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Abstract

External cluster validity indices (CVIs) are used to quantify the quality of a

clustering by comparing the similarity between the clustering and a ground

truth partition. However, some external CVIs show a biased behavior when

selecting the most similar clustering. Users may consequently be misguided

by such results. Recognizing and understanding the bias behavior of CVIs is

therefore crucial.

It has been noticed that, some external CVIs exhibit a preferential bias

towards a larger or smaller number of clusters which is monotonic (directly or

inversely) in the number of clusters in candidate partitions. This type of bias

is caused by the functional form of the CVI model. For example, the popular

Rand Index (RI) exhibits a monotone increasing (NCinc) bias, while the Jaccard

Index (JI) index suffers from a monotone decreasing (NCdec) bias. This type

of bias has been previously recognized in the literature.

In this work, we identify a new type of bias arising from the distribution

of the ground truth (reference) partition against which candidate partitions are

compared. We call this new type of bias ground truth (GT) bias. This type

of bias occurs if a change in the reference partition causes a change in the bias
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status (e.g., NCinc, NCdec) of a CVI. For example, NCinc bias in the RI can

be changed to NCdec bias by skewing the distribution of clusters in the ground

truth partition. It is important for users to be aware of this new type of biased

behavior, since it may affect the interpretations of CVI results.

The objective of this article is to study the empirical and theoretical impli-

cations of GT bias. To the best of our knowledge, this is the first extensive

study of such a property for external CVIs. Our computational experiments

show that 5 of 26 pair-counting based CVIs studied in this paper, which are

all functions of the RI, exhibit GT bias. Following the numerical examples, we

provide a theoretical analysis of GT bias based on the relationship between the

RI and quadratic entropy. Specifically, we prove that the quadratic entropy of

the ground truth partition provides a computable test which predicts the NC

bias status of the RI.

Keywords: External Cluster Validity Indices, Rand Index, Ground Truth

Bias, Quadratic Entropy

1. Introduction

Clustering is one of the fundamental techniques in data mining, which helps

users explore potentially interesting patterns in unlabeled data. Cluster anal-

ysis has been widely used in many areas, ranging from bioinformatics [1] and

market segmentation [2] to information retrieval [3] and image processing [4].5

However, depending on different factors, e.g., different clustering algorithms,

initializations, parameter settings (the number of clusters c), many alternative

candidate partitions might be discovered for a fixed dataset.

Cluster validity indices (CVIs) are used to quantify the goodness of a parti-

tion. Many CVIs have been proposed and successfully used for this task [5, 6,10

7, 8]. These measures can be generally divided into two major types: internal

and external. If the data are labeled, the ground truth partition can be used

with an external CVI to explore the match between candidate and ground truth

partitions. Since the labeled data may not correspond to clusters proposed by
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any algorithm, we will refer groups in the ground truth as subsets, and algo-15

rithmically proposed groups as clusters. When the data are unlabeled (the real

case), an important post-clustering question is how to evaluate different candi-

date partitions. This job falls to the internal CVIs. One of the most important

uses of the external CVIs is to evaluate the comparative quality of internal CVIs

on labeled data [9], so that in the real case, some confidence can be placed in20

a chosen internal CVI to guide us towards realistic clusters found in unlabeled

data. This article is focused on external CVIs.

External CVIs (or comparison measures), are often interpreted as similarity

(or dissimilarity) measures between the ground truth and candidate partitions.

The ground truth partition, which is usually generated by an expert in the25

data domain, identifies the primary substructure of interest to the expert. This

partition provides a benchmark for comparison with candidate partitions. The

general idea of this evaluation methodology is that the more similar a candidate

is to the ground truth (a larger value for the similarity measure), the better this

partition approximates the labeled structure in the data.30

However, this evaluation methodology implicitly assumes that the similarity

measure works correctly, i.e., that a larger similarity score indicates a partition

that is really more similar to the ground truth. But this assumption may not

always hold. When this assumption is false, the evaluation results will be mis-

leading. One of the reasons that can cause the assumption to be false is that35

a measure may have bias issues. That is, some measures are biased towards

certain clusterings, even though they are not more similar to the ground truth

compared to the other candidate partitions being evaluated. This can cause

misleading results for users employing these biased measures. Thus, recogniz-

ing and understanding the bias behavior of the CVIs is crucial.40

The Rand Index (RI, similarity measure) is a very popular pair-counting

based validation measure that has been widely used in many applications [10,

11, 12, 13, 14, 15, 16] in the last five years. It has been noticed that the RI tends

to favor candidate partitions with larger numbers of clusters when the number

of subsets in the ground truth is fixed [5], i.e., it tends to increase as the number45
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of clusters increases (we call it NCinc bias in this work, where NC = number of

clusters). NC bias means that the CVI’s preference is influenced by the number

of clusters in the candidate partitions. For example, some measures may prefer

the partition with larger (smaller) number of clusters, i.e., NCinc (NCdec) bias.

The following initial example illustrates NC bias for two popular measures, the50

Rand Index (RI) and Jaccard Index (JI) measures.

1.1. Example 1 - NC bias of RI and JI

In this example, we illustrate NC bias for RI and JI. We generate a set of

candidate partitions randomly with different numbers of clusters and a random

ground truth. We use RI and JI to choose the most similar partition from55

the candidate partitions by comparing the similarity between each of them and

the ground truth. As there is no difference in the generation methodology of

the candidate partitions, we expect them to be treated equally on average.

A measure without NC bias should treat these candidate partitions equally

without preference to any partition in terms of their different number of clusters.60

However, if a measure prefers the partition, e.g., with a larger number of clusters

(gives higher value to the partition with a larger number of clusters if it is a

similarity measure), we say it possess NC bias, more specifically, NCinc bias.

Let UGT be a ground truth partition with ctrue subsets. Consider a set of

N = 100, 000 objects, let the number of clusters in the candidate partitions c65

vary from 2 to cmax, where cmax = 3 ∗ ctrue. We randomly generate a ground

truth partition UGT with ctrue = 5. Then for each c, 2 ≤ c ≤ 15, we gen-

erate 100 partitions randomly, and calculate the RI and JI between UGT and

each generated partition. Finally, we compute the average values of these two

measures at each value of c. The results are shown in Figure 1. Please note70

that the RI and JI are max-optimal (larger value is preferred). Evidently RI

monotonically increases and JI monotonically decreases as c increases. Figure 1

shows that for this experiment, the RI points to c = 15, its maximum over the

range of c; and the JI points to c = 2, its maximum over the range of c. Both

indices exhibit NC bias (RI shows NCinc bias and JI shows NCdec bias).75
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(a) Average RI values with random

UGT containing 5 subsets.
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Figure 1: The average RI and JI values over 100 partitions at each c with uniformly generated

ground truth. The symbol ↑ means larger values are preferred. Vertical line indicates correct

number of clusters.
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Figure 2: The average RI and JI values over 100 partitions at each c with skewed ground

truth. The symbol ↑ means larger values are preferred. Vertical line indicates correct number

of clusters.

But, does the RI always exhibit NCinc bias towards clusterings with a larger

numbers of clusters? The answer is no. We have discovered that the overall bias

of some CVIs, including the RI, may change their NC bias tendencies depending

on the distribution of the subsets in the ground truth. The change in the NC

bias status of an external CVI due to the different ground truths is called GT80

bias. This kind of changeable bias behavior caused by the ground truth has not

been recognized previously in the literature. It is important to be aware of this
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phenomenon, since it affects how a user should interpret clustering validation

results. Next, we give an example of GT bias (GT = ground truth).

1.2. Example 2 - GT bias of RI85

We use the same protocols as in Example 1, but change the distribution of

the subsets in the ground truth by randomly assigning 80% of the objects to

the first cluster and then randomly assigning the remaining 20% of the labels

to the other four clusters for c = 2, 3, 4, 5. Thus, the distribution of the ground

truth is heavily skewed (non-uniform). The average values of RI and JI are90

shown in Figure 2. The shape of JI in Figures 1b and 2b is same: it still

decreases monotonically with c, exhibiting NCdec bias, and indicating c = 2 as

its preferred choice. Turning now to the RI, we see that trend seen in Figure 1a is

reversed. The RI in Figure 2a is maximum at c = 2, and decreases monotonically

as c increases. So the NC bias of RI has changed from NCinc bias to NCdec95

bias. Thus, RI shows GT bias. To summarize, Examples 1 and 2 show that

NC bias is possessed by some external CVIs due to monotonic tendencies of the

underlying mathematical model. But beyond this, some external CVIs can be

influenced by GT bias, which is due to the way the distribution of the ground

truth interacts with the elements of the CVI.100

The objective of this article is to study the empirical and theoretical impli-

cations of GT bias. To the best of our knowledge, this is the first extensive

study of this property for external cluster validity indices. In this work, our

contributions can be summarized as follows:

1. We identify the GT bias effect for external validation measures, and also105

explain its importance.

2. We test and discuss NC bias for 26 popular pair-counting based external

validation measures.

3. We prove that RI and related 4 indices suffer from GT bias. And also

provide theoretical explanations for understanding why GT bias happens110

and when it happens on RI and related 4 indices.

4. We present experimental results that support our analysis.
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5. We present an empirical example to show that Adjusted Rand index (ARI)

also suffers from a modified GT bias.

The remainder of the paper is organized as follows. In Section 2 we discuss115

work related to the bias problems of some external validation measures. We

introduce relevant notations and definitions of NC bias and GT bias in Section 3.

In Section 4, we briefly introduce some background knowledge about 26 pair-

counting based external validation measures. In section 5, we test the influence

of NC bias and GT bias for these 26 measures. Theoretical analysis of GT bias120

on the RI is presented in Section 6. An experimental example, showing that

ARI has GT bias in certain scenarios, is presented in Section 7. The paper is

concluded in Section 8.

2. Related Work

Several works have discussed the bias behavior of external CVIs. As the125

conditions imposed on the discussion of the biased behavior are varied, here

we classify these conditions into three categories for convenience of discussion:

i) general bias; ii) NC bias; iii) GT bias.

General Bias. It has been noticed that the RI exhibits a monotonic trend as

both the number of subsets in the ground truth and the number of clusters in130

the candidate partitions increases [17, 18, 19]. However, in our case, we consider

the monotonic bias behavior of an external CVI as a function of the number of

clusters in the candidate partitions when the number of subsets in the ground

truth is fixed.

Wu et al. [20] observed that some external CVIs were unduly influenced135

by the well known tendency of k-means to equalize cluster sizes. They noted

that certain CVIs tended to prefer approximately balanced k-means solutions

even though the ground truth distribution was heavily skewed. The only case

considered in [20] was the special case when all of the candidate partitions

had the same number of clusters. We will develop the general case, allowing140

candidate partitions to have different numbers of clusters.
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Wu et al. [21] studied the use of the external CVI known as the F-measure for

evaluation of clusters in the context of document retrieval. They found that the

F-measure tends to assign higher scores to partitions containing a large number

of clusters, which they called the “the incremental effect” of the F-measure.145

These authors also found that the F-measure has a “prior-probability effect”,

i.e., the F-measure tends to assign higher scores to partitions with higher prior

probabilities for the relevant documents. Wu et al. only discussed using the

F-measure for accepting or rejecting proposed documents, they did not consider

the multiclass case.150

NC Bias. The NC bias problem of some external CVIs has been noticed in

the literature [22, 5, 23]. Nguyen et al. [5] pointed out that some external

validation measures such as the mutual information (MI) (also the work [23])

and the normalized mutual information (NMI) suffered from NCinc bias. Based

this observation, they proposed adjustments to the information-theoretic based155

measures. However, they did not notice that the CVIs may show different NC

bias behavior with different ground truth partitions.

GT Bias. Milligan and Cooper [22] tested 5 external CVIs, i.e., RI, Adjusted

Rand Index (ARI, Hubert & Arabie) [24], ARI (Morey & Agresti) [25], Fowlkes

& Mallow (FM) [17] and Jaccard Index (JI), by comparing partitions with vari-160

able numbers of clusters generated by the hierarchical clustering algorithms,

against the ground truth. The empirical tests showed that the RI suffered from

NCinc bias, and FM and JI suffered from NCdec bias. However, it was men-

tioned in this work that “... the bias with the Rand index would be to select

a solution with a larger number of clusters. The only exception occurred when165

two clusters were hypothesized to be present in the data. In this case, the bias

was reversed.” This empirical observation can be related our work. However,

there was no analysis or further discussion about this reversed bias behavior of

RI except this isolated observation. In this work, we provide a comprehensive

empirical and theoretical study of this kind of changeable bias behavior due to170

the distribution of the ground truth.
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3. Notation and Definitions

In this section, we first introduce the notations used in this work. Then we

provide the definitions about the different bias behavior of the external CVIs,

i.e., NC bias, GT bias which further has two subtypes, i.e., GT1 bias and GT2175

bias.

3.1. Notation

Let D be a set of N objects {o1, . . . , oN}. A convenient way to represent a

crisp c − partition of D is with a set of (cN) values {uik} arrayed as a c × N

matrix U = [uik]. Element uik is the membership of ok in cluster i. We denote

the set of all possible c-partitions of D as:

MhcN = {U ∈ RcN |∀i, k, uik ∈ {0, 1};∀k,
c∑
i=1

uik = 1;∀i,
N∑
k=1

uik > 0} (1)

The cardinality (or size) of cluster i is
∑N
k=1 uik = ni. When all of the ni

are equal to N/c, we say that U is balanced.

3.2. Definitions180

This section contains definitions for the types of bias exerted on external

CVIs by their functional forms (NC bias) and the distribution of the ground

truth partition (GT bias). We will call the influence of the number of clusters

in ground truth partition, UGT , Type 1 or GT1 bias, and the influence of the

size distribution of the subsets in UGT Type 2, or GT2 bias.185

Definition 1. Let UGT ∈ MhrN be any crisp ground truth partition with r

subsets, where 2 ≤ r ≤ N . Let CP = {V1, . . . , Vm}, where Vi ∈MhciN , be a set

of candidate partitions with different numbers of clusters, where 2 ≤ ci ≤ N .

We compare UGT with each Vi ∈ CP using an external Cluster Validity Index

(CVI) and choose the one that is the best match to UGT . There are two types190

of external CVIs: max-optimal (larger value is better) similarity measures such

as Rand’s index (RI); and min-optimal (smaller value is better) dissimilarity

measures such as the Mirkin metric (refer to Table 3).
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We say an external CVI has NC bias if it shows bias behavior with respect to

the number of clusters in Vi when comparing Vi ∈ CP to the ground truth195

UGT . There are three types of NC bias status defined in this work based on our

numerical experiments 1

1. if a max-optimal (min-optimal) CVI tends to assign higher (smaller) scores

to the partition Vi ∈ CP with larger ci, then we say this CVI has NCinc

(NC increase) bias;200

2. if a max-optimal (min-optimal) CVI tends to assign smaller (higher) scores

to the partition Vi ∈ CP with larger values of ci, then we say this CVI

has NCdec (NC decrease) bias;

3. if a CVI tends to be indifferent to the values of ci for the partitions Vi ∈

CP , we say that this CVI has no NC bias. In this case, we will call the205

lack of bias NCflat.

For example, the RI shows NCinc bias in Figure 4b; JI shows NCdec bias

in Figure 4c; RI shows NCflat bias in Figure 4a and ARI shows NCflat bias

in Figure 4e. Next, we define ground truth bias (GT bias), which occurs if the

use of a different ground truth partition alters the NC bias status of an external210

CVI.

Definition 2. Let Q and Q′ denote the NC bias status of an external CVI,

with respect to two ground truth partitions, UGT and U ′GT respectively, so

Q,Q′ ∈ {NCinc,NCdec,NCflat}. If Q 6= Q′, then this external CVI has ground

truth bias (GT bias).215

For example, given two ground truth partitions UGT 6= U ′GT , if an external

CVI shows e.g., NCflat bias with UGT (e.g., Figure 4a), and shows, e.g., NCinc

bias with U ′GT (e.g., Figure 4b), then this CVI has GT bias. Definition 2

characterizes GT bias as an transition effect on the NC bias status of an external

CVI.220

1There could be other types of NC bias status, e.g., NC fluctuating, which are out of the

scope of this work and left to be discussed in the future work.
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There are quite a few subcases of GT bias depending on the properties

of UGT and U ′GT relative to each other. In this article we have studied two

specific cases of GT bias, i.e., GT1 bias and GT2 bias. Generally speaking,

when an external CVI changes its bias status with respect to two ground truth

partitions UGT1 and UGT2, we have two cases: i) GT1 bias occurs when the225

subsets in these two ground truth partitions are uniformly distributed but with

different numbers of subsets; ii) GT2 bias occurs when these two ground truth

partitions have same number of subsets but with different distributions. The

formal definitions of GT1 bias and GT2 bias are described as follows.

Definition 3. Let UGT ∈MhrN be a balanced crisp ground truth partition with230

r subsets {u1, . . . , ur}, i.e., pi = |ui|
N = 1

r , and U ′GT ∈ Mhr′N be a balanced

crisp ground truth partition with r′ subsets {u′1, . . . , u′r′}, i.e., p′i =
|u′

i|
N = 1

r′ ,

where r 6= r′. We say an external CVI has GT1 bias if the NC bias status for

UGT is different from that of U ′GT .

For example, given UGT with 2 balanced subsets, and U ′GT with 50 balanced235

subsets, then if an CVI shows e.g., NCflat bias with UGT , and NCinc bias with

U ′GT , then this CVI has GT1 bias (e.g., Figures 4a and 4b).

Definition 4. Let UGT ∈ MhrN be a crisp ground truth partition with r

subsets {u1, . . . , ur}, P = {p1, . . . , pr} = { |u1|
N , . . . , |ur|

N } and p2 = p3 = . . . =

pr = 1−p1
r−1 . Let U ′GT ∈ Mhr′N be another crisp ground truth partition with r′240

subsets {u′1, . . . , u′r′} and P ′ = {p′1, . . . , p′r′} = { |u
′
1|
N , . . . ,

|u′
r′ |
N }, p

′
2 = p′3 = . . . =

p′r′ =
1−p′1
r−1 , where r = r′ and p1 6= p′1. We say an external CVI has GT2 bias

if it exhibits different types of NC bias for UGT and U ′GT .

For example, given UGT ∈ Mh5N with p1 = 0.1 and U ′GT ∈ Mh5N with

p′1 = 0.9, if an external CVI shows, e.g., NCinc bias for UGT and shows e.g.,245

NCdec bias for U ′GT , then this CVI has GT2 bias (e.g., Figures 5a and 5b).

Figure 3 illustrates the relationship between NC bias and GT bias that is

contained in Definitions 1 - 4. In this Figure, CP denotes a set of crisp candidate

partitions with different numbers of clusters, and CV I denotes an external CVI.
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Figure 3: The relationship between NC bias and GT bias in Definitions 1- 4.

UGT 6= U ′GT are different crisp ground truth partitions and UGT ∈MhrN , UGT ∈250

Mhr′N . We summarized the different bias problems discussed in this work in

Table 1.

4. Pair-counting based External Cluster Validity Indices

In this part, we will give some background knowledge briefly about the pair-

counting based cluster validity measures. In addition, we also provide a list of255

26 pair-counting based measures which will be tested for their NC bias and GT

bias problems.

Pair-counting based comparison CVIs are a group of popular measures based

on counting the agreements and disagreements between two crisp partitions in

terms of shared pairs of objects. As in Example 1, we denote the subsets corre-260

sponding to the clusters in U and V as {u1, . . . , ur} and {v1, . . . , vc}. Suppose

U ∈MhrN and V ∈MhcN are partitions of D. The contingency table that pairs

these two partitions is shown in Table 2. Note that the numbers of clusters in

U and V need not be equal, r 6= c.

The entry nij indicates the number of shared object pairs in clusters ui and265

vj . The row sum, ai, is the number of objects in cluster ui and the column

sum, bj , is the number of objects in cluster vj . The number of pairs of shared
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Table 1: Glossaries about different bias discussed in this paper.

Glossary Explanation

NC bias An external CVI shows bias behavior with respect to the

number of clusters in the compared clusterings.

NCinc bias (NC increase) One of the NC bias status. An external CVI prefers clus-

terings with larger number of clusters.

NCdec bias (NC decrease) One of the NC bias status. An external CVI prefers clus-

terings with smaller number of clusters.

NCflat bias One of the NC bias status. An external CVI has no bias

for clusterings with respect to the number of clusters.

GT bias An external CVI shows different NC bias status when vary-

ing the ground truth.

GT1 bias A subtype of GT bias. An external CVI shows different NC

bias status for two ground truths with uniform distribution

but with different numbers of subsets.

GT2 bias A subtype of GT bias. An external CVI shows different

NC bias status for two ground truths that have the same

number of subsets but with different subset distributions.

Table 2: Contingency table based on partitions U and V , nij = |ui ∩ vj |

V ∈MhcN

Cluster v1 v2 . . . vc Sums

U ∈MhrN

u1

u2

...

ur

n11 n12 . . . n1c

n21 n22 . . . n2c

...
...

...

nr1 nr2 . . . nrc

a1

a2
...

ar

Sums b1 b2 . . . bc
∑
ij nij = N

objects between U and V is divided into four groups: k11, the number of pairs

that are in the same cluster in both U and V ; k00, the number of pairs that

are in different clusters in both U and V ; k10, the number of pairs that are270

in the same cluster in U but in different clusters in V ; and k01, the number

of pairs that are in different clusters in U but in the same clusters in V . And

13



k11 + k10 + k01 + k00 =
(
N
2

)
. The sum of k11 + k00 is interpreted as the total

number of agreements between U and V , and the sum k10 + k01 is the total

number of disagreements. External CVIs based on pair-counting are computed275

with these four types of pairs. Please refer to Table 3 for a non-exhaustive list

of 26 popular pair-counting based external CVIs [26, 27]. These are the indices

which will be discussed in terms of their susceptibility to NC bias and GT bias.

Table 3: Pair-Counting based Comparison Measures (external CVIs)

# Name/Reference Symbol Formula Find

1 Rand Index [28] RI k11+k00
k11+k10+k01+k00

Max

2 Adjusted Rand Index
ARI

k11− (k11+k10)(k11+k01)
k11+k10+k01+k00

(k11+k10)+(k11+k01)
2 − (k11+k10)(k11+k01)

k11+k10+k01+k00

Max
Hubert and Arabie [29]

3 Mirkin [30] Mirkin 2(k10 + k01) Min

4 Jaccard Index [31] JI k11
k11+k10+k01

Max

5 Hubert [32] H (k11+k00)−(k10+k01)
k11+k10+k01+k00

Max

6 Wallace [33] W1 k11
k11+k10

Max

7 Wallace [33] W2 k11
k11+k01

Max

8 Fowlkes & Mallow [17] FM k11√
(k11+k10)(k11+k01)

Max

9 Minkowski [34] MK
√

k10+k01
k11+k10

Min

10 Hubert’s Gamma [6] Γ k11k00−k10k01√
(k11+k10)(k11+k01)(k01+k00)(k10+k00)

Max

11 Yule [35] Y k11k00−k10k01
k11k10+k01k00

Max

12 Dice [36] Dice 2k11
2k11+k10+k01

Max

13 Kulczynski [37] K 1
2

(
k11

k11+k10
+ k11

k11+k01

)
Max

14 McConnaughey [38] MC
k211−k10k01

(k11+k10)(k11+k01)
Max

15 Peirce [39] PE k11k00−k10k01
(k11+k01)(k10+k00)

Max

16 Sokal & Sneath [40] SS1 1
4

(
k11

k11+k10
+ k11
k11+k01

+ k00
k10+k00

+ k00
k01+k00

)
Max

17 Baulieu [41] B1
(N

2 )
2−(N

2 )(k10+k01)+(k10−k01)2

(N
2 )

2 Max

18 Russel & Rao [42] RR k11
k11+k10+k01+k00

Max

19 Fager & McGowan [43] FMG k11√
(k11+k10)(k11+k01)

− 1
2
√
k11+k10

Max

20 Pearson P k11k00−k10k01
(k11+k10)(k11+k01)(k01+k00)(k10+k00)

Max

21 Baulieu [41] B2 k11k00−k10k01
(N

2 )
2 Max

22 Sokal & Sneath [40] SS2 k11
k11+2(k10+k01)

Max

14
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23 Sokal & Sneath [40]
SS3

k11k00√
(k11+k10)(k11+k01)(k10+k00)(k01+k00)

Max
Ochiai [44]

24 Gower & Legendre [45]
GL k11+k00

k11+
1
2 (k10+k01)+k00

Max
Sokal & Sneath [40]

25 Rogers & Tanimoto [46] RT k11+k00
k11+2(k10+k01)+k00

Max

26 Goodman & Kruskal [47]
GK k11k00−k10k01

k11k00+k10k01
Max

Yule [48]

5. Numerical Experiments280

In this section, we experimentally test and discuss 26 pair-counting based

external cluster validity indices (listed in Table 3) in terms of their preferences

to (candidate) partitions with different number of clusters (NC bias). We study

whether the behavior of these CVIs can be altered by changing the distribution

of ground truth partitions. In particular, we look for cases of GT1 and GT2285

bias. We will find that the RI and 4 related CVIs show GT1 and GT2 bias

behavior. The theoretical analysis of GT bias performance of the 5 indices will

be provided in Section 6. First, we introduce the details of our experimental

design.

5.1. Experimental Design290

The philosophy of our experimental design is described as follows. We gen-

erate a set of candidate partitions randomly with different numbers of clusters

and we select a random ground truth partition at a specified value of c. An

external CVI is used to compare the similarity between each of the candidate

partitions and the ground truth. As there is no difference in the generation295

methodology of the candidate partitions, we expect them to be treated equally

on average with a fair CVI, that is, the similarities between each of these candi-

date partitions and the ground truth should be the same in generally. We then
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make a graph, taking the number of clusters of the candidate partitions as the

x axis, and the values of the external CVI between the ground truth and the300

partition with the specific number of clusters as the y axis. For a fair external

CVI, we expect this graph to be (more or less) flat.

If the line tends to go up as the number of clusters increases, then this CVI

(e.g., similarity measure) shows NCinc bias; if the line tends to go down as

the number of clusters increases, then this CVI (e.g., similarity measure) shows305

NCdec bias; if the line tends to be flat as the number of clusters increases, then

this CVI (e.g., similarity measure) shows NCflat bias, i.e., no bias.

First we test and discuss the performance of the CVIs with respect to their

NC bias. CVIs that show NCflat behavior are set aside. The remaining CVIs

are then tested to see if their NC bias behavior will be influenced or changed310

by a change in the ground truth (compared with the same set of candidate

partitions), i.e., will we see GT bias? For example, an external CVI may show

NCinc bias with one ground truth partition and show NCdec bias with another

ground truth partition; or, it may show NCflat bias with one ground truth

partition and show NCinc bias with a different ground truth partition.315

The distribution of the ground truth partition can be varied in different

ways. In this work, we consider two important factors with respect to the

ground truth: 1) the number of subsets in the ground truth (related to GT1

bias); and 2) the distribution of subsets in the ground truth (related to GT2

bias). We designed two sets of experiments for testing the GT1 and GT2 bias320

of the 26 pair-counting based external CVIs. More details are as follows.

5.2. Type 1: GT1 bias Testing (Effect of the Cluster Number in the Ground

Truth)

We use the same experimental setting as in Example 1. The ground truth

partition UGT is randomly generated with ctrue subsets which are in each case325

uniformly distributed in size, where ctrue = {2, 10, 20, 30, 50}. Then, we ran-

domly generate 100 candidate partitions with c clusters, where c ranges from 2

to 3∗ctrue. We performed this experiment on all 26 comparison measures shown
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Figure 4: 100 trial average values of the RI, JI and ARI external CVIs with variable ground

truth resulting in GT1 bias, ctrue = 2, 50.

in Table 3, but due to limited space, we focus our discussion on the results from

three representative measures, the RI, JI and ARI (indices #1,#2, and #4 in330
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Table 3) with ctrue = 2, 50 (Figure 4). The complete results of the numeri-

cal experiments discussed in this section can be found in the supplementary

document 2.

When ctrue = 2, the RI trend is flat, that is, it has NCflat bias. But when

ctrue = 50, the RI favors solutions with larger number of clusters, i.e., it shows335

NCinc bias with ctrue = 50. Thus, the number of clusters in the random ground

truth partition UGT does influence the NC bias behavior of the RI. According to

definition 3, this indicates that RI has GT1 bias. Comparing Figures 4c and 4d

shows that the Jaccard index does not seem to suffer from GT bias due to the

number of subsets in UGT . These two figures show that the JI exhibits NCdec340

bias, decreasing monotonically as c increases from 2 to 6 (Figure 4c) or 2 to 150

(Figure 4d). Figures 4e and 4f show that the ARI is not monotonic for either

value of c, and is not affected by the number of clusters in UGT . Thus, ARI has

NCflat bias. We remark that these observed bias behavior of the tested external

CVIs are based on these experimental settings.345

5.3. Type 2: GT2 bias Testing (Effect of the Distirbution of Clusters in Ground

Truth)

We use an experimental setup similar to that in Example 2. We generate

a ground truth by randomly assigning 10%, 20%, . . . , 90% of the objects to the

first cluster, and then randomly assigning the remaining cluster labels to the350

rest of the data objects. Here ctrue = 5 is discussed. Figure 5 shows the results

for the RI, JI and ARI with the size of the first cluster either n1 = 0.1 ∗ N or

n1 = 0.9 ∗N .

Figures 5a and 5b show that the RI suffers from GT2 bias according to

definition 4. It is monotone increasing with n1 = 10, 000 (NCinc bias), but355

monotone decreasing with n1 = 90, 000 (NCdec bias). Note that the graphs

in Figures 5a and 5b are reflections of each other about the horizontal axis at

0.5. The Jaccard index in Figures 5c and 5d exhibits the same NC bias status

2The supplementary document is available at https://sites.google.com/site/yldatascience/
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Figure 5: 100 run average values of the RI, JI and ARI with unbalanced ground truth to

investigate GT2bias, ctrue = 5. n1 = 10% ∗N (left), n1 = 90% ∗N (right).
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as it did in Figures 4c and 4d. Specifically, JI decreases monotonically with c,

so it still has NCdec bias, but it does not seem to be affected by GT2 bias.360

The ARI in Figures 5e and 5f does not show any influence due to GT2 bias.

It has NCflat bias under these two sets of experimental settings. So, from our

empirical results, ARI would appear to be preferable to the RI and the JI in this

setting. To summarize, these examples illustrate that the RI can suffer from

GT1 bias and GT2 bias; that JI can suffer from NCdec bias but not GT1 bias365

nor GT2 bias; and that ARI does not suffer from NC bias or GT bias, under

the experimental setup we have used here.

5.4. Summary for All 26 Comparison Measures

The overall results of similar experiments for all 26 indices (refer to supple-

mentary document) in Table 3 led to the conclusion that 5 of the 26 external370

CVIs suffer from GT1 bias and GT2 bias for these experimental settings. These

measures are Rand Index (RI) and

Hubert [32] : H(U, V ) = 2RI − 1 (2)

Gower and Legendre [45] : GL(U, V ) =
2

1 + 1/RI
(3)

Rogers and Tanimoto [46] : RT (U, V ) =
1

2/RI − 1
(4)

Mirkin [30] : Mirkin(U, V ) = N(N − 1)(1−RI) (5)

Please note that the external CVIs in equations 2, 3, 4 and 5 are all functions

of the RI. This observation forms the basis for our analysis in the next section.

6. Bias Due to Ground Truth for the Rand Index375

In this section, we provide a theoretical analysis for the GT bias, GT1 bias

and GT2 bias for the Rand Index. More specifically, we will analyze the under-

lying reason for the GT bias of RI, based on its relationship with the quadratic

entropy (Equation 8). Then, based on the relationship between RI and the
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quadratic entropy, we will discuss theoretically about when RI shows GT bias,380

GT1 bias and GT2 bias, according to the distribution of the ground truth and

the number of subsets in the ground truth.

6.1. Quadratic Entropy and Rand Index

The Havrda-Charvat entropy [49] (Equation 6) is a generalization of the

Shannon entropy (Equation 7). The quadratic entropy (Equation 8) is the385

Havrda-Charvat generalized entropy with β = 2.

6.1.1. Havrda-Charvat Generalized Entropy

The Havrda-Charvat generalized entropy for a crisp partition U with r clus-

ters U = {u1, . . . , ur} is

Hβ(U) =
1

1− 21−β
(1−

r∑
i=1

(
|ui|
N

)β) (6)

where β is any real number > 0 and β 6= 1. Since H is a continuous function of

β, when β = 1

H1(U) = −
r∑
i=1

|ui|
N

log
|ui|
N

(7)

which is the Shannon entropy HS(U). When β = 2 we have quadratic entropy

H2(U) = 2(1−
r∑
i=1

(
|ui|
N

)2) (8)

It can be shown that in the case of statistically independent random variables

U and V

Hβ(U, V ) = Hβ(U) +Hβ(V )− (1− 21−β)Hβ(U)Hβ(V ) (9)

When β = 2, Equation 9 becomes

H2(U, V ) = H2(U) +H2(V )− 1

2
H2(U)H2(V ) (10)

In [50], Meila showed that the Variation of Information (VI) is a metric by

expressing it as a function of Shannon’s entropy. Consider a crisp partition V
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with c subsets V = {v1, . . . , vc}, then

V I(U, V ) = HS(U |V ) +HS(V |U) (11)

= 2HS(U, V )−HS(U)−HS(V )

The VI is not one of the 26 indices in Table 3, but this information-theoretic

CVI can be computed based on the contingency table, and it will help us analyze

the GT bias of the 5 external CVIs discussed in Section 5.4.390

Simovici [51] showed that replacing Shannon’s entropy in Equation 11 by

the generalized entropy at Equation 6 still yielded a metric,

V Iβ(U, V ) = Hβ(U |V ) +Hβ(V |U) (12)

= 2Hβ(U, V )−Hβ(U)−Hβ(V ) (13)

For β = 2, this becomes

V I2(U, V ) = 2H2(U, V )−H2(U)−H2(V ) (14)

Based on the above introduced concepts, we next introduce how to derive

the relationship between RI and the quadratic entropy (i.e., Havrda-Charvat

generalized entropy with β = 2). This relationship will help us explain why RI

shows GT bias.

6.1.2. Quadratic Entropy vs. Rand Index395

Let U and V be two crisp partitions of N samples with r clusters and c

clusters respectively. Then the relationship between V I2(U, V ) and RI(U, V )

can be derived as follows [51].

First, based on Equations 13 and 6, we have V Iβ(U, V ) as

V Iβ(U, V ) = 2Hβ(U, V )−Hβ(U)−Hβ(V ) (15)

=
2

1− 21−β
(1−

r∑
i=1

c∑
j=1

(
|ui ∩ vj |
N

)β)− 1

1− 21−β
(1−

r∑
i=1

|ui|
N

)β − 1

1− 21−β
(1−

c∑
j=1

(
|vj |
N

)β)

=
1

1− 21−β
(2(1−

r∑
i=1

c∑
j=1

(
|ui ∩ vj |
N

)β)− (1−
r∑
i=1

(
|ui|
N

)β)− (1−
c∑
j=1

(
|vj |
N

)β))

=
1

Nβ(1− 21−β)
(

r∑
i=1

(|ui|)β +

c∑
j=1

(|vj |)β − 2

r∑
i=1

c∑
j=1

(|ui ∩ vj |)β)
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Now setting β = 2, we get

V I2(U, V ) =
2

N2
(

r∑
i=1

(|ui|)2 +

c∑
j=1

(|vj |)2 − 2

r∑
i=1

c∑
j=1

(|ui ∩ vj |)2)

=
2

N2
(2k10 + 2k01)

=
2

N
(N − 1)(1−RI(U, V )) (16)

Equation 16 shows that V I2 and RI are inversely related. Thus, by analyzing400

the bias behavior of V I2, it will be easy to understand the behavior of RI. Next,

we will analyze the GT bias behavior of V I2 based on the concept of quadratic

entropy.

6.2. GT bias of RI

In this section, we will first discuss the general case of GT bias for RI by405

providing a series of theoretical statements for helping understand why RI shows

GT bias, and when RI shows GT bias. Then, we will discuss two specific cases,

i.e., GT1 bias and GT2 bias for RI and provide related theoretical statements

which will explain when RI shows GT1 bias and GT2 bias. The related proofs

are provided in Appendix A.410

6.2.1. General Case of GT bias

We introduce Lemma 1 to build the foundation for analyzing the GT bias

of V I2, then RI.

Lemma 1. Given U ∈ MhrN and V ∈ MhcN , two statistically independent

crisp partitions of N data objects, we have

V I2(U, V ) = H2(U) + (1−H2(U))H2(V ) (17)

Next, we introduce an important theorem in this paper that demonstrates

why RI shows GT bias and when it shows GT bias by judging the relationship415

between the quadratic entropy of ground truth UGT , H2(UGT ) and 1.
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Theorem 1. Let UGT ∈MhrN be a ground truth partition with r subsets, and

let CP = {V1, . . . , Vm} be a set of candidate partitions with different numbers of

clusters, where Vi ∈MhciN contains ci clusters which are uniformly distributed

(balanced), 2 ≤ ci ≤ N . Assuming UGT and Vi ∈ CP are statistically indepen-420

dent, then RI suffers from GT bias. In addition, according to the relationship

between H2(UGT ) and 1, we have:

1. if H2(UGT ) < 1, RI suffers from NCdec bias (i.e., RI decreases as ci

increases);

2. IfH2(UGT ) = 1, RI is unbiased, i.e., NCflat bias (i.e., RI has no preferences425

as ci increases);

3. if H2(UGT ) > 1, RI suffers from NCinc bias (i.e., RI increases as ci in-

creases).

Given a ground truth partition UGT , Theorem 1 provides a test for the NC

bias status of the RI. Compute the quadratic entropy H2(UGT ) of the reference430

matrix UGT and compare it to value 1, and use Theorem 1 to determine the

type of bias. Figure 6 illustrates the relationship between H2(UGT ) and 1 on the

Rand index graphically. Figure 6 is based on the same experimental setting as

in Example 2 but with N = 1000, and a different distribution P in the ground

truth and ctrue = 3. Next, we show that we can also judge the NC bias and GT435

bias of RI by comparing
∑r
i=1(pi)

2 and 1
2 . Next we introduce the Corollary 1

which is the basis for the following theorems.

Corollary 1. Let UGT ∈ MhrN be a ground truth partition with r subsets

{u1, . . . , ur}, and let P = {p1, . . . , pr} and pi = |ui|
N . Let CP = {V1, . . . , Vm}

be a set of generated partitions with different numbers of clusters, where Vi ∈440

MhciN contains ci clusters which are balanced, 2 ≤ ci ≤ N . Assuming UGT and

Vi ∈ CP are statistically independent, we have

1. if
∑r
i=1(pi)

2 > 1
2 , then RI has NCdec bias;

2. if
∑r
i=1(pi)

2 = 1
2 , then RI has NCflat bias;

3. if
∑r
i=1(pi)

2 < 1
2 , then RI has NCinc bias.445

24



2 3 4 5 6 7 8 9

# Clusters in Candidate Partitions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Av
er

ag
e 

R
I V

al
ue

s

600:50:350 (H 
2
(U

GT
)=1.03, NC

inc
) 

600:100:300 (H
2
(U

GT
)=1.08, NC

inc
) 

600:150:250 (H
2
(U

GT
)=1.11, NC

inc
) 

600:200:200 (H
2
(U

GT
)=1.12, NC

inc
) 

700:50:250 (H 
2
(U

GT
)=0.89, NC

dec
) 

700:100:200 (H
2
(U

GT
)=0.92, NC

dec
) 

700:150:150 (H
2
(U

GT
)=0.93, NC

dec
) 

2000:100:20 (H
2
(U

GT
)=0.22, NC 

dec
)

(ctrue)

Figure 6: 100 trial average RI values with ci ranging from 2 to 9 for ctrue = 3. n1 : n2 : n3

indicates the sizes of the three clusters and the corresponding H2(UGT ) values.

Next, we introduce another theorem which helps us understand how do the

prior probabilities {pi} and the number of subsets r in the ground truth UGT

influence the NC bias status of RI.

Theorem 2. Let UGT ∈ MhrN be a ground truth partition with r subsets

{u1, . . . , ur}, and let P = {p1, . . . , pr} and pi = |ui|
N . Let P ′ = {p′1, p′2, . . . , p′r}450

denote P sorted into descending order, where p′1 ≥ p′2 . . . ≥ p′r. Let CP =

{V1, . . . , Vm} be a set of generated partitions with different numbers of clusters,

where Vi ∈MhciN contains ci clusters which are balanced, 2 ≤ ci ≤ N . Assum-

ing UGT and Vi ∈ CP are statistically independent, then RI has GT bias. In

addition, depending on P and r, we have:455

When r > 2

1. if p′1 >
1
2 , and

if p′1(p′1 − 1
2 ) >

∑r
i=2 p

′
i(

1
2 − p

′
i), then RI has NCdec bias;

if p′1(p′1 − 1
2 ) =

∑r
i=2 p

′
i(

1
2 − p

′
i), then RI has NCflat bias;

if p′1(p′1 − 1
2 ) <

∑r
i=2 p

′
i(

1
2 − p

′
i), then RI has NCinc bias.460

2. if p′1 = 1
2 , then RI has NCinc bias;

3. if p′1 <
1
2 , then RI has NCinc bias.

When r = 2
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1. if p′1 >
1
2 , then RI has NCdec bias;

2. if p′1 = 1
2 , then RI has NCflat bias.465

Theorem 2 tells us how the ground truth distribution P ′ and the number

of clusters r of UGT affect the Rand index and helps us judge the NC bias

status based on P ′ and r. For example, if r > 2, p′1 >
1
2 and p′1(p′1 − 1

2 ) >∑r
i=2 p

′
i(

1
2 − p′i), then RI has NCdec bias (e.g., r = 3, p′1 = 2

3 , p
′
2 = 1

4 and

p′3 = 1
12 ). If r = 2 and p′1 = 1

2 , then RI has NCflat bias. Thus RI has GT bias.470

The above discussion and theoretical analysis are in a more general sense.

Next, we discuss GT1 bias and GT2 bias of the RI, which are two specific types

of GT bias with certain conditions imposed on the ground truth. This will also

help explain and judge the NC bias behavior of the indices in the empirical test

shown Section 5.475

6.2.2. GT1 bias and GT2 bias

First, we start by introducing a theorem for GT1 bias of RI.

Theorem 3. Let UGT ∈ MhrN be a crisp ground truth partition with r bal-

anced subsets {u1, . . . , ur}, i.e., pi = |ui|
N = 1

r . Let CP = {V1, . . . , Vm} be a set

of generated partitions with different numbers of clusters, where Vi ∈ MhciN480

contains ci clusters which are balanced, 2 ≤ ci ≤ N . Assuming UGT and

Vi ∈ CP are statistically independent, then RI suffers from GT1 bias. More

specifically,

1. if r = 2, then RI has NCflat bias;

2. if r > 2, then RI has NCinc bias.485

Theorem 3 provides an explanation of how GT1 bias influences RI. For

example, it is easier to understand the behavior of RI shown in the GT1 bias

testing in Section 5.2 (Figures 4a and 4b). Next, we introduce a theorem for

the GT2 bias of RI.

Theorem 4. Let UGT ∈ MhrN be a ground truth partition with r subsets490

{u1, . . . , ur}. Assume the first cluster u1 in the ground truth has variable sizes,
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and the remaining clusters {u1, . . . , ur} are uniformly distributed in size across

the remaining objects N − |u1|. Let P = {p1, . . . , pr} and pi = |ui|
N , 0 < pi < 1,

and
∑r
i=1 pi = 1. So p2 = p3 = . . . = pr = 1−p1

r−1 . Let CP = {V1, . . . , Vm} be a

set of generated partitions with different numbers of clusters, where Vi ∈MhciN495

contains ci clusters which are balanced, 1 ≤ i ≤ m. Assuming UGT and Vi ∈ CP

are statistically independent, then RI suffers from GT2 bias. More specifically,

let p∗ =
2+
√

2(r−1)(r−2)
2r , we have:

When r > 2,

1. if p1 > p∗, then RI has NCdec bias;500

2. if p1 = p∗, then RI has NCflat bias;

3. if p1 < p∗, then RI has NCinc bias.

When r = 2

1. if p1 = p∗, then RI has NCflat bias;

2. if p1 6= p∗, then RI has NCdec bias.505

Theorem 4 provides an explanation of how GT2 bias affects the RI. For ex-
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Figure 7: 100 trials average RI values with c in

{2, . . . , 12} for ctrue = 4. p1 = |u1|/N , 9 steps 0.1

to 0.9, and the other 3 clusters uniformly distributed.

When p1 > p∗ = 0.683, the RI decreases with c increas-

ing (e.g., p1 = 0.7, 0.8, 0.9). When p1 < p∗ = 0.683, the

RI increases with c (e.g., p1 = 0.1, . . . , 0.6).

Figure 8: The relationship between p∗ and r,

for r in {2, . . . , 50}.
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ample, in the GT2 bias testing (Section 5.3), r = 5, when p1 = 0.8 > 1+
√
3

4

( 1+
√
3

4 ≈ 0.683), then the RI tends to decreases as ci increases. Figure 7 il-

lustrates GT2 bias on the RI graphically. The basis of this figure is the same

experimental setting as Example 2 in Section 1.2 with N = 1000 and ctrue = 4.510

We also show the relationship between r and p∗ in Figure 8 (r takes integer

values from 2 to 50). Actually, limr→∞ p∗ = 1√
2
, where 1√

2
≈ 0.7071.

Next, we conclude our study by giving an experimental example to show

that the ARI shows GT bias in certain scenarios.

7. Example of GT Bias for Adjusted Rand Index (ARI)515

In this section we will illustrate that depending on the set of candidate

partitions, ARI can show GT bias behavior in certain scenarios. Recall that the

ARI in Figures 1 and 2 had NCflat bias for the method of partition generation

used there. We will conduct experiments with a different set of candidates,

and will discover that the ARI can be made to exhibit GT bias. We do two520

sets of experiments using the following protocols. We first generate ground

truth UGT1 by randomly choosing 20% of the object labels from N = 100, 000

objects to identify the first cluster. Then, we randomly choose 20% of the object

labels from the remaining 80, 000 objects as the second cluster, and finally, we

randomly assign the rest of the cluster labels [3, ctrue] to the remaining objects,525

where ctrue ≥ 3. We generate a second ground truth UGT2 partition in the

following way. We randomly choose 20% of the object labels from N = 100, 000

objects as the first cluster. Then we randomly choose 50% of the object labels

from the remaining 80, 000 objects as the second cluster, and finally, we assign

the rest of the cluster labels [3, ctrue] to the rest of objects, where ctrue ≥ 3. We530

set ctrue = 5 for both UGT1 and UGT2.

For these two sets of experiments, we generate 100 candidate partitions CP

in this way. For each candidate Vi ∈ CP , we copy the first cluster from UGT1

or UGT2 as the first cluster in Vi. Then, we randomly assign the rest of cluster

labels [2, ci] to the other 80, 000 objects, where ci ranges from c = 2 to c = 15.535
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Figure 9: 100 trial average ARI values for two different ground truth and set of candidates

with different numbers of clusters.

The results are shown in Figure 9. For these two experiments the ARI shows

NCinc bias with UGT1 and shows NCdec bias with UGT . Comparing Figures 9a

and 9b shows that for these experiments, the ARI suffers from GT bias. For the

exploration of this interesting phenomenon is beyond the scope of this paper,

and is an interesting direction for future work.540

8. Conclusions

This paper examines several types of bias that may affect external cluster

validity indices that are used to evaluate the quality of candidate partitions by

comparison with a ground truth partition. They are: i) one of two types of

NC bias (NCinc, NCdec), which arises when the mathematical model of the545

external CVI tends to be monotonic in the number of clusters in candidate

partitions; ii) GT bias, which arises when the ground truth partitions alters

the NC bias status of an external CVI; iii) GT1 bias, which arises when the

numbers of clusters in the ground truth partitions alters the NC bias status of

an external CVI; iv) GT2 bias, which arises when the distribution of the ground550

truth partitions alters the NC bias status of an external CVI.

Numerical experiments with 26 pair-counting based external CVIs estab-
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lished that for the method described in the examples, 5 of the 26 suffer from

GT1bias and/or GT2bias, viz., the indices due to Rand (#1), Mirkin (#3),

Hubert (#5), Gower and Legendre (#24) and Rogers and Tanimoto (#25), the555

numbers referring to rows in Table 3. Actually, the 4 indices, Mirkin (#3),

Hubert (#5), Gower and Legendre (#24) and Rogers and Tanimoto (#25), are

all functions of RI. We point out that the observed bias behavior (NC bias, GT1

bias and GT2 bias) of the tested 26 indices was based on a particular way to

obtain candidate partitions. In our experiments the “clustering algorithm” used560

to generate the CPs was random draws from MhciN . It is entirely possible that

sets of CPs secured, for example, by running clustering clustering algorithms

on a dataset will NOT exhibit the same bias tendencies. This is just another

difficulty of external cluster validity indices, as was illustrated by the fact that

we could change the bias status of the ARI by changing the method of securing565

the candidate. The major point of this work is to draw attention to the fact

that there can be a GT bias problem for external CVIs.

We then formulated an explanation for both types of GT bias with Rand

Index based on the the Havrda-Charvat quadratic entropy. Our theory ex-

plained how RI’s NC bias behavior is influenced by the distribution of the570

ground truth partition and also the number of clusters in the ground truth.

Our major results in Theorem 1, which provides a computable test that pre-

dicts the NC bias behavior of the Rand Index, and hence, all external CVIs

related to it. Rand Index has been one of the most popular external CVIs due

to its simple, natural interpretation and has recently been applied in many re-575

search work [10, 11, 12, 14, 15, 16]. Thus, the identified GT bias behavior for

RI with correponding explaination could be helpful for users who apply RI in

their work. Finally, we gave an experimental example showing that the ARI

can suffer from GT bias in certain scenarios.

We believe this to be the first systematic study of the effects of ground580

truth on the NC bias behavior of external cluster validity indices. We have

termed this GT bias. There are many other external CVIs which have not been

tested numerically or analyzed theoretically for GT bias. Our next undertaking
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will be to study this phenomenon in the more general setting afforded by non

pair-counting based external CVIs.585

Appendix A. Proofs

Proof of Lemma 1. As U and V are statistically independent, we can sub-

stitute Equation 10 into Equation 14, obtaining

V I2(U, V ) = 2H2(U, V )−H2(U)−H2(V )

= 2
(
H2(U) +H2(V )− 1

2
H2(U)H2(V )

)
−H2(U)−H2(V )

= H2(U) + (1−H2(U))H2(V ) (A.1)

Proof of Theorem 1. According to lemma 1,

V I2(UGT , V ) = H2(UGT ) + (1−H2(UGT ))H2(V ) = a+ bx (A.2)

where a = H2(UGT ) and b = (1−H2(UGT )) = (1− a) and x = H2(V ). As any

Vi ∈ CP is uniformly distributed (balanced), then H2(Vi) = 2(1 −
∑ci
i=1( 1

ci
)2)

(refer to equation 8) and H2(Vi) increases as ci increases. It is clear from

equation (A.2) that for fixed UGT , V I2 can be regarded as a straight line with590

y intercept a = H2(UGT ) and slope b = 1 −H2(UGT ) = (1 − a), so the rate of

growth (or decrease, or neither (flat)) of V I2 depends on b. In other words, V I2

could be increasing, decreasing or flat as ci increases. More specifically, i) if

b > 0, then H2(UGT ) < 1, thus V I2 increases as x (and ci) increases; ii) if b = 1,

then H2(UGT ) = 1, thus V I2 is constant as x (and ci) increases; iii) if b < 0,595

then H2(UGT ) > 1, thus V I2 decreases as x (and ci) increases. According

to Equation 16, we know that V I2 and RI are inversely related. Thus, it is

straightforward to prove the statements.

Proof of Corollary 1. According to Theorem 1, we know that depending on

the relationship between H2(UGT ) and 1, i.e., the slope b in Equation A.2, that600

RI shows different NC bias status. As H2(UGT ) = 2(1−
∑r
i=1 p

2
i ) (Equation 8),

then b = 1−H2(UGT ) = 1− 2(1−
∑r
i=1 p

2
i ) = 2(

∑r
i=1 p

2
i − 1

2 ). Thus, we know
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that the slope b, i.e., the relationship between H2(UGT ) and 1, depends on the

relationship between
∑r
i=1 p

2
i and 1

2 . So, the three assertions of the corollary

follow by noting the relationship between
∑r
i=1 p

2
i and 1

2 .605

Proof of Theorem 2. According to Corollary 1, we know that the relationship

between
∑r
i=1 p

2
i and 1

2 influences the NC bias status of RI. It is straightforward

to see that pi and r influence the relationship between
∑r
i=1 p

2
i and 1

2 , thus pi

and r can potentially alter the NC bias status of RI. We have

r∑
i=1

(p′i)
2 − 1

2
=

r∑
i=1

(p′i)
2 − 1

2

r∑
i=1

p′i = p′1(p′1 −
1

2
) +

r∑
i=2

p′i(p
′
i −

1

2
) (A.3)

Please note that p′1 is the biggest cluster’s density in the ground truth,

based on which we discuss and summarize the influence of pi and r on the

NC bias status of RI. We can discuss the relationship between p′1(p′1 − 1
2 ) and∑r

i=2 p
′
i(p
′
i− 1

2 ), which is equivalent to the relationship between
∑r
i=1 p

2
i and 1

2 ,

for the different NC bias status.610

When r > 2: 1) if p′1 >
1
2 , because

∑r
i=1 p

′
i = 1, then p′2, . . . , p

′
r <

1
2 . Thus,

with the help of Corollary 1, we have: i) if p′1(p′1 − 1
2 ) >

∑r
i=2 p

′
i(

1
2 − p

′
i), then∑r

i=1(p′i)
2 > 1

2 , thus RI has NCdec bias; ii) if p′1(p′1− 1
2 ) =

∑r
i=2 p

′
i(

1
2−p

′
i), then∑r

i=1(p′i)
2 = 1

2 , thus RI has NCflat bias; iii) if p′1(p′1 − 1
2 ) <

∑r
i=2 p

′
i(

1
2 − p

′
i),

then
∑r
i=1(p′i)

2 < 1
2 , thus RI has NCinc bias.615

2) if p′1 = 1
2 , then p′2, . . . , p

′
r <

1
2 and

∑r
i=1(p′i)

2 < 1
2 , thus RI has NCinc bias;

3) if p′1 <
1
2 , then p′2, . . . , p

′
r <

1
2 and

∑r
i=1(p′i)

2 < 1
2 , thus RI has NCinc bias.

When r = 2: 1) if p′1 >
1
2 , then p′1(p′1 − 1

2 ) > p′2( 1
2 − p

′
2) and

∑r
i=1(p′i)

2 > 1
2 ,

thus RI has NCdec bias; 2) if p′1 = 1
2 , then p′2 = 1

2 and
∑r
i=1(p′i)

2 = 1
2 , thus RI

has NCflat bias. Thus, the RI suffers from GT bias according to the distribution620

of ground truth P and the number of clusters r in the ground truth.

Proof of Theorem 3. Corollary 1 shows that the NC bias of the RI depends on

the relationship between
∑r
i=1(pi)

2 and 1
2 . Since pi = 1

r , then
∑r
i=1(pi)

2− 1
2 = 1

2

Then, according to Corollary 1, we have i) if r = 2, then RI has NCflat

bias; ii) if r > 2, then RI has NCinc bias. By definition 3, different values for r625
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in UGT , i.e., r = 2 or r > 2, result in different NC bias status for the RI, thus

RI has GT1 bias.

Proof of Theorem 4. According to Corollary 1, we know that the relationship

between
∑r
i=1(pi)

2 and 1
2 determines the NC bias status of the RI. As pi = 1−p1

r−1 ,

i = 2, . . . , r, we have:

r∑
i=1

p2i −
1

2
= p21 +

r∑
i=2

p2i −
1

2

=
r

r − 1
p21 −

2

r − 1
p1 +

3− r
2(r − 1)

(A.4)

Equation A.4 is quadratic in p1, and has one real positive root p∗ =
2+
√

2(r−1)(r−2)
2r

in our case. Then:

When r > 2: i) if p1 > p∗, then
∑r
i=1(pi)

2 > 1
2 , thus RI has NCdec bias;630

ii) if p1 = p∗, then
∑r
i=1(pi)

2 = 1
2 , thus RI has NCflat bias; iii) if p1 < p∗, then∑r

i=1(pi)
2 < 1

2 , thus RI has NCinc bias.

When r = 2: i) if p1 = p∗, then
∑r
i=1(pi)

2 = 1
2 , thus RI has NCflat bias; ii) if

p1 6= p∗, then
∑r
i=1(pi)

2 > 1
2 , thus RI has NCdec bias.
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