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Abstract. We describe an approach to improving the robustness of an agent system by augmenting
its failure-handling capabilities in a way that makes the system’s behavior more predictable. Our
approach is goal-based, both with respect to defining failure-handling knowledge, and in associating
this knowledge with agent tasks. By abstracting this knowledge above the level of specific actions or task
implementations, it is not tied to specific agent architectures or task plans and is more widely applicable.
The failure-handling knowledge is employed via a failure-handling support component associated with
each agent through a goal-based interface. The use of this component decouples the specification and use
of failure-handling information from the specification of the agent’s domain problem-solving knowledge,
and reduces the failure-handling information that an agent developer needs to provide.

1 Introduction

The work described in this paper is part of a Department of CSSE, University of Melbourne project to
develop methodologies for building more robust multi-agent systems, in which we investigate ways to apply
transactional semantics to improve the robustness of agent problem-solving and interaction. Traditional
transaction processing systems prevent inconsistency and integrity problems by satisfying the so-called ACID
properties of transactions: Atomicity, Consistency, Isolation, and Durability [1]. These properties define an
abstract computational model in which each transaction runs as if it were alone and there were no failure.
The programmer can focus on developing correct, consistent transactions, while the handling of concurrency
and failure is delegated to the underlying engine. In the context of our larger project, we will be developing
methodologies to support failure handling, crash recovery and concurrency management in agent systems.
In addition, the longer-term project goals include the definition of a language and computational model that
will more formally specify aspects of our methodologies. While transactionally motivated, our approach must
be applicable in domains outside the traditional database environment; in these domains the effects of many
actions may not be delayed (essentially, they always “commit”), and thus correction of problems must be
implemented by “forward recovery”, or failure compensation [1].

In this paper, we focus on one aspect of behavior motivated by transactional semantics: improving the
ability of an agent system to recover from task problems by “cleaning up after” or “undoing” its problematic
actions— essentially, to compensate its failures. This behavior can make an agent system more stable and
predictable; both with respect to the individual agent and with respect to its interactions with other agents:
not only are problems compensated, it is more likely that a retry of a failed task will be successful if the
system is returned to a desirable state; and it is more likely that the agents’ implicit assumptions about
the state of their environment will hold. In this way, by making the semantics of the agent system more
predictable, the system can become more robust— safer— in its reaction to unexpected or problematic events.

A key issue is that it is usually not computationally feasible to specify an agent’s task decompositions
prior to its performing a task, nor do we necessarily have enough information about our (potentially infinite)
“states of the world” to do so prior to runtime. Not only are we unable to predict how the tasks in a dynamic
agent system will unfold (and thus we can’t pre-define compensations for those tasks), it is not always
desirable to exactly “undo” a task even if it is possible to perform its inverse. Useful compensations are not
only application-specific but must be dynamically determined. This means that we cannot directly use those



methods for managing transactional structures which require the transactions and their compensations to
be characterized ahead of time. Nor it is a solution to create “compositions” of compensations by associating
compensations with each subtransaction and applying them in reverse order [1]; in many domains such
compensations will not be correct or useful. Nevertheless, we would like to develop a method that supports a
basic motivation behind the use of transaction compensations: that of defining and using information about
how to undo problems, in a consistent and well-specified manner, so that we are able to make claims about
how an agent system will behave on certain types of failure, and characterize how it will recover in such
situations. Given the requirements of a dynamic agent system, several criteria drive our approach.

— We would like to develop general recovery strategies that can leverage the domain knowledge that the
agents bring to the system.

— We would like to support an incremental approach to providing robustness, by generating “reasonable”
default behavior with little extra-agent domain knowledge, then allowing information to be added in
stages to improve performance.

— We would like the failure-handling knowledge for a given domain to be specifiable at a level of abstraction
that does not require an agent designer to pay attention to the details of the agent’s failure-handling
mechanisms.

A primary basis of our approach is that within a problem domain, it is often possible to usefully define what
to do to address a failure independently of the details of how to implement the correction; and to define failure-
handling knowledge for a given (sub)task without requiring knowledge of the larger context in which the task
may be invoked. Based on these hypotheses, we will present a method for enhancing agent system robustness
in which failure-handling knowledge is defined independently of specific task implementations, and which
allows the system to respond to certain types of failure in a more robust, consistent, and predictable manner.

1.1 Overview of Approach

Our objective is to make an agent more robust, by improving its failure-handling behavior. We would also
like agent designers to be able to specify this more robust behavior in a tractable and consistent manner:
by allowing the designers to define failure-handling information in a way that is easy to understand and
which does not require them to make tweaks to a given agent’s existing domain model; and by providing an
underlying support mechanism which takes care of the details of the failure-handling model. Our approach
addresses these these objectives.

The first key aspect of our approach is that we employ a goal-based specification of failure-handling
knowledge. We utilize two types of failure-handling knowledge, which must be provided for each agent in
a system. First, for a given domain, and for some subset of the tasks the agent knows how to perform, we
associate information about what needs to be achieved to clean up (e.g., compensate) a failure of that task.
This information is specified in terms of the goals that need to be achieved in order for the compensation
to be successful, not in terms of action or plan steps that might implement the goal. Essentially, we are
specifying, at an abstract level, what to do to handle a failure, not how to achieve the implementation. In
conjunction with this set of failure-handling definitions, a set of goal-level failure-handling strategy rules is
created. These rules effectively specify when to employ certain failure-handling knowledge. The rules match
on goal-level information about a task, not execution details. Our goal-based formulation of failure-handling
knowledge has several advantages: it allows an abstraction of knowledge that can be hard to express in full
detail; its use is not tied to a specific agent architecture; and it allows our method to be used in dynamic
domains in which it is not possible to pre-specify all relevant failure-handling plans.

The second key aspect of our approach is the definition of a decoupled component and abstract interface
that makes use of the goal-level domain knowledge described above in order to support agent failure manage-
ment!. We refer to this component as the agent’s FHC (Failure-Handling Component). The FHC performs

L 'With respect to our larger project goals, this framework will also support other aspects of our intended transactional
semantics, such as logging, recovery from crashes, and task concurrency management.
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Fig.1. An agent’s FHC. We refer to the domain logic part of the agent, above the failure-handling component, as
the “agent application”.

high-level monitoring of the agent’s problem-solving, and affects its behavior in failure situations without
requiring modification of the agent’s implementation logic. When multiple distributed agents are working on
different subparts of a task, their FHCs communicate failure events, coordinate which agent handles failure
of a delegated task, and support autonomous handling of subtask failure.

Any agent which implements the FHC’s interface, and for which necessary failure-handling knowledge is
provided to the FHC, can “plug in” to this component. Thus, analogously to exception-handling in a language
like Java, the FHC reduces the agent designer’s implementation requirements— that is, reduces what needs
to be done to “program” the agent’s failure-handling behavior— while providing a model that constrains and
structures the failure-handling information that needs to be defined. As shown in Figure 1, the FHC sits
conceptually below the agent’s domain logic component and interfaces with (in a typical architecture) the
conversation protocol layer of the agent [2], [3]. As suggested in the figure, the FHC maintains transactionally-
supported storage of its information. In the remainder of this paper, for clarity, we refer to the domain logic
part of the agent, above the failure-handling component, as the “agent application”.

Below, we provide a motivating example for our approach. In Section 2, we describe the two types of
goal-based failure-handling knowledge utilized by the approach. In Section 3 we detail the agent’s failure-
handling component, or FHC, which makes use of this failure-handling knowledge; and describe a prototype
which implements much of the approach. In Sections 4 and 5 we finish with a discussion of related work,
and summarize.

1.2 Examples

We first introduce the concept of goal-based failure-handling, and its utility in supporting compensation
strategies, with some motivating examples. Consider two related “dinner party” scenarios, where a group
of agents must plan and carry out the activities necessary to prepare for holding a party. First, consider
an example where the party will be held at a rented hall, e.g. for a business-related event. Figure 2 shows
one task decomposition for such an activity. The figure uses an informal notation, where subtask ordering
is indicated by arrows, and subtasks that may be executed concurrently are connected by a double bar.
The subtasks include planning the menu, scheduling the party and arranging to reserve a hall, inviting the
guests and arranging for catering. The figure indicates that some of the subtasks (such as inviting the guests)
may be delegated to other agents in the system. If the party is planned successfully, but the event must be
canceled (e.g., if the host becomes ill), then we can define a number of things that must reasonably be done
to properly take care of the cancellation— that is, to “compensate” the party: all party-related reservations
should be canceled, extra food used elsewhere if possible, and guests notified and apologies made. The second
task decomposition in Figure 2 shows one implementation of these goals. For this particular scenario, no
actions are taken with respect to the food, as the caterers will handle it once they get the cancellation.
Next, consider a scenario which differs in that the party will be held at the host’s house (perhaps for
a smaller number of guests). In this case, while the party must be scheduled, a hall does not need to be
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Fig. 2. Planning a dinner party, then canceling it.

reserved. In addition, the hosts will not have the smaller party catered and will shop themselves. Figure 3
shows a task decomposition for this scenario. It differs in several respects from the decomposition in Figure
2. If this second party must be canceled after it is planned, the same set of high-level criteria apply. However,
the implementation of the “compensation” is different. We have no reservations to cancel, but we do have
extra food, which will be taken to (say) a homeless shelter. Due to the more personal nature of this party,
we also send a small gift to each guest.

In both these examples, the party cancellation tasks can be viewed as accomplishing a semantic com-
pensation— an approximate “undo” in which some effects may be approximately reversed, but other forward
actions may also be necessary to accomplish the “cancellation” semantics. A semantic compensation may
include actions that are not the inverse of any of the (sub)tasks of the original task, such as the gift-giving in
the second example. In the context of a semantic compensation, some subtasks may “reverse” the effects of
previous actions (e.g. canceling the reservation of a meeting hall), but other previous effects may be ignored
(no actions are performed to “undo” the effects of the house-cleaning). Still other sub-tasks (dealing with the
extra food) may be partially compensatable depending upon context. The definition of such a semantic com-
pensation is task- and domain-specific. In addition, these examples illustrate that in many domains both the
implementation of a task, and its semantic compensation, can differ according to context and the “state of
the world”. So, it can be expensive, or effectively impossible, to define all necessary semantic compensations
prior to runtime in terms of specific actions that must be performed in order to effect the compensation.
Instead, we claim it is more useful to define semantic compensations declaratively, in terms of the goals that
the agent system needs to achieve in order to accomplish the compensation. The way in which these goals
are achieved, for a specific scenario, will depend upon context.

The two examples above assumed that the dinner party was planned successfully, then canceled. One can
also consider scenarios in which problems occur during the party planning task. For example, there may be
problems in contacting some of the invitees. Depending upon the nature of the problem, it may make sense
to try to recover by re-contacting a guest, perhaps using a different contact method (e.g. email instead of
phone). Consider also a scenario with the tasks of Figure 3, in which some problem occurs in accomplishing
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Fig. 3. Planning a dinner party: an alternate scenario.

the “shop” subtask— perhaps the agent doing the shopping has car trouble. Before any retry occurs, it might
be useful to first ensure that the agent is oriented (knows its location).

2 Goal-Based Semantic Compensation

In this section, we describe the domain information that needs to be supplied by an agent developer in
order to enable the agent’s failure-handling component, or FHC. The examples of Section 1.2 illustrated
how high-level goals may be achieved in different ways— via different task decompositions— under different
circumstances. We saw that this was the case both in achieving a “regular” task, and in accomplishing
its compensations. Under such circumstances, it is often difficult to identify prior to working on a task
the details of how a task failure should be addressed or a compensation performed. Instead, we specify
failure-handling knowledge in terms of goals, making it more widely applicable and easier to define. First, we
associate failure-handling goal definitions with some or all of the tasks (goals) that agent can perform. These
definitions specify at a goal?— rather than plan— level what to do in certain failure situations, and we then
rely on the agents in the system to determine how it is accomplished. Second, the use of this knowledge is
triggered by the goal-level events generated by the agent application’s task execution; essentially, triggered
by failure, success, or cancellation of a given task. The agent’s FHC is provided with information about when
to employ these definitions, in the form of a set of rules. The rules effectively refine the FHC’s default task
compensation behavior. These two activities are described in Sections 2.1 and 2.2 below.

We view both of these definitional activities as “assisted knowledge engineering” tasks; we can examine
the agent’s problem-solving implementation, and in particular its goal-subgoal relationships, and leverage
this implementation knowledge to support the definition process. We are researching ways to provide semi-
automated support for this process. It is most effective (but not required) to interleave agent application

2 In this paper, we use ’goal’ and ’task’ interchangeably; as distinguished from plans, action steps, or task execution.
In our usage, goals describe conditions to be achieved, not actions or decompositions.



development and failure-handling specification: as each domain task is defined, the developer can identify
the failure-handling semantics that they wish to associate with that task. Because the FHC enforces an
explicit and straightforward use of its failure-handling knowledge, the developer need not replicate equiva-
lent behavior in the agent application; thus “domain logic” and failure-handling knowledge may be largely
separated, making each easier to modify. In addition, the definitional process can highlight gaps in the agent
application’s knowledge.

2.1 Goal-Based Failure-Handling Definitions

In this section, we describe the process of creating an agent’s goal-based failure-handling definitions: defining
what goals the agent application is instructed to achieve under failure conditions. Our approach distinguishes
between two types of failure-handling task states represented in the agent’s FHC: initial task failure, and
task cancellation. The agent application reports task failure to its FHC, including failure mode information
as available3. If a task is moved to a canceled state, this means that any ongoing work on the task will be
halted, and its (perhaps partial) effects may be compensated. In contrast to a strict transactional model,
which requires that a failure always be compensated, we do not require that this is always the case. We may
not want to fully “undo” the effects of a failed task under all circumstances. We may want to first retry task
achievement (via the same or a different approach), or it may be unimportant or too expensive to undo a
task’s effects.

Therefore, we associate two different types of failure-handling goals with each task. The first are always
invoked on failure of that task, and prior to any retries. We call these the task’s stabilization goals. They
describe what must be achieved to “clean up” a task’s effects. Their purpose is to return the system to a
more predictable state. The second type of goal may be invoked if a task moves to a canceled state, and
they describe what must be achieved to semantically “undo” the task’s actions. We call these the task’s
compensation goals. These goals may be invoked on failure, or triggered by the failure of an ancestor task
or a domain event. As will be described in Section 2.2, the agent’s FHC determines when a task moves to a
canceled state and whether a specific subtask compensation is invoked on task cancellation. The stabilization
and compensation goal sets for a task must be mutually consistent, and either or both may be the empty
set. Under failure circumstances, the union of both goal sets may be invoked.

An agent developer will associate failure-handling definitions with the agent’s domain tasks; this informa-
tion will be used by the agent’s FHC. In defining failure-handling goals for a (sub)task, the developer must
specify what must be achieved— what must be true about the state of the world— for stabilization or compensa-
tion of that task to be successful. This information is specified only in terms of goals, not actions or plans— the
agent application will determine at runtime how to implement, or achieve, these goals. The failure-handling
goals must be defined as necessary in terms of the parameters of their original associated task. It is important
to note that the compensation goals for a high-level task need not correspond to a composition of compen-
sations for the high-level activity’s expected subtasks. This was illustrated in the dinner party example.

If a task is to be compensated, then the agent will always work to achieve the compensation goals
associated with that task. Thus, the developer must ensure that a given task’s compensation describes all
the conditions that must be met for a successful compensation of that task. In addition, the agent may,
depending upon context, work to achieve the compensation goals associated with some of its subtasks (as
described in Section 2.2). Intuitively, compensation definitions for the lower-level tasks will encode details
not included in a higher-level compensation, since these lower-level compensations are defined with respect
to a more specific local situation. However, an agent developer must define failure-handling knowledge for an
agent task independently of the context in which the task may be achieved. That is, we must be able to define
a task’s compensation semantics independent of the “state of the world” or parent task; we do not know a
priori the circumstances under which the task will be invoked or whether it will have fully completed. We
believe that encoding our failure-handling knowledge as goals, not plans, will allow us to meet this criteria.
The application agent will take current state into account when deciding at runtime how to implement a given
failure-handling goal. Table 1 shows some example task failure-handling definitions, from the dinner party

3 Our prototype currently utilizes two failure modes: system faults and semantic failures.



scenario of Section 1.2, and for the two classes of failure-handling goals described above. These definitions
specify what to do, semantically, to compensate for task problems.

Task Compensation Goals Stabilization Goals
plan dinner party all party reservations canceled & extra food used if n/a
possible & notification and apologies to guests
invite guests guests notified of cancellation n/a
reserve hall hall reservation canceled n/a
shop for supplies |supplies returned at known location

Table 1. Simplified task failure-handling definitions. The compensation goal for the ‘plan dinner party’ task describes what must be
achieved if that task is canceled. Stabilization goals, always invoked immediately on failure, are defined for one of the tasks.

2.2 Failure-Handling Strategies

Given failure-handling goal definitions for domain tasks, the agent’s FHC must be instructed when to use
them, via a set of domain-dependent failure-handling strategy rules. Essentially, these rules serve to specify
the degree to which sub-tasks should be autonomously compensated on failure (in effect, whether the fail-
ure should be handled locally or “thrown” to the parent); or on cancellation of a parent task. As above,
specification of these rules requires knowledge of the domain semantics.

The strategy rules conceptually map to event-condition-action rules [4], and match against the abstract
goal-level information about task history and status maintained by the FHC (as will be detailed in Section 3),
as well as the failure-handling definitions associated with domain tasks. They are triggered by ‘goal events’
communicated from the agent application (including failure mode information as available), or changes to
status of the FHC tree nodes. The strategy rules:

— Determine when to cancel a task based on its failure;

— Define when to perform task retries;

— Enumerate those domain events that should trigger task cancellation;

— Determine whether to invoke a given (sub)task compensation if it is part of a canceled task; and
— Provide failure-task assignment support [not discussed here].

Note that these failure-handling strategy rules match against the abstract failure events generated by the
FHC, not against the agent application’s internal state. We believe that this level of abstraction is sufficient
to generate a useful range of failure-handling behaviors, while allowing a simpler specification on the part
of the agent designer. Specific compensation and failure-handling strategies for an application are generated
by defining and employing strategy rule sets.

Figure 4 shows a fragment of a strategy rule set for the “plan dinner party” domain of Section 1.2.
Tasks of type ‘invite a guest’ are considered failed if no result is generated in a given time interval. These
tasks may be retried after achieving any associated stabilization goals. It is important to note that the
agent application determines how to perform the retry; these rules just decide whether to initiate it. That
is, it is the agent application that contains the knowledge of contingency plans— alternative ways to try to
accomplish a goal. If a given event is detected (‘host falls ill’), then the “plan dinner party” task is halted
and canceled. Achievement of the root compensation goals, as specified in Table 1, is initiated. The agent
application begins work to achieve those goals. (Note that these compensation goals don’t address all of
the original task’s effects). At the same time, the strategy rules initiate autonomous achievement of “invite
guests” and “reserve-hall” subtask compensations if those subtasks were part of the original task.

This simple example illustrates an important point: a strategy to effect a high-level task compensation
will always include invocation of the compensation goals for that task goal, and may include invocations of
the compensations for some—but not necessarily all— of its subtasks. This can be useful in two respects. First,
it allows localized fixes to be spawned in an autonomous manner at the same time that a more deliberate



IF a task node reaches failure [as reported by its agent application],
THEN initiate the stabilization goals associated with the node. (implicit)
IF a node reaches failure, and there is no retry of that task in progress, and no strategy rules block its cancellation,
THEN mark the node ‘canceled’. (implicit)
IF a failed node transitions to ’canceled’, THEN initiate the compensation goals associated with that node. (implicit)
IF a domain event causes a node to transition to ’canceled’,
THEN initiate the compensation goals associated with that node. (implicit)
IF a root node fails, THEN always mark it ’canceled’.
IF Task <dinner party planning> is ’in progress’, and <the host falls ill>,
THEN mark its node ‘canceled’.
IF the agent application does not return a goal status notification for an <invite a guest> task N units of time after the task
was initiated,
THEN mark its node ’failed’.
IF an <invite a guest> node reports (system) failure, and less than N retries of the node have occurred,
THEN log that a retry is in progress for that node.
IF a node reports success of its stabilization goal and a retry is in progress,
THEN re-initiate the task goal associated with the node after M units of time and increment the retry count for that goal.
IF the <invite guests> task is marked ‘canceled’, and it is a descendent of the <dinner party planning> task,
THEN initiate the compensation for the <invite guests> subtask.
IF the <reserve-hall> task is marked ‘canceled’, and it is a descendent of the <dinner party planning> task,
THEN initiate the compensation for the <reserve-hall> subtask.

Fig. 4. A fragment of a simple FHC failure-handling strategy rule set. If a node is canceled, the cancellation notification propagates
automatically to its children, moving them to a canceled state as well (and halting all work on the task). The rules marked “implicit”
are domain-independent and hardwired by the FHC; we list them here for clarity.

top-down compensation planning process is occurring, in order to react more quickly to certain problems?.
This means that in a distributed system, where different agents are performing sub-parts of a task, agents
may be reactively signaled to fix failures. Second, the compensation definitions for the lower-level tasks
may encompass details not included in the higher-level compensation, since they are specific to this task
decomposition. Thus a more complete compensation may be effected.

Domain characteristics will influence the choice of strategy; and, though not shown here, the strategies
can encompass failure-handling strategies for failure-handling tasks themselves. Experiments are in progress
to determine what strategies are most effective in various domains. We anticipate that we will be able to
provide a set of default strategy rules, to be overridden and augmented in specific cases.

3 The Agent’s FHC

As was introduced in Figure 1, each agent application in our agent system sits upon a failure-handling
component, which we term its FHC, with communication via a goal-based interface. The FHC employs the
two forms of goal-based knowledge described in the previous section. The interface allows the FHC to track
the agent application’s problem-solving at a high level, and to affect its behavior in failure situations. In a
multi-agent task scenario, the FHCs implement communication of failure-handling information between the
agents involved in the task, coordinate which agent handles failure of a delegated task, and allow sub-task
agents to autonomously perform compensating activities on failure if appropriate.

An agent’s problem-solving logic resides in its agent application, which performs planning, task decom-
position and execution. The FHC tracks the agent application’s task decomposition and status of its task
(sub)goals, and— via its strategy rules and failure-handling definitions— reacts to task failures by instructing
agents to perform repair tasks. That is, an agent’s FHC makes autonomous decisions about what failure-
handling tasks will be performed, and when they will be requested. The agents’ application logic is then
invoked to implement the tasks and determine the details of how to correct for the failures. The FHC’s
failure-handling augments, not overrides, the agent application’s.

The use of the FHC reduces the agent developer’s implementation requirements, by providing a model
that structures and supports the failure-handling information that needs to be defined. (The FHC implemen-
tation must be specific to a given agent framework, including its communication mechanisms, and ‘connects’

4 Note that as in the example, the higher-level compensation definition may encompass some of the subtask com-
pensation goals and there may be redundant efforts to achieve the same goal- e.g. to cancel a reservation. The
agents should be able to detect whether a given goal is already achieved. This is discussed further in Section 3.4.



the agent application to the lower agent layers). The motivation behind the use of the FHC is analogous to
that of the exception-handling mechanism in a language like Java; the developer is assisted in generating
desired agent failure-handling behavior, and the result is easier to understand and predict than if the knowl-
edge were added in an ad-hoc fashion. In this section, we first describe the FHC’s interface to the application
agent, and the information that the FHC monitors and maintains to support its failure-handling policies.
Then, Section 3.4 discusses the requirements imposed by this approach on the agent applications in a system.

3.1 Goal-Oriented FHC/Agent Application Interface

The interface between the FHC and its agent application is based on goal-oriented events. An agent ap-
plication reports new (sub)goals to its FHC as it generates its task decompositions, and reports changes
in goal status and failure modes as it works on the goals. An agent’s FHC determines whether/when an
agent can start work on a new goal, and can tell it to halt work on a goal. More specifically, the interface
supports the events listed in Figure A-1. This goal-based interface allows us to decouple the failure-handling
component’s failure-handling strategies from the architectural details of the agent; and thus the method is
not tied to a specific agent architecture, but can be used with any agent that can implement the interface
(see Section 3.4). We believe that this interface has sufficient expressive power to support a range of useful
failure-handling behaviors, and will verify this hypothesis in a range of application domains.

3.2 FHC Task Structures

To provide failure-handling support, the FHC monitors and maintains information about the agent applica-
tion’s problem-solving, as communicated via its interface. It does this at a goal level of abstraction: for each
agent task, a tree structure is built in the FHC to syntactically track the goals and subgoals generated as the
agent application’s problem-solving progresses. We call such a tree a task-monitoring tree. The monitored
information does not include task details, only goal information. Thus the FHC’s structures are typically
‘lightweight’.

not started

in
progress canceled

Achievement or failure information is reported by the
agent application; a task may be explicitly moved to a
canceled state or reinvoked (retried) by the FHC.

Fig. 5. FHC task node states.

Each node in a task-monitoring tree corresponds to a task subgoal, with its associated failure-handling
definitions. A node may be in one of the states shown in Figure 5. ‘Canceled’ indicates the given node state
only; not the status of any corresponding compensation or stabilization activities (for which new FHC nodes
will be generated). When a task is canceled, all ongoing work on it is halted.

The task-monitoring trees support the FHC’s failure-handling. Figure 6(a) shows a simple example of the
way in which a task-monitoring tree is incrementally built to track the progress of an agent application task.
The agent application reports new goals, and waits for the signal from its FHC before starting them®. The
agent application, using its domain knowledge, performs the actual problem solving. The agent application
need not be using an explicit “tree” representation itself; it only needs to be able to report its subgoals as
they are generated. FHC trees are retained for all tasks that have a currently-executing root or that have a
repair relationship to a currently-executing task. Thus the FHC retains abstract information about subtask
history— though the agent application may have discarded its finished goal structures— and can access this
information in applying compensations.

5 While not discussed in this paper, the FHC is also used to support task coordination; and thus it may potentially
postpone the start of a task.
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Inter-Agent Failure Handling. As suggested in Figure 1, all inter-agent communications are filtered
through the agent’s FHC before they reach the protocol/communication layers of the agent architecture; and
similarly the FHC intercepts the messages to the agent application. (Recall that the FHC’s implementation
must be specific to a given agent framework). This allows the FHC to annotate outgoing messages, and
similarly to pre-process incoming messages. By this means, it adds information to task delegation request
and response/status messages, so that the FHC of each agent participating in a task knows how to “connect”
its task nodes to those of the other agents. Via the annotated messages, a distributed FHC task structure
is created jointly by the FHCs of the agents that are performing various parts of a task, by creating proxy
nodes in parent agents for delegated tasks. Notification of node status change— including task results and
cancellations— are propagated between agents via their respective FHCs, and failure-handling behavior is
invoked in their agent applications as appropriate.

Thus, the FHCs in a multi-agent system effectively support a distributed failure-handling protocol®. As
failure information propagates to agents working on subtasks, these agents may autonomously compensate for
a subtask’s activities as appropriate. Figure 6(b) suggests a task delegation interaction. The FHC performs
a number of domain-independent operations on this (distributed) structure.

— It records changes in task status and new subtask nodes (as communicated by the agent application).

— It manages initiation of new failure-handling goals, including creation of new FHC nodes, their relation-
ships to existing nodes, and task invocation.

— It notifies a parent task node when its child has failed or succeeded; and failure of a node triggers
initiation of the task’s associated stabilization goals with the agent application.

— When a task is canceled, halt instructions are propagated to its child nodes and their associated appli-
cation agents.

— When a task is canceled, notification of task cancellation is propagated to its child nodes. (The agent’s
strategy rules determine whether a compensation for a given canceled subtask will be initiated).

6 Currently, the “failure-handling ontology’ with which we annotate the agent messages, as well as our failure-handling
interaction protocols, are ad-hoc. Work is in progress to formalize both.
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— It marks failed tasks as canceled, and initiates associated compensations of canceled tasks, as instructed
by its strategy rules.
— It initiates task retries as instructed by its strategy rules.

These mechanisms, built into the FHC, provide a support framework for utilizing the agent’s failure-
handling knowledge and recording necessary history. An agent developer does not need to replicate similar
mechanisms in every agent application nor ensure that they are applied consistently.

3.3 Retries and Failure-Handling Goals

Section 2 described the concept of strategy rule sets, which specified when the agent’s FHC should initiate
various repairs and retries. Here, we provide examples of how retries and compensations are supported by
the FHC.

Agent Application's
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Fig. 7. Compensation and retry scenarios.

Figure 7(a) shows a compensation scenario. In the FHC of Agent 1, the decision is made to cancel subtask
B- this may be due to a failure in executing B, or due to a failure in another component of the larger task.
B’s associated failure-handling definitions indicate that goal D should be used to compensate it. E.g., in
the party-planning domain, B might be the “invite friends” subgoal, with a compensation of “cancel with
guests”. For simplicity of the example we show one compensation goal; there can be multiple goals. D is
instantiated with respect to B’s bindings, and a new task tree node is created for D in Al. The FHC logs
that this new task is the compensation-for B. Al’s FHC interacts with a system broker to locate some
agent that can implement D. Agent 2 is identified, and D is assigned to A2. For the compensation task to
be successfully implemented, A2 must be able to determine what needs to be done to compensate for (a
perhaps partially executed) B. Note that the execution of D, in A2, may cause additional compensatable
subtasks to be created and monitored in A2’s FHC.
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Figure 7(b) shows a retry scenario. The agent application reports a (system) failure of subtask B to the
FHC. For simplicity of the example, no stabilization goals have been defined for B— if they had, then a scenario
similar to the compensation example would have have occurred first, in order to perform a stabilization task
immediately after failure. The FHC decides to retry task B. It instructs the agent application to perform this
goal again. It also informs the agent that this is the (Nth) retry of the goal— the agent can take advantage
of the fact that the goal is a retry, but is not explicitly required to. Note that it is the domain knowledge
of the agent application, not of the FHC, which is utilized to figure out how to perform the retry. That
is, it is the agent application that retains the knowledge of contingency plans— alternative ways to try to
accomplish a goal [5]. Note also that the FHC’s failure-handling knowledge is used in conjunction with the
agent application’s knowledge of how to deal with problems. The agent application will not report goal failure
to its FHC until it runs out of ways to handle the problem itself. However, once it reports failure, a consistent
failure-handling strategy, based on the FHC definitions, is then employed system-wide.

In both the examples above, the FHC— not the agent application— is responsible for selecting the agents
that will be tasked to perform retry, compensations, and stabilization goals, and for initiating the problem-
solving by these agents. Interaction with the agent application that originally performed the task is not
(necessarily) required. Under some circumstances, it may make sense to delegate a task, e.g. a compensation
task, to the same agent that performed the original corresponding task; this agent may be able to leverage
its internal state to perform the cancellations more effectively, or may be already “near” the objects that
need to be affected. In other circumstances, e.g. when retrying certain tasks, it may make sense to delegate
the retry to an alternate agent that might be able to implement the task in a different way.

3.4 Requirements on the Agent Applications and Agent System

Our goal-based agent/FHC interface imposes certain requirements on the agent application. For an agent to
implement the interface “correctly”, the following must be true:

— The agent must be able to perform goal-based problem-solving.

— An agent application must attempt to implement the goal-based instructions it receives from its FHC”.
These instructions may include the halt of an existing task as well as new goal initiations.

— To robustly support retries, compensations, and stabilization goals, an agent must be able to determine

whether or not a given goal needs to be achieved; whether it has failed, and in what failure mode. (In
general, detection of failure can be undecidable; however, the FHC will infer failure if the agent does not
respond with task status within a given domain-dependent time interval.)
Ideally, this determination of goal status will be based on information globally available to the agent
system, not on a given agent’s local state; this allows agents to “take over” compensating another agent’s
activities if necessary. As a simple example, an agent tasked to cancel a reservation made by a second
agent should be able to detect whether or not the reservation exists; the information it requires to make
this determination needs to be globally available to all agents, since it is not known a priori which
agent will do the cancellation— it may not be the same one that made the reservation. The greater the
extent to which task results are globally persisted, the more effective the system’s failure-handling will
be. A detailed discussion of this issue is beyond the scope of this paper. However, it has close ties to
the mechanisms necessary to support crash recovery, and thus increasing the ability of the agents in
the system to globally persist task result information increases both their robustness and their recovery
capabilities. This is a current research focus of our project.

In addition to the requirements that the agent applications must meet, we assume that the multi-agent
system supports some form of brokering or service discovery [6]. The agents’ FHCs may autonomously instruct
other agents to perform failure-handling tasks; these agents must be locatable based on the description of
the task, or goal, that they will be asked to perform. In a system of fixed agents, this information can be
hardwired, but in an open system it must be discovered dynamically.

7 In this paper, we do not explore issues of levels of commitment or goal prioritization.
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3.5 Prototype Implementation

We have implemented a prototype multi-agent system in which for each agent, an FHC interfaces with an
agent application logic layer. The agents are implemented in Java, and the FHC of each agent is implemented
using a Jess core [7], with the strategy rule sets of the FHC implemented as Jess rule sets. The agent-
application components of our prototype are simple goal-based problem-solvers to which an implementation
of the FHC interface was added. Currently, the transaction layer/agent application interface uses Jess “fact”
syntax to communicate goal-based events. Inter-agent communication in our prototype system is primitive;
in the future we plan to situate the implementation of the FHC on an established agent system framework,
which can provide communication, brokering, and interaction protocol support. Using our prototype, we
have performed initial experiments in several relatively simple problem domains. Preliminary results are
promising, and suggest that our approach to defining and employing goal-based failure-handling information
generates useful behavior in a range of situations. Work is ongoing to define failure-handling knowledge
and strategies for more complex problem domains in which agent interaction will feature prominently. In
the process, the FHC framework will be used as a testbed for evaluating and comparing different failure-
handling strategies. Section 5 discusses some of the issues we expect to encounter and investigate in these
more complex domains, and discusses future work in the larger project context.

4 Related Work

Our approach is motivated by a number of transaction management techniques in which sub-transactions
may commit, and for which forward recovery mechanisms must therefore be specified. Examples include open
nested transactions [1], flexible transaction [5], SAGAs, [8], and ConTracts [9]. Earlier related project work
has explored models for the implementation of transactional plans in BDI agents [10-13], and a proof-of-
concept system using a BDI agent architecture with a closed nested transaction model was constructed [14].

In Nagi et al. [15], [16] an agent’s problem-solving drives ‘transaction structure’ in a manner similar to
that of our approach (though the maintenance of the transaction structure is incorporated into their agents,
not decoupled). However, they define specific compensation plans for (leaf) actions, which are then invoked
automatically on failure. Thus, their method will not be appropriate in domains where compensation details
must be more dynamically determined.

Parsons and Klein [17] describe an approach to MAS exception-handling utilizing sentinels associated
with each agent. For a given specific domain, such as a type of auction, “sentinels” are developed that
intercept the communications to/from each agent and handle certain coordination exceptions for the agent.
All of the exception-detecting and -handling knowledge for that shared model resides in their sentinels. In our
approach, while we decouple high-level handling knowledge, the agent retains the logic for failure detection
and task implementation; agents may be added to a system to handle certain failures if need be.

Chen and Dayal [18] describe a model for multi-agent cooperative transactions. Their model does not
directly map to ours, as they assume domains where commit control is possible. However, the way in which
they map nested transactions to a distributed agent model has many similarities to our approach. They
describe a peer-to-peer protocol for failure recovery in which failure notifications can be propagated between
separate ‘root’ transaction hierarchies (as with cooperating transactions representing different enterprises).

[19] describe a model for implementing compensations via system ECA rules in a web service environment—
the rules fire on various ’transaction events’ to define and store an appropriate compensating action for an
activity, and the stored compensations are later activated if required. Their event- and context-based handling
of compensations have some similarities to our use of strategy rules. However, in their model, the ECA rules
must specify the compensations directly at an action/operation level prior to activation (and be defined by
a central authority).

WSTx [20] addresses transactional web services support by providing an ontology in which to specify
transactional attitudes for both a service’s capabilities and a client’s requirements. A WSTx-enabled ‘mid-
dleware’ may then intercept and manage transactional interactions based on this service information. In
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separating transactional properties from implementation details, and in the development of a transaction-
related capability ontology, their approach has similar motivations. However, their current implementation
does not support parameterized or multiple compensations.

Workflow systems encounter many of the same issues as agent systems in trying to utilize transactional
semantics: advanced transactional models can be supported [21], but do not provide enough flexibility for
most 'real-world’” workflow applications. Existing approaches typically allow user- or application-defined
support for semantic failure atomicity, where potential exceptions and problems may be detected via do-
main rules or workflow ‘event nodes’, and application-specific fixes enacted [22,23]. Recent process mod-
eling research attempts to formalize some of these approaches in a distributed environment. For example,
BPEL&WS-Coordination/Transaction [24] provides a way to specify business process ‘contexts’ and scoped
failure-handling logic, and defines a ‘long-lived transaction’ protocol in which exceptions may be compen-
sated for. Their scoped contexts and coordination protocols have some similarities to our failure-handling
strategy rules and FHC interaction protocols.

5 Discussion and Future Work

We have described an approach to improving robustness in a multi-agent system. The approach is motivated
by transactional semantics, in that its objective is to support semantic compensations for tasks in a given
domain; we assume environments in which we cannot wait to “commit” actions. We augment an agent’s
failure-handling capabilities by improving its ability to “clean up after” and undo its failures, and to support
retries. This behavior makes the semantics of an agent system more predictable, both with respect to the
individual agent and with respect to its interactions with other agents; thus the system can become more
robust in its reaction to unexpected events.

Our approach is goal-based, both with respect to defining failure-handling knowledge for agent tasks,
and in deciding when to employ it. Goal-based events, in conjunction with failure-handling goal definitions,
are used to trigger domain-dependent strategy rules which determine when to achieve a compensation or
stabilization goal. Agents implementing subtasks may autonomously repair local problems as appropriate. By
abstracting the agent’s failure-handling knowledge above the level of task plans, it can be decoupled from the
individual agent implementations, and is employed via the use of a FHC with which the agent application
interfaces. The FHC makes autonomous decisions about what failure-handling knowledge to employ, and
when to do so, but utilizes the agent’s domain knowledge to determine how to achieve or implement, the
failure-handling goals and retries. The agent applications may attempt to resolve problems themselves first—
failures are only “pushed” to the FHC if that does not happen.

Our methodology separates the definition of goal-based failure-handling knowledge for tasks, from the
agents’ implementations of those tasks. Our hypothesis, borne out by our initial experiments, is that in many
situations this knowledge can in fact be productively separated. One goal of our ongoing tests will be to
characterize for what types of domains and scenarios this approach works, and when it is not as appropriate.
Our experiments will also help us to evaluate the ways in which a failure-handling strategy is tied to the
problem representation. For example, task/subtask granularity influences retry strategies.

Each agent’s FHC works to handle failures generated during the agent’s problem-solving, thus making
the agents in the system locally more robust. However, the use of compensation and stabilization goals for
the tasks in a domain can have global benefits as well. They effectively “clean up” the tasks’ effects on failure.
Thus, system robustness is increased, both with respect to resource management— resources that are no longer
needed are reliably released— and with respect to predictability of the agents’ environment. This latter is a sub-
tle but important point: the agents, modeling the “world” of a given domain, will make implicit assumptions
about that domain. The greater the extent to which the agents’ world can be returned to a state that reflects
those implicit assumptions, the fewer problems the agents will encounter and the more effective they can be.

This project is in its early stages. Work will continue in evaluating our failure-handling methodologies, and
to further develop our prototype. Evaluation will include development of scenarios in additional domains—
with emphasis on scenarios that require multi-agent interaction; analysis and characterization of failure-
handling strategies (including strategies for dealing with cascading failures and analysis of the overhead
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incurred by the use of the FHC infrastructure); and will also include tests in which we “plug in” different
application agent architectures on top of the FHC, e.g. a BDI agent [10]. In the process, we anticipate the
development of a failure-handling ontology with which to exchange information and advertise repair capa-
bilities; and the formalization of inter-FHC interaction protocols to exchange failure-handling information
between both parent-child and peer tasks [20], [25], [24].

In the larger scope of our project, a number of research directions are planned. These include extension of
the FHC to support crash recovery mechanisms and aspects of task concurrency management. Recovery in
particular is closely tied to the failure-handling approach described here; both with respect to requirements
on detection of goal status, and in that structures produced by the FHC’s task-monitoring mechanisms may
serve as a key input to the recovery process as well. In addition, we plan the development of a language and
computational model in which aspects of our approach will be formalized.
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Appendix

— Agent application to FHC notifications:
e Notification of new problem-solving goal (including parent goal and delegation information)
e Messages to other agents (will be routed through the FHC)
e notification of change in goal status as problem-solving progresses: achieved, failed (includ-
ing failure mode as available), or halted.
e (implicit) timeout (no response from agent in given time interval)
— FHC to agent application notifications:
e Instructions to start work on a goal, and information about whether the goal is a retry (as
discussed in Section 3.3)
e Instructions to stop work on a goal
e Notification of change in delegated goal status: achieved, failed, or halted.
e Create and start a new goal(generated from a task’s associated failure-handling goal defi-
nitions).
e Messages from other agents

Fig. A-1. Goal-based events supported by the interface between the agent application and its failure-handling com-
ponent. The reported events must be expressed in a shared system ontology in order to support task-related commu-
nication with other agents.
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