nβ

n3

nα∑
k=1

n∑
ℓ=1

G(xk − xℓ, 2σ
2)

Notice that all these summations can be easily obtained
from the G matrix.

Finally, it can be observed from the above that the varia-
tion in the two mutual information values may be in different
units. This is because IR2(C

+;X) is calculated between a
clustering solution and the data (i.e. a discrete and con-
tinuous variables), whereas IR2(C

+;C−) is computed be-
tween two clustering solutions (i.e. two discrete variables).
Therefore, in order to avoid this difficulty, the variation with
respect to each mutual information is normalized by divid-
ing it by the corresponding quadratic mutual information
(Eqs.(8),(9)). This also makes it easier when regularizing
the trade-off factor η between these two information’s quan-
tities.

4.3 Kernel Parameter Setting
One of the key advantages in our algorithm is that it

makes no prior assumption about the probability density
functions and these functions are approximated directly from
data using the non-parametric method. However, it should
be noticed that the success of this approach is dependent
on an appropriate selection for the kernel parameter, that
is the standard deviation σ. It is shown in [19] that if the
kernel width σ is annealed toward zero at a sufficiently low
rate as n tends to infinity, then the Parzen window density
estimator will be asymptotically unbiased and consistent.
However, for most practical applications where data are fi-
nite, the kernel size should be selected in such a way that
it balances out the bias and variance, which essentially be-
ing derived from the optimization of the mean integrated
squared error between an estimator p̂(x) and the true den-

sity p(x): MISE
{
p̂(x)

}
=
∫
x
E
{
[p̂(x)− p(x)]2

}
dx.

In our work, we choose σ = σ̂
(

4
n(2d+1)

) 1
d+4

, 1 which is

derived by applying the least square cross-validation and
the normal reference rule [23] to minimize the generalization
error above. It was also further experimentally observed that
by setting σ at this value, the interaction between samples
that are far distant is still considered, while the interaction
between close data samples remains emphasized. As shown
in our experimental section, this σ selection results in good
clusterings for most of the datasets examined.

4.4 Algorithm Complexity
The proposed algorithm requires to compute the matrix G

of information potentials between any pair of data samples.
The complexity of this operation requires O(dn2) where d is
the cost of calculating the interaction according to Eq.(11),
and n is the number of data observations. The calculation of
mutual information’s variation when merging any two data
samples takes O(n2). At each merging step, the maximum
value is selected from the combination of two matrices Din

and Dbtw. By using the priority queue data structure [7]
that supports the search and deletion in O(logn) from this
matrix, this step thus takes O(n logn). The calculation of
updating information variation according to Eqs.(15) and

1where σ̂ = 1
d

∑
i σi and σi’s are the diagonal elements of

the sample covariance matrix



(16) takes constant time given the availability of informa-
tion potential matrix G. Since there are (n − k) merging
steps for the agglomerative clustering, the computation is
O(n2 logn). The overall complexity of our proposed algo-
rithm is therefore O(n2 logn + dn2). Considering that d
is usually smaller than log n, it is possible to say that the
final complexity is O(n2 logn), which is the same as that
of a conventional hierarchial clustering using group-average
similarity.

5. EXPERIMENTAL RESULTS
In this section, we provide experimental results on both

synthetic and real-world benchmark datasets. Our NACI
algorithm is compared against eight methods, including five
semi-supervised alternative clustering algorithms: the CIB
method [13], COALA [2], two methods from [8] denoted
by Algo1 and Algo2, and the ADFT algorithm[10]; and
three unsupervised alternative clustering algorithms: the
Dec-kmeans, ConvEM from [15], and our previous algorithm
CAMI [9]. Unless otherwise indicated, we set η = 0.2 as
the default value for NACI. For the CIB method, we im-
plement the iterative version [12, 13] and its outputs are
post-processed by assigning each data point to the cluster
to which it has the highest probability. For ADFT, we im-
plement the gradient descent method integrated with the
iterative projection technique (in learning the full family of
the Mahalanobis distance matrix) [24, 25]. We also use the
EM technique as the background clustering technique for the
approaches developed in [8, 10]. For the Dec-kmeans, Con-
vEM and CAMI, we follow the heuristic method described in
their work to set the trade-off factor between the clustering
quality and dissimilarity. Since both NACI and COALA are
developed based on agglomerative hierarchical clusterings,
which are not sensitive to the initial parameters but possi-
bly to the data instances’ order. Therefore, when running
them, we randomly swap the order amongst data samples.
We run each algorithm 20 times and report the average re-
sults.

5.1 Clustering Evaluation
We evaluate the clustering results based on both clustering

dissimilarity and clustering quality measures. For measuring
dissimilarity between two clusterings, we report the values
of two different measures. The first and also the most pop-
ular one is the normalized mutual information[18, 21, 14,
11]: NMI(C+;C−) = I(C+;C−)/(H(C+)H(C−)), where

I(C+;C−) =
∑M+

i=1

∑M−

j=1

nij

n
log

(
n.nij

n+
i .n−

j

)
with nij denot-

ing the number of shared instances between clusters c+i ∈C
+

and c−j ∈C−. The second is the Jaccard index (JI) [2, 10]:

J(C+;C−) = n11
n11+n01+n10

in which n11 is the number of

pairs of samples in the same cluster for both C+ and C−,
n01 and n10 are the number of samples’ pairs belonging to
the same cluster in one solution, but not in the other.
For measuring clustering quality we divide into two cases:

if true class labels are known, the agreement between clus-
tering results and the correct labels is calculated by the F-
measure: F = 2P×R/(P+R), in which P and R are respec-
tively the precision and recall. If true class labels are not
known, we use the Dunn Index, similar to [2, 10]: DI(C) =
mini ̸=j{ δ(ci,cj)}
max1≤ℓ≤k{△(cℓ)}

where C is a clustering, δ : C×C → R+
0 is

(a) Syn1 dataset (b) Syn2 dataset
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Figure 1: Alternative Clustering returned by NACI
on Syn1, 2 and 3 datasets

the cluster-to-cluster distance and △: C→R+
0 is the cluster

diameter measure.
Note that for the NMI and JI measures, a smaller value

is desirable, indicating higher dissimilarity between cluster-
ings, while for the F-measure and Dunn Index, a larger value
is desirable, indicating a better clustering quality. Also,
since methods like Dec-kmeans, ConvEM and CAMI do
not require existing clusterings to be provided and instead
seek two alternative clusterings at the same time, we try to
achieve a fair comparison with them by reporting the higher
values of F-measure in the case true labels are available,
and averaging the Dunn Index when the class labels are not
known.

5.2 Synthetic Datasets
Four synthetic datasets are used to evaluate the perfor-

mance of our proposed clustering technique against other
algorithms. For the first dataset Syn1, we use a popular one
from [2, 8, 10, 15], which consists of 4 Gaussian sub-classes.
Each Gaussian contains 200 points in 2-dimensional data
space. The goal of using this dataset, when setting k = 2,
is to test whether our algorithm can discover an alternative
clustering that is orthogonal to the existing one. For the sec-
ond synthetic dataset Syn2, we use a more complicated one
in which 6 Gaussian sub-classes are located in a ring shape.
Different from Syn1, this dataset consists two equally impor-
tant clusterings (with k = 3) that are not orthogonal and it
is not possible to find them by simply projecting the data on
either of the subspaces. We generate the third and fourth
datasets by replacing a non-Gaussian shape for each sub-
class in the first synthetic dataset. By using these datasets,
we aim to test the ability of our algorithm in uncovering
non-linear clusterings.

Figures 1(a), (b) and (c) show clustering solutions respec-
tively for the first three synthetic datasets. Clusterings in
the top graphs of each figure are provided as pre-existing
reference solutions to each semi-supervised algorithm and
in the bottom graphs, we demonstrate the alternative clus-
terings returned by the NACI, which exactly match second
important clusterings included in each dataset. We compare
the performances of all algorithms via the results summa-
rized in Table 1. As can be seen from the table, like other
alternative clustering methods, our proposed algorithm can



(b) NACI’s alternative clustering

(c) Algo1’s alternative clustering

(d) ADFT’s alternative clustering

(e) COALA’s alternative clustering

(f) CIB’s alternative clustering

(g) Dec-kmeans’s two alternative clusterings

(h) CAMI’s two alternative clusterings

(a) Pre-defined clustering
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Figure 2: Alternative clusterings returned by all algorithms on Syn4 dataset. The first graph presents for
the pre-defined clustering.

NMI JI F NMI JI F NMI JI F NMI JI F
Methods Syn1 Syn2 Syn3 Syn4

Algo1 0.25 0.41 0.83 0.42 0.41 0.62 0.2 0.42 0.78 0.28 0.34 0.63
Algo2 0.26 0.43 0.81 NA NA NA 0.21 0.44 0.76 0.28 0.34 0.63
ADFT 0.12 0.39 0.92 0.62 0.61 0.57 0.14 0.36 0.86 0.30 0.36 0.62

COALA 0 0.33 1 0.38 0.35 0.53 0.18 0.41 0.79 0.25 0.37 0.58
CIB 0.12 0.4 0.91 0.41 0.39 0.72 0.24 0.46 0.69 0.37 0.39 0.53

Dec-kmeans 0.12 0.39 0.93 0.39 0.34 0.68 0.12 0.35 0.87 0.22 0.34 0.62
ConvEM 0.12 0.4 0.92 0.4 0.36 0.66 0.12 0.36 0.85 0.22 0.35 0.62

CAMI 0.1 0.38 0.95 0.37 0.33 0.92 0.11 0.35 0.88 0.21 0.34 0.63
NACI 0 0.33 1 0.35 0.32 1 0 0.33 1 0 0.33 1

Table 1: The clustering performances of all algorithms on four synthetic datasets (for NMI and JI measures,
lower values are better, and for F-measure, higher values are better). Results are not available for Algo2 on
Syn2 dataset since its transformation is undefined when number of clusters greater than data dimensionality.

easily identify the orthogonal clustering for the first simple
synthetic dataset. Its performance on the second dataset is
also accurate, although the two alternative clusterings solu-
tions have been deliberately designed to be non-orthogonal.
Notice that, unlike Syn1, there are no dominant features
that fully support any of the clusterings in this dataset.
Therefore, the methods developed based on orthogonal space
transformation [8, 10] or orthogonal clusters’ mean projec-
tion [15] are usually less successful in discovering the second
alternative clustering. Only CAMI and NACI are able to
achieve high accurate results since they both adopt the ap-
proach of mutual information minimization. However, dif-
ferent from CAMI, which slightly suffers from the problem
of initial parameters sensitivity, NACI can completely avoid
this since it is designed based on the hierarchical cluster-
ing technique. In addition, though we tested the strategy
at which data samples were randomly swapped before each
running, it was still found that NACI’s performance was
more consistent across all trials.2

2We refer the reader to our previous work [9] for detailed jus-
tification on the clustering outputs of the other algorithms.

We provide the clustering output of NACI for the Syn3
dataset in Figure 1(c) and all algorithms for the Syn4 dataset
in Figure 2 (the clustering outputs of Algo2 and ConvEM
are omitted since they are very much similar to those of
Algo1 and Dec-kmeans, respectively). For these two syn-
thetic datasets, we aim to test the algorithms’ ability in un-
covering nonlinear clusterings. It is clear that methods like
Algo1 and Algo2, or Dec-kmeans, ConvEM and CAMI are
unable to identify the correct alternative clustering, since
their core algorithms are tied to a particular spherical clus-
tering technique (e.g., k-means, EM). Moreover, the data
projection on a space orthogonal to the set of mean vec-
tors used in Algo1 or analogously to the feature subspace
used in Algo2, does not help them uncover the second al-
ternative clustering, since the data is distorted and seems
to be more overlapping by these transformations; whereas
the clustering approaches used in ConvEM and CAMI only
ensure a low value of decorrelation between two alternative
clusterings, but cannot guarantee that accurate clusterings
can be found for these nonlinear clustering shapes due to
the EM technique. Similarly, by inverting the stretcher ma-



trix, ADFT is also unable to deduce the hidden clustering
structure, since elements in this diagonal matrix actually are
the stretching factors along each dimension. Thus, varying
any of the elements (corresponding to dimensions) does not
make the alternative clusterings more easily discovered, es-
pecially for the Syn4 dataset where both cluster shapes and
clustering boundary are strongly nonlinear.
COALA, although essentially an average linkage algorithm,

has merging criteria based on the Euclidean distance be-
tween clusters. This is in contrast to our algorithm, which
exploits the similarity between clusters based on the infor-
mation embedded in the data. Furthermore, the dissim-
ilarity between two clusterings is optimized by NACI via
the global quantity of the clusterings’ mutual information,
rather than the local pairwise cannot-link constraints be-
tween any two data points as used in COALA.
The CIB method also approaches the problem based on

information theory. However, different from our approach in
which we directly minimize the mutual information between
the alternative and the existing clustering, it can be noticed
that CIB only conditions on this provided clustering in its
process of maximizing the information between the new clus-
tering and the set of data features. Its resultant alternative
clusterings therefore look somewhat unnatural (as observed
in Figure 2). Moreover, our approach in utilizing the mu-
tual information is also rather different from the CIB’s ap-
proach. In particular, while we approach the problem by
making no assumption regarding the data distribution and
exploit computational advantages of quadratic mutual in-
formation combined with the reliable and non-parametric
density estimation technique, CIB still relies on the mutual
information using Shannon’s entropy and explicitly assumes
the availability of the variables’ joint distribution. This can-
not be guaranteed, especially for datasets with limited sizes.

5.3 CMUFace Dataset
The CMUFace data obtained from the UCI KDD reposi-

tory [1] is an interesting dataset, since its data samples can
be partitioned in several different ways (e.g. by individual,
by pose, etc.). The dataset consists of images of 20 people
taken at various features such as facial expressions (neutral,
happy, sad, angry), head positions (left, right or straight),
and eye states (open or sunglasses). Each person has 32
images captured in every combination of these features. We
randomly select 3 people along with all their images. Since it
is known which image comes from which person, this forms
an existing partition of the dataset. We run NACI and the
other algorithms with this provided clustering. As a pre-
processing step, the PCA technique is applied to reduce the
number of dimensions, in which we retain the number of first
principal components that cover 90% of the original data’s
variance.
In Figure 3, we show the mean vectors of the provided

clustering (in the top graphs) and the mean vectors returned
in the NACI’s alternative clustering (in the bottom graphs).
Pictorially, it is possible to observe that the uncovered al-
ternative clustering returned by NACI provides another dif-
ferent, yet equally important clustering on the set of image
data. While pictures in the first row show that they rep-
resent for different individuals, pictures in the second row
clearly reveal that images have been partitioned according
to different poses. This obviously provides another mean-
ingful interpretation about this dataset. For specific results,

Figure 3: NACI’s results on CMUFace dataset

Methods NMI JI F(pose) F(person)
Algo1 0.31 0.34 0.68 0.87
Algo2 0.33 0.36 0.67 0.84
ADFT 0.29 0.33 0.69 0.89

COALA 0.27 0.32 0.71 0.87
CIB 0.28 0.34 0.69 0.86

Dec-kmeans 0.26 0.32 0.72 0.9
ConvEM 0.28 0.33 0.7 0.89

CAMI 0.24 0.31 0.74 0.89
NACI 0.2 0.24 0.81 0.94

Table 2: Results on the CMUFace dataset.

we report NACI’s, together with other techniques’ in Ta-
ble 2. As observed from this table, COALA and CIB per-
form slightly better than Algo1 and Algo2, which attempt
to find alternative clusterings in an orthogonal transforma-
tion space. For the methods like Dec-kmeans and CAMI
which seek two alternative clusterings simultaneously, we
found that they perform fairly well for the clustering based
on individuals but achieve a very moderate accuracy on the
clustering based on poses. Looking deeper, we also found
that the clustering based on poses is quite hidden and non-
linearly separable, but the configuration based on persons
is very obvious and quite separated when visualizing using
the first three PCs. This might explain why the methods
like Dec-kmeans and CAMI work well for the first cluster-
ing, but not for the second one. Our algorithm outperforms
these algorithms since its clustering objective is to maximize
the probabilistic relationship between cluster labels and the
data, and thus is not limited to the Gaussian shapes of the
clusters. We also test another strategy by which the clus-
tering labels based on poses are provided as background in-
formation. The clustering accuracy for the person based
partitioning of all algorithms is summarized in the fourth
column of the Table 2.

5.4 Other Real-World Datasets
We further compared the nine algorithms on three real-

world datasets selected from the UCI repository: Segmen-
tation, Vehicle Silhouette, and Vowel. For the Segmenta-
tion dataset, three attributes 5,7 and 9 are removed as they
were reported to be repetitive with the attributes 4,6 and
8 [1]. Since these datasets already contain pre-defined class
labels, we utilize them as an existing clustering provided.
Also, as we do not have ground truth for alternative clus-
terings, the Dunn Index (instead of F-measure) will be used
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(a) Segmentation dataset
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(b) Vehicle dataset
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(c) Vowel dataset

Figure 4: Impact of η on NACI’s performance. For ideal results, NMI should be low and DI should be high.

Methods Segmentation Vehicle Vowel
NMI JI DI NMI JI DI NMI JI DI

Algo1 0.51 0.38 1.31 0.38 0.39 1.28 0.42 0.19 1.27
Algo2 0.44 0.3 1.27 0.39 0.44 1.46 0.43 0.21 1.3
ADFT 0.46 0.31 1.3 0.35 0.37 1.42 0.48 0.33 1.41

COALA 0.44 0.29 1.25 0.29 0.35 1.51 0.36 0.27 1.29
CIB 0.45 0.32 1.32 0.33 0.41 1.39 0.41 0.26 1.25

Deckm 0.39 0.29 1.26 0.26 0.36 1.4 0.27 0.17 1.26
ConvEM 0.41 0.3 1.27 0.25 0.34 1.41 0.31 0.19 1.23

CAMI 0.31 0.27 1.44 0.23 0.32 1.53 0.24 0.11 1.38
NACI 0.26 0.25 1.46 0.21 0.28 1.51 0.22 0.11 1.38

Table 3: Results on three real-world datasets

for clustering quality comparison amongst the nine cluster-
ing techniques. We report the results of all techniques on
these datasets in Table 3.
Looking at this table, we see that NACI also performs

well with all three datasets. Note that these datasets have
a much higher degree of non-linearity, compared to the ones
we have already examined. It can be noted that NACI typi-
cally finds more dissimilar clusterings (as measured by both
NMI and JI) compared to those of other algorithms. Its
clusters found in the alternative clustering are also well sep-
arated as indicated by the small values of Dunn index. This
measure is only slightly larger than that of CAMI in the
Vehicle dataset and ADFT in Vowel dataset. This might
happen, since the Dunn Index is essentially computed by
the averaging distances between pairs of points in two clus-
ters over the maximum cluster diameter, and thus somewhat
supports clusters returned by CAMI and ADFT. However,
overall, one can observe that our algorithm tends to achieve
more decorrelated (i.e., more different) clusterings, whereas
its clustering quality is very competitive in all three datasets.
Its performance in the Segmentation dataset is better than
all other algorithms.

5.5 Parameter Sensitivity
There are two parameters that may impact the perfor-

mance of our NACI algorithm: the kernel width σ and the
regularization factor η. We have conducted a series of ex-
periments to examine the sensitivity of the results on these
parameters. For the kernel width σ, though its variation can
affect the algorithm’s performance, we have found that for
most of cases, setting it to the value derived in Section 4.3
often leads to good and stable clustering results (as reported
in the previous sections). Due to lack of space, we can only

present here the main observations with respect to the pa-
rameter η, which regularizes for the relative importance be-
tween two quantities of mutual information.

Since both the variations computed in Eqs.(15) and (16)
have been normalized by the corresponding mutual informa-
tion, we set the η to be within the unit interval. In Figure 4,
we show the relationship between the normalized mutual in-
formation, the Dunn index and the values of η for three
real-world datasets: Segmentation, Vehicle Silhouette, and
Vowel. The results are reported when η is varied from 0.1
to 0.5 with a step of 0.05. As we expected, small values
of η lead to compact clustering solutions (in terms of Dunn
index), but such results seem to be quite overlapping with
the given clusterings (shown by the high values of NMI). As
the values of η increase, the clustering quality somewhat re-
duces but the alternative clusterings are more decorrelated
from the existing solutions. However, once η is above 0.3,
it was observed the fluctuations happened with the NMI’s
values. This can be explained by the hierarchical clustering
approach of NACI, where it tends to combine clusters which
overly support small values of the information between two
clusterings at the beginning, but such decisions cannot be
undone at a later time where it converges to a small number
of final clusters. Likewise, it was seen that the resultant clus-
ters in the alternative clusterings in this case were also very
imbalanced, which made the Dunn index located at small
values as well. Nevertheless, as we observed from all three
graphs in Figure 4, high quality and dissimilar alternative
clusterings can be achieved if η is set around 0.2 since the
Dunn Index in this range is relatively high, whereas that
value of NMI is also small.

6. CONCLUSIONS
In this paper we have proposed a novel algorithm called

NACI, to discover alternative clusterings, which are of high
quality, yet distinctively different from a provided reference
clustering. We address the problem purely from information
theory, in which the clustering quality is achieved by max-
imizing the mutual information between cluster labels and
the data observations (this implicitly ensures a strong prob-
abilistic relationship between them), whereas the dissimilar-
ity between two alternative clusterings is achieved by the
minimization of the mutual information between them. To
fully exploit the information embedded in the data, we em-
ployed the Parzen window method for probability density es-
timation. Such a non-parametric technique does not impose



any assumptions regarding the data distribution and further
enables practical computations, when combined with the
quadratic mutual information form. These features made
NACI particularly suitable for the challenging scenario where
datasets have non linear structures.
We evaluated the performance of our algorithm on a num-

ber of synthetic and real-world benchmark datasets, com-
paring against eight well known existing approaches. The
experimental results show NACI is able to achieve excel-
lent performance for non linear cases, and is able to obtain
highly competitive performance even for simpler, more lin-
ear structures. We believe that NACI is a powerful tool for
alternative clustering discovery and exploration.
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