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Abstract

Mutual information (MI) based approaches are a popular paradigm for
feature selection. Most previous methods have made use of low-dimensional
MI quantities that are only effective at detecting low-order dependencies be-
tween variables. Several works have considered the use of higher dimensional
mutual information, but the theoretical underpinning of these approaches
is not yet comprehensive. To fill this gap, in this paper, we systematically
investigate the issues of employing high-order dependencies for mutual infor-
mation based feature selection. We first identify a set of assumptions under
which the original high-dimensional mutual information based criterion can
be decomposed into a set of low-dimensional MI quantities. By relaxing these
assumptions, we arrive at a principled approach for constructing higher di-
mensional MI based feature selection methods that takes into account higher
order feature interactions. Our extensive experimental evaluation on real
data sets provides concrete evidence that methodological inclusion of high-
order dependencies improve MI based feature selection.
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1. Introduction

Feature selection is an important task in data mining and knowledge dis-
covery. Effective feature selection can improve performance while reducing
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the computational cost of learning systems. In this paper, we focus on mu-
tual information (MI) based feature selection, which is a very popular filter
paradigm. Compared to wrapper and embedded approaches [1], filter meth-
ods, such as those based on the MI criteria, are generally less optimized, but
possess the major advantage of being learning-model independent and also
typically less computationally intensive.

MI based feature selection is concerned with identifying a subset S of m
features {X1, . . . , Xm} within the original set X of M features in a data set,
that maximizes the multidimensional joint MI between features and the class
variable C, defined as:

I(S;C) ,
∑

X1,...,Xm,C

P (X1,...,Xm,C)log
P (X1,...,Xm,C)

P (X1,...,Xm)P (C)
(1)

This criterion possesses a solid theoretical foundation, in that the MI
can be used to write both an upper and lower bound on the Bayes error
rate [2, 3]. Nevertheless, the problems of estimating high-dimensional joint
MI, and more generally estimating high-dimensional probability distribu-
tion, especially from small samples, are long-standing challenges in statistics.
Therefore, a rich body of work in the MI-based feature selection literature
approaches this difficulty by approximating the high-dimensional joint MI
with low-dimensional MI terms. A particularly popular and successful class
of methods makes use of the following criterion, which is the combination of
low-dimensional MI terms known as ‘relevancy ’ and ‘redundancy ’,

f(Xm) , I(Xm;C)− β
∑
Xj∈S

I(Xm;Xj) (2)

Under this framework, the features are often selected in an incremental man-
ner: given a set S of m − 1 already selected features {X1, . . . , Xm−1}, the
next feature Xm is selected so that f(Xm) is maximized. The term I(Xm;C)
measures the relevancy of Xm to the class variable C, while

∑
Xj∈S I(Xm;Xj)

quantifies the redundancy between Xm and the selected features in S, and β
plays the role of a balancing factor. Many MI-based feature selection heuris-
tics can be shown to be variations of (2) [3], including highly influential
methods such as the Mutual Information Feature Selection (MIFS) crite-
rion (β ∈ [0, 1]) [4], and the Minimum Redundancy Maximum Relevance
(MRMR) criterion (β = 1/|S|) [5].

It is noted that the two-dimensional MI can only detect pairwise variable
interactions, either between two features or between a feature and the class
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Figure 1: An example of high-order variable interaction

variable. More complicated variable interactions cannot be identified with
the two-dimensional MI. Figure 1 provides an illustrative example of two vari-
ables (switches) that jointly control the target variable (the lamp). Knowing
the state of either switch alone provides no information about whether the
lamp is on or off. Only the joint state of both switches provides comprehen-
sive knowledge on the state of the lamp. The pairwise mutual information
cannot detect this type of multi-variable interaction.

To address this shortcoming, several works have considered the use of
higher-dimensional MI quantities, such as the joint relevancy I(XiXj;C) [6],
the conditional relevancy I(Xi;C|Xj) [3] and the conditional redundancy
I(Xi;Xj|C) [7]. Brown et al. [3] showed that many such proposed methods
can fit within the parameterized criterion

J(Xm) , I(Xm;C)− β
∑
Xj∈S

I(Xm;Xj) + γ
∑
Xj∈S

I(Xm;Xj|C). (3)

For example, the Joint Mutual Information (JMI) criterion [6] can be ob-
tained with β = γ = 1/|S|. The Conditional Informative Feature Extraction
(CIFE) criterion [8] is obtained with β = γ = 1. The extended MRMR crite-
rion [9] is a special case when β = γ. The objective in (2), including MRMR
and MIFS, are clearly special cases where γ = 0. These methods can detect
higher order variable dependencies, in particular those between two features
and the class variable. However, all the mentioned criteria were handcrafted
and their theoretical underpinning is not well understood. In particular, (i)
in retrospect, we would like to understand how these criteria are related to
the original full joint MI criterion in (1), and (ii) moving forwards, we would
like to leverage this understanding to design higher-order MI based feature
selection methods in a more systematic and methodological manner. Re-
cent work has partially elucidated the former question [10, 3], while to our
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knowledge, the latter question has not been investigated.

Contributions : To address the identified gap, in this paper, we study the
connection between the low-dimensional MI based criteria, such as the ones
in (2) and (3), and the ultimate high-dimensional MI objective in (1). The
benefit of such an investigation is two-fold: (i) to establish the theoretical un-
derpinnings for heuristics based on (2) and (3), and (ii) to inspire a systematic
and methodological development of higher-dimensional MI-based feature se-
lection techniques by relaxing the identified assumptions. We take a first step
towards this direction by proposing several novel MI based feature selection
approaches that take into account higher-order dependency between features,
in particular three-way feature interaction I(Xi;Xj|Xk). Our extensive ex-
perimental evaluation shows that systematic inclusion of higher-dimensional
MI quantities improves the feature selection performance.

2. Assumptions Underlying Low-Dimensional MI-based Feature Se-
lection Heuristics

Our first goal in this paper is to strive for a more comprehensive under-
standing of the theoretical underpinnings behind various MI based feature
selection heuristics. Several recent works have partially addressed this ques-
tion. Balagani and Proha [10] identified a set of assumptions underlying the
objective (2) while Brown et al. [3] investigated the assumptions underlying
the more general objective (3). In this section, we continue to develop further
along these lines, while making some new connections between the previous
work.

In [10], Balagani and Proha set out to identify the conditions under which
the high-dimensional MI in (1) could be decomposed exactly as a sum of low-
dimensional relevancy and redundancy MI terms, i.e.,

I(S;C) ≡
m∑
i=1

I(Xi;C)−
m∑
i=2

∑
j<i

I(Xi;Xj) (4)

They showed that under the following three assumptions, the identity (4)
holds true.

Assumption 1: The selected features {X1, X2, . . . , Xm−1} are independent,
i.e.,

P (X1, X2, . . . , Xm−1) =
m−1∏
i=1

P (Xi) (5)
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Assumption 2: The selected features {X1, X2, . . . , Xm−1} are conditionally
independent given the feature Xm, i.e.,

P (X1, X2, . . . , Xm−1|Xm) =
m−1∏
i=1

P (Xi|Xm). (6)

Assumption 3 (Naive Bayes independence assumption): Each feature
independently influences the class variable, i.e.,

P (Xm|X1, . . . , Xm−1, C) = P (Xm|C). (7)

We will argue here briefly that, of these three assumptions, Assumption
1 is a strong condition. More specifically, the condition in (5) implies that
all features in S are pairwise independent, indeed

∀Xi, Xj ∈ S : P (Xi, Xj) =
∑

S\{Xi,Xj}

P (X1, X2, . . . , Xm−1)

=
∑

S\{Xi,Xj}

P (X1)P (X2) . . . P (Xm−1) = P (Xi)P (Xj)

Furthermore, since at design time, it is not possible to anticipate which
features of X will be selected in S, it is necessary that all features in the
original feature set X are also pairwise independent, for the identity (4) to
hold true on any selected subset of X. Therefore, with this assumption, we
effectively have I(Xi;Xj) = 0 ∀i 6= j, implying that the incremental objective
in (2) reduces to the simplistic objective of f(Xm) = I(Xm;C), i.e., selecting
the m-th highest ranking feature, in terms of the MI shared with C, without
taking into account the redundancy with the selected features.

2.1. An alternative view

In this section, we present an alternative view on the issue of approx-
imating high-dimensional MI with low-dimensional MI terms. First, note
that even if the high-dimensional MI were easily estimable, the problem of
identifying a subset S that shares the maximal MI with C remains a chal-
lenging combinatorial optimization problem without known efficient solution.
An exhaustive search will be of O(2M) time complexity, while restricting the
maximum size of S to k < M will reduce the cost to O(Mk), but will still
be expensive. As such, an obvious iterative greedy strategy is to select one
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feature at a time: given the set S = {X1, . . . , Xm−1} of m − 1 already se-
lected features, the m-th feature is chosen maximizing the following objective
function:

arg max
Xm∈X\S

I(S ∪Xm;C) (8)

We will now try to understand under what conditions, low-order MI based
heuristics such as MRMR and MIFS in (2) will produce the same result as
(8), i.e.,

arg max
Xm∈X\S

I(S ∪Xm;C) ≡ arg max
Xm∈X\S

I(Xm;C)−
∑
Xj∈S

I(Xm;Xj) (9)

Comparing (9) and (4), there is a subtle yet critical difference between our
viewpoint and Balagani and Proha’s: while Balagani and Proha aim to match
the global objective function, we aim at matching the outcome of the greedy
iterative optimization procedure. We point out here that MRMR [4] and
MIFS [5], amongst other similar heuristics, aim to approximate the incre-
mental optimization problem in (8), rather than to approximate the original
joint mutual information criterion I(S;C). We now prove the following re-
sult.

Theorem 1. Under Assumptions 2 & 3, the equality (9) holds true.

Proof. From the chain rule of mutual information, we have I(S ∪Xm;C) =
I(S;C) + I(Xm;C|S). Since I(S;C) remains constant w.r.t Xm, we have
arg maxXm∈X\S I(S ∪ Xm;C) ≡ arg maxXm∈X\S I(Xm;C|S). As proven in
[11], the conditional MI I(Xm;C|S) can be expressed as:

I(Xm;C|S) = I(Xm;C)− [I(Xm;S)− I(Xm;S|C)], (10)

we can therefore match the ‘relevancy’ I(Xm;C) term. Next, we need to
match the ‘redundancy’ term, i.e.,

argmin
Xm∈X\S

I(Xm;S)− I(Xm;S|C) ≡ argmin
Xm∈X\S

∑
Xj∈S

I(Xm;Xj) (11)

It is easily seen that under Assumption 3, I(Xm;S|C) = H(Xm|C) −
H(Xm|C,S) = H(Xm|C)−H(Xm|C) = 0. Further, under Assumption 2

I(Xm;S) = H(S)−H(S|Xm) = H(S)−
∑
Xj∈S

H(Xj |Xm)

= H(S)−
∑
Xj∈S

H(Xj) +
∑
Xj∈S

I(Xj ;Xm) (12)
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Taking into account the fact that H(S) −∑
Xj∈SH(Xj) is constant w.r.t

Xm, we have that (11) holds true.

Thus, it can be seen that by matching the outcome of the actual incre-
mental optimization procedure, but not the objective function, we are now
able to drop the strong Assumption 1. Note that for this theoretical analysis,
we have omitted the balancing factor β, which is of a heuristical nature. β
was originally introduced in MIFS [4] and MRMR [5] to balance the relevancy
and redundancy terms. If Assumptions 2 & 3 hold true, then naturally β is
unnecessary, as all the equalities hold in an exact sense. Therefore, β can be
regarded as a practical adjustment to be used when the required assumptions
do not hold.

2.2. An alternative sufficient condition set

The decomposition (10) of the conditional MI I(Xm;C|S), as observed
in [11], brings about an interesting insight: the ‘total redundancy’ comprises
an unconditional redundancy term I(Xm;S), minus a class-conditional re-
dundancy term I(Xm;S|C). In MIFS/MRMR formulation in (2), only the
unconditional redundancy was considered. This is a result of Assumption
3, under which I(Xm;S|C) vanishes, while I(Xm;S) is decomposed into a
sum of pairwise MI terms under Assumption 2. In this section, we investi-
gate the matter further by asking, provided we do not use the naive Bayes
independence Assumption 3, what other assumption is needed to decompose
I(Xm;S|C) into sums of low-dimensional MI terms. Brown et al. [3] pro-
posed such an assumption, which can be seen as an analogue to Assumption
2, as follows:

Assumption 3a: The selected features {X1, X2, . . . , Xm−1} are condition-
ally independent given the feature Xm and the class C, i.e.,

P (X1, X2, . . . , Xm−1|C,Xm) =
m−1∏
i=1

P (Xi|C,Xm). (13)

Now under Assumption 3a,
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I(Xm;S|C) = H(S|C)−H(S|C,Xm)

= H(S|C)−
∑
Xj∈S

H(Xj |C,Xm)

= H(S|C)−
∑
Xj∈S

H(Xj |C) +
∑
Xj∈S

I(Xj ;Xm|C) (14)

Substituting (14) into the l.h.s of (11), and taking into account the fact
that H(S|C) −∑

Xj∈SH(Xj|C) is constant w.r.t Xm, then the problem of

minimizing the ‘total redundancy’ is equivalent to:

arg min
Xm∈X\S

I(Xm;S)− I(Xm;S|C) ≡ arg min
Xm∈X\S

∑
Xj∈S

{I(Xm;Xj)− I(Xm;Xj |C)} (15)

The new redundancy criterion in the r.h.s of (15) is interesting, as it reflects
closely the fact that the original high-dimensional redundancy term consists
of an unconditional part, and a class-conditioned part (2nd and 3rd term of
(10) respectively). Now, if we introduce an additional assumption:

Assumption 3b : Features in S and Xm are pairwise class-conditionally
independent, i.e.,

P (Xm, Xj|C) = P (Xm|C)P (Xj|C) ∀Xj ∈ S. (16)

then it is easily seen that the class-conditioned redundancy terms I(Xm;Xj|C)’s
in (15) will also vanish, and so (15) again reduces to (11). Thus together,
Assumptions 2, 3a & 3b achieve the same effect as Assumptions 2 & 3. An
interesting remark to note is that Assumption 3 is a strong condition, which
can be proven to entail both Assumptions 3a & 3b as corollaries.

Theorem 2. Assumption 3 implies Assumption 3a and Assumption 3b as
corollaries.

Proof. (i) Assumption 3 ⇒ Assumption 3a: we factor the l.h.s of (13) as

P (X1, X2, . . . , Xm−1|C,Xm) = P (X1|C,Xm)× P (X2|C,Xm, X1)× . . .
×P (Xm−1|C,Xm, X1, . . . , Xm−2) (17)

From Assumption 3 we have:

P (X2|C,Xm, X1) = P (X2|C)

P (X2|C,Xm) = P (X2|C) (18)
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Thus P (X2|C,Xm, X1) = P (X2|C,Xm). Similarly,

P (X3|C,Xm, X1, X2) = P (X3|C,Xm)
... (19)

P (Xm−1|C,Xm, X1, . . . , Xm−2) = P (Xm−1|C,Xm) (20)

Substituting into (17) we have

P (X1, X2, . . . , Xm−1|C,Xm) =
m−1∏
i=1

P (Xi|C,Xm). (21)

(ii) Assumption 3 ⇒ Assumption 3b: We factor the l.h.s of (16) as

P (Xm, Xj|C) = P (Xj|C)P (Xm|Xj, C) = P (Xj|C)P (Xm|C) (22)

with the last equality being due to P (Xm|Xj, C) = P (Xm|C), as per As-
sumption 3.

The advantage of adopting Assumptions 3a & 3b over Assumption 3 is
that, besides making a set of weaker assumptions, we can individually omit
Assumption 3b, giving rise to a new class of heuristics that makes use of the
class-conditioned redundancy, which is the objective in (3).

3. Relaxing the Assumptions

In the previous section, we have studied the assumptions underlying low-
dimensional MI-based criteria for feature selection. While the previous work
[3, 10] retrospectively investigated these assumptions in regards to existing
heuristics, we go one step forwards in asking how these assumptions can
guide the systematic and methodological development of new approaches for
MI based feature selection. First, recall from previous sections that our goal
is to carry out arg maxXm∈X\S I(S ∪ Xm;C) in an incremental fashion, and
further recall that

arg max
Xm∈X\S

I(S ∪Xm;C) ≡ arg max
Xm∈X\S

I(Xm;C|S)

≡ arg max
Xm∈X\S

I(Xm;C)− [I(Xm;S)− I(Xm;S|C)] (23)
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We now pay attention to the high-dimensional redundancy term I(Xm;S).
Note that Assumption 2, which is needed for decomposing the high-dimensional
redundancy term I(Xm;S), can be relaxed to reflect the higher-order depen-
dancy between features. For example:

Assumption 2’: The selected features {X1, X2, . . . , Xm−1} are conditionally
independent given the feature Xm and any feature Xj ∈ S , i.e.,

P (X1, X2, . . . , Xm−1|Xm) = P (Xj |Xm)

m−1∏
i=1
i 6=j

P (Xi|Xm, Xj) (24)

Under this relaxed assumption, we can show that:

Theorem 3. Under Assumption 2’ we have

I(Xm;S) = I(Xm;Xj) +
∑

Xi∈S;i 6=j

I(Xm;Xi|Xj) + Ω (25)

where Ω is a constant w.r.t Xm.

Proof.

I(Xm;S) = H(S)−H(S|Xm)

= H(S)−

H(Xj |Xm) +
m−1∑

i=1,i 6=j

H(Xi|Xm, Xj)


= H(S)−H(Xj) + I(Xm;Xj)−

∑
Xi∈S;i 6=j

H(Xi|Xj) +
∑

Xi∈S;i 6=j

I(Xi;Xm|Xj)

= I(Xm;Xj) +
∑

Xi∈S;i 6=j

I(Xm;Xi|Xj) + Ω

where Ω = H(S)−H(Xj)−
∑

Xi∈S;i 6=j H(Xi|Xj) is constant w.r.t Xm.

To avoid the need of identifying a particular feature Xj ∈ S to condition
on, this process can be averaged over all Xj ∈ S, resulting in:

I(Xm;S) =
1

|S|
∑
Xj∈S

I(Xm;Xj) +
∑
Xi∈S
i 6=j

I(Xm;Xi|Xj)

 + Ω′ (26)
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where Ω′ is also a constant w.r.t Xm. This newly obtained redundancy
quantity takes into account the second-order interactions between the fea-
tures, i.e., the three-way feature interaction terms I(Xm;Xi|Xj). We note
that this is only one example of how our analysis in this paper could be use-
ful to guide the systematic development of novel MI-based feature selection
techniques that make use of higher-dimensional MI, e.g., 3-dimensional or
higher, provided that the sample size is sufficiently large to allow reason-
ably accurate estimates. Assumptions 2’ and 3a can be relaxed further in
a similar manner to capture higher-order feature-feature and feature-class
dependencies.

4. RelaxMRMR: a Novel Higher-Order MI-based Feature Selec-
tion Approach

In this section, we design a novel MI-based criterion for feature selection
based on the theoretical analysis in Section 3. We shall make use of Assump-
tions 2’ and 3a. By substituting the new redundancy measure in (26) into
the objective in (23), we arrive at the the following criterion, which is exactly
equivalent to the high-dimensional MI objective I(Xm;C|S):

Form-0: (27)

max
Xm∈X\S

{I(Xm;C)− 1

|S|
∑
Xj∈S

I(Xm;Xj) +
∑
Xi∈S
i 6=j

I(Xm;Xi|Xj)

 +
∑
Xj∈S

I(Xm;Xj |C)}

Unfortunately, in practice, these assumptions do not usually hold true.
Therefore, some normalization is needed to get the right balance between dif-
ferent MI quantities, i.e., relevancy I(Xm;C), redundancy I(Xm;Xj), class-
relevant redundancy I(Xm;Xj|C) and second-order interaction I(Xm;Xi|Xj).
This normalization is similarly required by other successful heuristics, such
as MRMR and JMI. In the ideal form of MRMR, there is also no need to
regulate the weight between the relevance and redundancy. However, in re-
ality, normalization is usually desired as the required assumptions for these
criteria may not always hold true. In fact, according to Brown et al. [3],
normalizing the redundancy terms by the the selected feature set size is es-
sential for a good criterion. This ensures that the relevancy of a feature
remains informative when the number of selected features increases.
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Our first attempt is to only normalize the class-relevant redundancy terms
I(Xm;Xj|C) by the number of selected features, resulting in:

Form-1: (28)

max
Xm∈X\S

{I(Xm;C)− 1

|S|
∑
Xj∈S

I(Xm;Xj) +
1

|S|
∑
Xj∈S

I(Xm;Xj |C)−

1

|S|
∑
Xj∈S

∑
Xi∈S;i 6=j

I(Xm;Xi|Xj)}

This can be regarded as the JMI criterion in (3) (β = γ = 1/|S|) with an
additional consideration about the second-order interactions between the fea-
ture under consideration and the selected feature set. However, the problem
in the above normalization is that the sum of second-order feature interaction
terms I(Xm;Xi|Xj)’s is still so high that it may outweigh the importance of
other terms. As a result, we propose to further normalize this term as:

Form-2: (29)

max
Xm∈X\S

{I(Xm;C)− 1

|S|
∑
Xj∈S

I(Xm;Xj) +
1

|S|
∑
Xj∈S

I(Xm;Xj |C)−

1

|S||S− 1|
∑
Xj∈S

∑
Xi∈S;i 6=j

I(Xm;Xi|Xj)}

This normalization essentially aims to bring all the MI terms to the same
scale. Note that the above criteria take into account the second-order feature
interaction terms I(Xm;Xi|Xj) which has never been explored in previous
research to our knowledge.

4.1. Complexity Analysis

We provide a complexity analysis for the newly designed criteria. Suppose
the number of records in the data set is N , the number of features is M . Both
mutual information I(X;Y ) and conditional mutual information I(X;Y |Z)
admits a time complexity of O(N) since all the data points need to be visited
for probability estimation.

Complexity of MIFS/MRMR/JMI and Similar Existing Criteria: Sup-
pose the number of features to be selected is k, then the complexity of MI-
based feature selection algorithms, such as MRMR, MIFS, JMI and similar
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existing criteria are O(k2MN). Note that for improved efficiency, the redun-
dancy and class-conditional redundancy terms could be cached in M ×M
tables for re-use.

Complexity of RelaxMRMR: Compared to MRMR, the time for RelaxM-
RMR is augmented by the time required for computing the second-order fea-
ture interaction terms. The time complexity for RelaxMRMR is O(k3MN).
Again for improved efficiency, the second-order feature interaction terms can
be cached in a M×M×M table for re-use. RelaxMRMR is a generally more
computationally intensive since more information is taken into account.

5. Experimental Evaluation

In order to evaluate the performance of the newly proposed RelaxM-
RMR method, we performed an extensive experimental evaluation on a large
number of real data sets detailed in Table 1. These data sets possess a wide
range of characteristics, including varying numbers of features, instances and
classes. The selected data sets represent a significant proportion of real world
problems. For continuous numeric features, a discretization procedure is per-
formed to categorize the original values into five equal-size bins. The imple-
mentation of RelaxMRMR in Matlab/C++ will be made available on our
website, where the implementations for some most popular MI-based feature
selection approaches are also available1.

First, we evaluate the effectiveness of different normalization strategies
and identify the best normalization approach. Based on this evaluation, we
then compare the best-performing RelaxMRMR variant with other incremen-
tal MI-based methods in terms of effectiveness and efficiency. In addition, we
also compare RelaxMRMR with some other representative non-incremental
MI-based approaches and non MI-based approaches.

Our experimental protocol is as follows: for data sets with more than
50 features, we selected the top 50 features, while for lower dimensional
data sets, all features are incrementally selected. Similarly to some previous
research [12, 13, 9], for each feature set size, we employed a linear support
vector machine (with the regularization parameter set to 1) to obtain the
10-fold cross-validation error rate (or leave-one-out validation error if the
data set contains less than 100 instances). Additionally, the same statistics

1http://vinhnguyenx.net/software
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Table 1: Data set description. The error rate is obtained by a linear SVM using all
features.

Data
#Features

(M)
#Instances

(N)
#Classes

Instances-
Features
Ratio

(N/M)

Problem
scale

(M ∗N)
Err(%) Source

Wine 13 178 3 13.69 2314 3.04 [14]
Parkinsons 22 195 2 8.86 4290 12.93 [14]
Ionosphere 33 351 2 10.64 11583 12.36 [14]
Breast 30 569 2 18.97 17070 3.13 [14]
Lung 325 73 7 0.22 23725 12.33 [5]
Segment 19 2310 7 121.58 43890 6.36 [14]
Cardio 21 2126 3 101.24 44646 10.73 [14]
Steel 27 1941 7 71.89 52407 30.06 [14]
Musk 166 476 2 2.87 79016 15.13 [14]
Waveform 21 5000 3 238.10 105000 13.12 [14]
Arrhythmia 257 430 2 1.67 110510 21.07 [14]
Colon 2000 62 2 0.03 124000 17.74 [5]
Landsat 36 6435 6 178.75 231660 13.60 [14]
Spambase 57 4601 2 80.72 262257 9.72 [14]
Lymphoma 4026 96 9 0.02 386496 3.12 [5]
Semeion 256 1593 10 6.22 407808 6.26 [14]
Leukemia 7129 73 2 0.01 520417 1.37 [5]
NCI60 9996 60 10 0.01 599760 43.33 [5]

are also collected from two other classifiers, namely Naive Bayes (NB) and
kNN classifier (k = 3). As such, given a data set, a certain classifier and a
specific feature selection method, a plot of the cross-validation error rate vs.
the number of features can be drawn and we can also compute the mean ±
standard deviation %-error rate across a range of feature set size (from 1 to
the maximum number of selected features).

5.1. Normalization

We tested Form-1, Form-2 and the un-normalized form (Form-0) of Re-
laxMRMR on all data sets. To determine which normalization form performs
better overall, following Herman et al. [13], the one-sided paired t-test at 5%
significance level was used to compare Form-1 and Form-2 with the baseline
Form-0. The experiment results of SVM are shown in Table 2 where we
use ‘+’/‘−’/‘=’ to indicate that Form-0 performs ‘better’/‘worse’/‘equally
well’ compared to the two other forms. Although not reported, we observed
similar results with NB and kNN.
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Table 2: SVM error rate (%) comparison among different normalization forms, with
Form-0 serving as the baseline. ‘+’/‘−’/‘=’ indicates that Form-0 performs ‘bet-
ter’/‘worse’/‘equally well’ compared to the competitor according to the t-test.

Data Form-0 Form-1 Form-2
Wine 9.10±0.18 7.23±0.21 (−) 6.36±0.25 (−)
Parkinsons 16.86±0.08 15.77±0.17 (−) 15.45±0.19 (−)
Ionosphere 15.65±0.06 13.19±0.02 (−) 12.77±0.02 (−)
Breast 4.47±0.02 3.97±0.01 (−) 3.73±0.01 (−)
Lung 28.85±0.62 22.58±0.64 (−) 12.79±1.24 (−)
Segment 12.10±0.94 12.14±0.95 (=) 10.67±1.01 (−)
Cardio 14.74±0.12 14.29±0.15 (=) 13.30±0.12 (−)
Steel 38.93±0.68 37.39±0.74 (−) 37.12±0.61 (−)
Musk 33.56±0.06 25.98±0.31 (−) 25.50±0.32 (−)
Waveform 18.41±0.52 21.74±0.51 (+) 18.03±0.55 (−)
Arrhythmia 24.73±0.03 25.65±0.02 (+) 22.51±0.04 (−)
Colon 27.29±0.65 17.19±0.36 (−) 12.61±0.44 (−)
Landsat 15.62±0.25 16.44±0.24 (+) 15.95±0.25 (+)
Spambase 17.19±0.22 19.55±0.26 (+) 13.97±0.30 (−)
Lymphoma 31.33±0.11 11.10±0.64 (−) 9.04±0.63 (−)
Semeion 33.33±1.17 23.26±2.15 (−) 29.93±1.56 (−)
Leukemia 9.53±0.01 5.56±0.03 (−) 3.62±0.05 (−)
NCI60 85.77±0.19 69.70±0.15 (−) 44.30±1.89 (−)
Win/Tie/Loss - 4/2/12 1/0/17
(for Form-0 vs. the alternative)
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As can be seen from this table, normalization does improve the perfor-
mance of RelaxMRMR. In most cases, the unnormalized form is outper-
formed by both Form-1 and Form-2. In addition, using the same testing
procedure, the win/tie/loss counts of Form-2 vs. Form-1 is 16/1/1. Thus
clearly, Form-2 consistently performs better than Form-1. This experimental
result verifies the effectiveness of normalizing different MI quantities to a
similar scale. This normalization prevents the algorithm from being largely
biased towards a particular factor. Our finding is in concordance with pre-
vious research. For example, [3] showed that MRMR usually outperforms
MIFS while JMI often outperforms CIFE. Both the two winning methods,
MRMR and JMI, follow the same normalization strategy that brings every
term in the objective into a similar scale, while MIFS and CIFE employ
unnormalized objectives.

5.2. Comparison with incremental MI-based Approaches
We compared the normalized RelaxMRMR (Form-2) with other existing

MI-based approaches that select features in an incremental fashion, includ-
ing Mutual Information Maximisation (MIM), also known as the Maximum
Relevance criterion (β = 0 in (2)) [5], MIFS with β = 0.5 and β = 1 in (2)
[4], MRMR [5], CIFE [8] and JMI [6]. The one-sided paired t-test was used
to compare RelaxMRMR against other methods. We used ‘+’/‘−’/‘=’ to in-
dicate that RelaxMRMR performs ‘better’/‘worse’/‘equally well’ compared
to the competitor. The result is shown in Table 3 and summarized in Figure
2.

5.2.1. Overall effectiveness

In general, compared with existing incremental MI-based methods, Re-
laxMRMR performs considerably well. Specifically, in more than 50% of
the cases, the proposed approach yields better effectiveness than all other
approaches, while there is only ∼ 10% of the cases where one of the competi-
tors wins. In the remaining one-third cases, the performances of RelaxM-
RMR and the other approaches are similar. Again, it should be noticed that
algorithms without a good balancing between the relevancy and redundancy
(e.g. MIFS with β = 1 and CIFE) usually provide worse performance than
others. We observed similar results across all the three classifiers.

5.2.2. Effectiveness with Respect to the Number of Features

As shown in Figure 4 and Figure 5, on low-dimensional data sets, there is
no significant difference among different feature selection approaches. Since
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Table 3: Error rate (%) comparison between RelaxMRMR and other incremental MI-based
criteria. ‘+’/‘−’/‘=’ indicates that RelaxMRMR performs ‘better’/‘worse’/‘equally well’
compared to the competitor according to the t-test.

Dataset RelaxMRMR MIM MIFS(0.5) MIFS(1) MRMR CIFE JMI
SVM

Wine 6.4±0.3 5.9±0.2(=) 6.6±0.2(=) 8.6±0.2(+) 6.4±0.3(=) 9.1±0.2(+) 6.2±0.3(=)
Parkinsons 15.4±0.2 15.2±0.1(=) 14.1±0.1(−) 16.2±0.2(+) 15.1±0.2(−) 15.2±0.1(=) 14.8±0.1(=)
Ionosphere 12.8±0.0 17.2±0.0(+) 13.4±0.0(+) 13.3±0.0(+) 13.4±0.0(+) 16.5±0.0(+) 16.7±0.0(+)
Breast 3.7±0.0 4.9±0.0(+) 4.2±0.0(+) 3.9±0.0(+) 3.9±0.0(+) 4.3±0.0(+) 3.9±0.0(=)
Lung 12.8±1.2 19.8±1.8(+) 12.3±1.1(=) 14.9±0.9(+) 12.9±1.0(=) 26.8±0.7(+) 13.5±0.9(=)
Segment 10.7±1.0 16.7±1.6(+) 11.5±1.0(+) 12.1±1.0(+) 10.7±1.0(=) 11.2±1.0(+) 11.3±1.0(+)
Cardio 13.3±0.1 13.3±0.1(=) 14.2±0.1(+) 14.6±0.1(+) 13.6±0.1(=) 15.2±0.1(+) 13.3±0.1(=)
Steel 37.1±0.6 41.2±0.6(+) 37.8±0.7(=) 37.9±0.8(=) 38.2±0.6(+) 39.0±0.7(+) 40.4±0.7(+)
Musk 25.5±0.3 26.4±0.2(+) 25.5±0.4(=) 24.9±0.4(=) 25.2±0.3(=) 30.6±0.1(+) 25.6±0.2(=)
Waveform 18.0±0.5 20.6±0.8(+) 20.6±0.5(+) 22.7±0.6(+) 18.0±0.5(=) 19.8±0.4(+) 18.1±0.5(=)
Arrhythmia 22.5±0.0 23.4±0.1(+) 24.1±0.0(+) 24.7±0.0(+) 23.2±0.0(+) 25.7±0.0(+) 23.0±0.1(=)
Colon 12.6±0.4 13.5±0.2(+) 16.3±0.4(+) 21.0±0.2(+) 13.6±0.4(+) 31.4±0.3(+) 14.6±0.6(+)
Landsat 16.0±0.3 16.0±0.2(=) 16.5±0.2(+) 16.6±0.3(+) 15.9±0.3(=) 15.5±0.3(−) 15.6±0.2(−)
Spambase 14.0±0.3 13.8±0.3(=) 17.9±0.3(+) 20.2±0.4(+) 13.9±0.3(=) 20.2±0.2(+) 13.9±0.3(=)
Lymphoma 9.0±0.6 16.3±0.8(+) 7.9±0.6(−) 12.2±0.4(+) 8.4±0.6(−) 29.2±0.2(+) 8.8±0.5(=)
Semeion 29.9±1.6 39.1±2.5(+) 22.1±2.4(−) 23.4±2.2(−) 32.6±1.6(+) 35.4±1.2(+) 34.3±1.6(+)
Leukemia 3.6±0.1 4.5±0.0(+) 10.6±0.1(+) 9.6±0.0(+) 3.6±0.1(=) 12.5±0.1(+) 3.8±0.0(=)
NCI60 44.3±1.9 50.5±1.5(+) 51.2±1.3(+) 60.3±0.7(+) 45.3±2.0(=) 86.5±0.2(+) 45.6±1.9(+)

Win/Tie/Loss - 13/5/0 11/4/3 15/2/1 6/10/2 16/1/1 6/11/1
Naive Bayes

Wine 14.8±2.1 17.3±2.3(+) 15.0±2.2(=) 15.0±2.1(=) 15.2±2.0(=) 15.9±2.1(=) 14.9±2.1(=)
Parkinsons 19.0±0.4 19.8±0.2(=) 20.6±0.3(+) 20.0±0.3(+) 18.7±0.3(−) 21.0±0.3(+) 19.3±0.2(=)
Ionosphere 27.5±0.2 27.8±0.3(=) 28.6±0.1(+) 27.7±0.1(=) 29.4±0.1(+) 31.4±0.1(+) 29.3±0.2(+)
Breast 26.3±0.2 33.6±0.2(+) 23.6±0.3(−) 23.5±0.2(−) 27.1±0.3(=) 24.5±0.2(−) 31.3±0.1(+)
Lung 16.0±2.7 27.5±3.2(+) 15.5±1.8(=) 15.4±1.6(=) 15.5±1.8(=) 32.5±1.1(+) 16.9±2.3(=)
Segment 27.5±3.0 37.3±4.7(+) 27.5±3.0(=) 30.6±2.8(+) 27.5±3.0(=) 31.0±2.8(+) 28.8±3.0(=)
Cardio 17.0±0.1 18.5±0.0(+) 17.2±0.1(=) 18.1±0.0(+) 17.1±0.1(=) 18.9±0.0(+) 18.2±0.0(+)
Steel 44.5±1.2 47.4±0.4(+) 41.7±0.5(−) 44.7±1.0(=) 44.4±1.1(=) 46.1±0.9(+) 45.8±0.6(=)
Musk 28.7±0.2 31.7±0.1(+) 32.4±0.2(+) 30.6±0.3(+) 29.2±0.3(+) 34.1±0.0(+) 30.5±0.1(+)
Waveform 23.7±1.3 27.4±1.4(+) 24.5±1.1(=) 27.4±1.3(+) 22.9±1.2(=) 24.0±1.1(=) 23.3±1.2(=)
Arrhythmia 24.0±0.1 28.7±0.1(+) 25.1±0.1(+) 28.1±0.1(+) 23.8±0.1(=) 34.2±0.0(+) 29.0±0.1(+)
Colon 10.8±0.3 11.9±0.1(+) 16.4±0.2(+) 14.4±0.2(+) 12.3±0.3(+) 24.3±0.1(+) 12.7±0.4(+)
Landsat 27.1±0.8 30.4±1.4(+) 27.7±0.8(+) 28.4±0.8(+) 27.4±0.9(+) 27.5±0.8(+) 27.0±0.8(=)
Spambase 10.6±0.6 14.0±0.7(+) 10.6±0.5(=) 12.0±0.3(+) 11.1±0.5(+) 12.8±0.3(+) 12.4±0.6(+)
Lymphoma 11.5±1.9 20.5±1.3(+) 12.7±1.0(+) 19.6±1.1(+) 10.5±1.6(−) 42.0±0.1(+) 10.9±1.3(=)
Semeion 38.0±1.5 48.5±2.8(+) 28.8±2.7(−) 29.7±2.3(−) 40.9±1.7(+) 47.7±0.9(+) 43.6±1.9(+)
Leukemia 3.2±0.9 4.7±1.0(+) 4.3±0.4(=) 8.9±0.2(+) 1.5±0.2(=) 16.2±0.2(+) 2.2±0.7(=)
NCI60 40.2±2.7 43.1±2.4(+) 41.5±2.0(=) 54.4±0.9(+) 41.4±3.0(+) 85.7±0.1(+) 37.7±2.6(−)

Win/Tie/Loss - 16/2/0 7/8/3 12/4/2 7/9/2 15/2/1 8/9/1
KNN

Wine 5.9±0.2 5.8±0.3(=) 6.2±0.3(=) 7.7±0.2(+) 5.8±0.2(=) 8.8±0.2(+) 5.8±0.2(=)
Parkinsons 8.6±0.1 10.2±0.1(+) 9.0±0.1(=) 9.2±0.1(+) 8.8±0.1(=) 9.0±0.1(+) 9.4±0.1(+)
Ionosphere 13.1±0.1 14.1±0.0(+) 12.8±0.0(=) 12.7±0.1(=) 12.8±0.0(=) 14.4±0.1(+) 13.2±0.0(=)
Breast 3.5±0.0 5.0±0.0(+) 4.6±0.0(+) 4.3±0.0(+) 3.6±0.0(=) 4.9±0.0(+) 4.2±0.0(+)
Lung 13.1±0.9 26.8±1.0(+) 14.0±0.9(+) 20.1±0.8(+) 14.4±0.9(+) 34.8±0.2(+) 15.7±0.8(+)
Segment 5.8±0.7 9.0±0.8(+) 6.0±0.7(+) 6.5±0.7(+) 5.8±0.7(=) 5.9±0.7(=) 5.8±0.7(=)
Cardio 10.1±0.2 9.7±0.2(−) 13.0±0.3(+) 13.6±0.3(+) 11.0±0.3(+) 11.0±0.1(+) 9.4±0.2(−)
Steel 33.4±1.3 36.1±1.2(+) 34.7±1.3(+) 34.4±1.3(+) 34.2±1.3(+) 34.0±1.2(=) 34.0±1.2(=)
Musk 21.1±0.4 25.0±0.2(+) 22.0±0.4(+) 22.2±0.5(+) 21.2±0.4(=) 18.3±0.3(−) 23.0±0.2(+)
Waveform 23.4±0.6 26.7±1.0(+) 27.8±0.4(+) 30.2±0.6(+) 23.3±0.6(=) 26.7±0.4(+) 23.4±0.6(=)
Arrhythmia 25.3±0.1 28.5±0.1(+) 25.7±0.1(=) 28.0±0.1(+) 26.4±0.1(+) 32.8±0.1(+) 28.2±0.0(+)
Colon 14.7±0.0 15.7±0.1(+) 24.2±0.1(+) 20.7±0.1(+) 14.6±0.1(=) 26.7±0.1(+) 16.6±0.1(+)
Landsat 12.0±0.7 12.9±0.7(+) 12.4±0.7(+) 12.6±0.7(+) 12.0±0.7(=) 12.2±0.7(+) 12.3±0.7(+)
Spambase 14.4±1.3 14.3±1.4(=) 18.1±1.1(+) 20.4±1.1(+) 14.3±1.4(=) 15.1±0.9(=) 14.4±1.4(=)
Lymphoma 12.4±0.5 18.0±0.6(+) 13.4±0.4(+) 20.5±0.2(+) 9.8±0.7(−) 40.3±0.4(+) 11.8±0.5(−)
Semeion 34.3±2.0 43.9±3.3(+) 26.0±3.1(−) 28.8±2.6(−) 37.4±2.2(+) 37.2±1.6(+) 39.2±2.3(+)
Leukemia 2.4±0.0 4.8±0.0(+) 18.1±0.3(+) 19.5±0.4(+) 3.0±0.0(+) 14.6±0.3(+) 2.7±0.0(+)
NCI60 42.2±1.4 51.0±0.9(+) 49.8±1.2(+) 55.9±1.4(+) 46.6±1.1(+) 84.6±0.1(+) 49.1±1.0(+)
Win/Tie/Loss - 15/2/1 13/4/1 16/1/1 7/10/1 14/3/1 10/6/2
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Figure 2: Performance comparison of RelaxMRMR to other incremental MI-based crite-
ria. Win/Tie/Loss means RelaxMRMR performs ‘better’/‘equally-well’/‘worse’ than the
alternatives.

the number of features in a data set is limited to a small number, the relation-
ship among these features is relatively simpler than that of high-dimensional
data. As a result, restrictive assumptions can be applied and simple cri-
teria such as MIM, MIFS and MRMR may already be sufficiently capa-
ble to achieve reasonable performance. As a matter of fact, for these low-
dimensional data sets, it is more important to balance the relative impor-
tance between relevancy and redundancy, rather than introducing advanced
terms such as class-relevant redundancy or high-order interactions between
features.

On the other hand, in high-dimensional data, the underlying dependency
structure between features within the data set is dramatically more com-
plex. In this situation, strong assumptions, such as pairwise independency,
are unrealistic (for example, MIM tends to perform really badly on data
sets with more than a hundred features). In contrast, the proposed RelaxM-
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Figure 3: Detailed performance comparison of RelaxMRMR to other incremental MI-
based criteria on each data set (sorted by #Features × #Instances) across all classi-
fiers. Win/Tie/Loss means RelaxMRMR performs ‘better’/‘equally well’/‘worse’ than
other methods.

RMR approach, which posits the weakest assumptions among all MI-based
algorithms, gains significant effectiveness due to the fact that it takes into
account more underlying relationships among features in the data set.

5.2.3. Effectiveness with Respect to the Data Set Size

The effectiveness of RelaxMRMR is not only affected by the dimension-
ality of the feature set, but also the data size. Large data size is crucial
for high-dimensional MI estimation. High-dimensional MI that is estimated
based on a small amount of data is less reliable and may affect the perfor-
mance of a high-dimensional MI-based feature selection method. However,
even though the lack of data is a serious challenge, surprisingly it did not sig-
nificantly offset the effectiveness of RelaxMRMR on high-dimensional data
sets. In fact, for data sets with less than 100 data points but with a con-
siderable number of features, i.e., Colon, Lymphoma, Leukemia and NCI60,
in approximately 80% of the cases RelaxMRMR performs better than its
competitors.
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(c) Cardio(21 dimensions)
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(d) Waveform(21 dimensions)

Figure 4: Performance comparison on low-dimensional data sets with SVM (best viewed
in color)

5.2.4. Efficiency

We tested the efficiency of RelaxMRMR compared to other MI-based
approaches. As the theoretical analysis in Section 4.1 has suggested, the
complexity of RelaxMRMR is O(k3MN) compared to O(k2MN) of other
MI-based approaches. RelaxMRMR is thus generally more computationally
demanding. However to our observation, this difference is not practically
significant for small to medium data sets. To gain a concrete idea of wall
clock processing time, we tested the algorithms on a large high-dimensional
data sets, namely Gisette from the NIPS feature selection competition [15]
of 5,000 features and 6,000 data points. The result is shown in Figure 6.

On this high-dimensional data set, RelaxMRMR is considerably more
expensive. Nevertheless, we expect that the time complexity should not be a
major deterrent to the practicality of RelaxMRMR. There are two arguments
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(a) Arrhythmia(257 dimensions)
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(b) Lung(325 dimensions)
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(c) Colon(2000 dimensions)
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(d) Lymphoma(4026 dimensions)

Number of features
0 5 10 15 20 25 30 35 40 45 50

E
rr

or
 R

at
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MIM
MIFS(0.5)
MIFS(1)
MRMR
CIFE
JMI
RelaxMRMR

(e) Leukemia(7129 dimensions)
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Figure 5: Performance comparison on high-dimensional data sets with SVM (best viewed
in color)
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Figure 6: Run time (s) comparison between RelaxMRMR and other MI-based algorithms,
measured by the average time for selecting one feature from the Gisette data set
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Figure 7: Run time (s) comparison between serial and parallel RelaxMRMR, measured by
the average time for selecting one feature from the Gisette data set

to support this claim. First, there are many applications where the data
collecting time is far more than the time required for data mining tasks such
as feature selection (e.g., days to months for data collection v.s. hours for
data mining). In these cases, it is justifiable to spend significant amounts
of time for data processing and the improved performance brought about by
RelaxMRMR will be worth the effort. Second, commodity multi-core systems
are common nowadays, and it is straightforward to parallelize RelaxMRMR
to harness this parallel processing power. Towards this end, we tested a
parallel version of RelaxMRMR, where the high-order feature interactions
terms are computed in parallel on a 16-core and a 32-core system. The
effectiveness of parallelization can be clearly observed in Figure 7.

5.3. Comparison with other Feature Selection Methods

In the previous section, we discussed the performance of RelaxMRMR
compared to some well-known incremental MI-based feature selection meth-
ods. To provide a more comprehensive picture, we also compared RelaxM-
RMR against some non-incremental MI-based approaches and non-MI based
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approaches. In particular, we chose two global MI-based approaches that for-
mulate feature selection as a global optimization problem, namely Quadratic
Programming Feature Selection (QPFS) [16] and SpecCMI [9], and two repre-
sentative non MI-based techniques, namely spectral feature selection [17] and
ReliefF [18]. The result of these experiments is shown in Table 4. Overall,
RelaxMRMR exhibits strong performance compared to other approaches. It
is noted that while QPFS and SpecCMI use a global optimization approach,
their objective functions are similar to ones employed by the incremental
MRMR and JMI approaches respectively. None of these methods made use
of the second order feature interaction terms.

6. Related Work and Discussion

In this section, we highlight the analogy between the MI-based feature
selection problem and the related problem of building Naive Bayes classifier
and its independence-assumptions-relaxed variants. Naive Bayes classifiers
make a strong independence assumption, that all the features are condition-
ally independent given the value of the class C, which is in fact Assumption
3.

C

X1 X2 X3
... Xm

1

Figure 8: Bayesian network representation of the Naive Bayes classifier. Each node (fea-
ture) has only 1 parent, which is C.

The dependancy between features and the class variable can be repre-
sented intuitively by means of a Bayesian network, as in Figure 8, wherein
a node (feature) is probabilistically independent of all its non-descendants,
given its parents. Despite its strong independence assumption, Naive Bayes
classifiers often perform well in practice. Nevertheless, while it is known that
some violation of the independancy assumption do not matter, many others
do affect the performance of Naive Bayes classifiers badly [19]. To this end,
there have been a rich body of work on relaxing the strong independence
assumption for Naive Bayes. Two of the popular approaches are the Tree-
Augmented Naive Bayes (TAN) [20], and the Averaged One-Dependence
Estimators (AODE) [19].
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Table 4: Error rate (%) comparison between RelaxMRMR and QPFS, SpecCMI, Spectral
and ReliefF. ‘+’/‘−’/‘=’ indicates that RelaxMRMR performs ‘better’/‘worse’/‘equally
well’ compared to the competitor according to the t-test.

Dataset RelaxMRMR QPFS SpecCMI Spectral ReliefF
SVM

Wine 6.4±0.3 5.8±0.2(−) 7.9±0.8(=) 6.0±0.2(=) 12.9±1.7(+)
Parkinsons 15.4±0.2 13.6±0.1(−) 14.8±0.2(−) 15.3±0.1(=) 14.7±0.2(−)
Ionosphere 12.8±0.0 15.6±0.1(+) 17.7±0.2(+) 14.1±0.0(+) 18.5±0.8(+)
Breast 3.7±0.0 3.9±0.0(=) 4.3±0.0(+) 4.6±0.0(+) 5.6±0.5(+)
Lung 12.8±1.2 11.9±1.8(=) 18.1±1.5(+) 19.3±1.6(+) 22.8±1.4(+)
Segment 10.7±1.0 10.8±1.0(=) 11.1±1.1(+) 19.2±3.9(+) 15.0±2.0(+)
Cardio 13.3±0.1 12.7±0.1(−) 13.3±0.1(=) 12.4±0.1(−) 13.2±0.1(=)
Steel 37.1±0.6 37.3±0.5(=) 40.1±0.8(+) 39.7±0.5(+) 40.8±0.8(+)
Musk 25.5±0.3 25.0±0.3(−) 23.4±0.3(−) 22.0±0.1(−) 28.7±0.6(+)
Waveform 18.0±0.5 19.2±0.9(+) 19.1±0.9(+) 20.7±0.9(+) 19.3±0.9(+)
Arrhythmia 22.5±0.0 24.7±0.1(+) 24.2±0.1(+) 23.3±0.1(+) 24.0±0.3(+)
Colon 12.6±0.4 13.2±0.2(=) 12.6±0.1(=) 13.5±0.1(=) 17.5±0.1(+)
Landsat 16.0±0.3 16.5±0.5(=) 21.6±1.4(+) 16.0±0.2(=) 21.0±1.3(+)
Spambase 14.0±0.3 14.1±0.2(=) 13.8±0.3(−) 12.8±0.1(−) 15.0±0.3(+)
Lymphoma 9.0±0.6 10.1±0.7(+) 24.1±0.9(+) 14.6±0.5(+) 13.1±1.0(+)
Semeion 29.9±1.6 29.4±3.1(=) 38.1±2.4(+) 40.0±2.4(+) 46.5±2.7(+)
Leukemia 3.6±0.1 4.4±0.0(+) 5.0±0.1(+) 5.0±0.0(+) 4.7±0.0(+)
NCI60 44.3±1.9 N/A 52.8±2.8(+) 53.1±5.0(+) 56.7±1.8(+)

Win/Tie/Loss - 5/8/4 12/3/3 11/4/3 16/1/1
Naive Bayes

Wine 14.8±2.1 16.1±2.1(+) 21.1±4.1(+) 17.1±2.3(+) 21.0±3.7(+)
Parkinsons 19.0±0.4 19.0±0.2(=) 21.8±0.2(+) 22.5±0.1(+) 21.0±0.2(+)
Ionosphere 27.5±0.2 29.7±0.1(+) 31.1±0.2(+) 29.8±0.2(+) 29.5±0.1(+)
Breast 26.3±0.2 30.1±0.3(+) 27.8±0.3(+) 33.4±0.2(+) 28.4±0.3(+)
Lung 16.0±2.7 14.0±2.4(−) 22.4±1.8(+) 25.8±3.4(+) 23.5±2.8(+)
Segment 27.5±3.0 27.4±3.5(=) 28.7±3.4(=) 34.4±2.9(+) 31.5±3.0(=)
Cardio 17.0±0.1 17.4±0.0(=) 18.6±0.0(+) 18.3±0.0(+) 20.3±0.0(+)
Steel 44.5±1.2 44.8±0.9(=) 45.1±0.6(=) 46.9±0.5(+) 45.4±0.6(=)
Musk 28.7±0.2 30.7±0.1(+) 30.5±0.2(+) 29.6±0.3(+) 33.8±0.3(+)
Waveform 23.7±1.3 26.3±2.1(+) 26.1±2.2(+) 27.2±1.4(+) 26.2±2.1(+)
Arrhythmia 24.0±0.1 26.7±0.3(+) 30.5±0.1(+) 27.6±0.1(+) 26.6±0.2(+)
Colon 10.8±0.3 11.9±0.1(+) 14.3±0.3(+) 16.3±0.8(+) 35.4±0.3(+)
Landsat 27.1±0.8 29.2±1.5(+) 38.2±4.9(+) 31.1±1.4(+) 40.1±4.2(+)
Spambase 10.6±0.6 9.8±0.4(−) 12.2±0.6(+) 12.9±0.6(+) 18.0±0.6(+)
Lymphoma 11.5±1.9 13.5±1.4(+) 23.5±1.0(+) 18.7±0.8(+) 18.2±1.6(+)
Semeion 38.0±1.5 33.5±2.6(−) 47.5±2.7(+) 49.9±2.8(+) 59.7±1.8(+)
Leukemia 3.2±0.9 3.9±0.8(+) 3.3±0.9(=) 16.0±2.4(+) 20.5±1.4(+)
NCI60 40.2±2.7 N/A 46.4±2.6(+) 50.2±5.6(+) 64.8±2.1(+)
Win/Tie/Loss - 10/4/3 15/3/0 18/0/0 16/2/0

KNN
Wine 5.9±0.2 5.8±0.3(=) 7.6±0.8(=) 6.0±0.2(=) 9.8±1.0(+)
Parkinsons 8.6±0.1 9.8±0.1(+) 9.5±0.2(=) 9.7±0.2(=) 9.9±0.5(=)
Ionosphere 13.1±0.1 13.9±0.0(+) 14.0±0.0(+) 14.0±0.1(+) 14.3±0.0(+)
Breast 3.5±0.0 4.3±0.0(+) 4.4±0.0(+) 4.8±0.0(+) 5.6±0.6(+)
Lung 13.1±0.9 13.0±1.9(=) 24.1±1.6(+) 34.2±1.9(+) 25.8±2.4(+)
Segment 5.8±0.7 5.7±0.7(=) 6.1±0.7(=) 12.3±3.9(+) 8.1±1.4(+)
Cardio 10.1±0.2 10.2±0.2(=) 9.8±0.2(−) 9.7±0.2(=) 10.0±0.1(=)
Steel 33.4±1.3 33.7±1.3(=) 36.0±1.3(+) 39.6±0.9(+) 35.6±1.3(+)
Musk 21.1±0.4 21.4±0.4(=) 18.4±0.5(−) 24.0±0.2(+) 16.7±0.4(−)
Waveform 23.4±0.6 24.4±0.9(=) 24.3±0.9(=) 26.6±0.9(+) 24.6±0.9(+)
Arrhythmia 25.3±0.1 29.5±0.9(+) 28.9±0.0(+) 28.6±0.1(+) 27.5±0.1(+)
Colon 14.7±0.0 15.1±0.1(=) 16.1±0.0(+) 16.4±0.1(+) 15.6±0.1(+)
Landsat 12.0±0.7 13.0±1.0(=) 18.2±2.1(+) 12.6±0.5(+) 17.0±1.7(+)
Spambase 14.4±1.3 16.6±1.7(+) 14.1±1.4(=) 15.6±1.7(+) 17.2±1.3(+)
Lymphoma 12.4±0.5 12.5±0.7(=) 26.2±0.7(+) 15.3±0.4(+) 15.2±1.1(+)
Semeion 34.3±2.0 35.2±3.6(=) 42.7±3.2(+) 46.1±3.6(+) 49.6±3.1(+)
Leukemia 2.4±0.0 3.5±0.0(+) 5.0±0.0(+) 5.3±0.0(+) 6.8±0.0(+)
NCI60 42.2±1.4 N/A 55.7±1.2(+) 53.6±2.6(+) 52.6±0.4(+)
Win/Tie/Loss - 6/11/0 11/5/2 15/3/0 15/2/1
N/A denotes QPFS returning a ‘non-convexity’ error.
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In TAN, the conditional independence assumption is relaxed, allowing
each feature Xm to be independent of all other features, given C and at
most another feature p(Xm), called its parent, i.e., P (Xm|X1, . . . , Xm−1, C) =
P (Xm|C, p(Xm)). The conditional mutual information is used to select the
parent. The Bayesian network structure of TAN is illustrated in Figure 9.

C

X1 X2 X3
... Xm

1

Figure 9: Bayesian network representation of the Tree-Augmented Naive Bayes (TAN)
classifier. Each node (feature) is allowed to have at most another parent apart from C.

In AODE, instead of learning the parent for each feature, the classi-
fier is built by aggregating all 1-dependance classifiers. In each of these
1-dependance classifier, one feature is selected to be the parent for all other
features. Each feature in turn plays the role of the parent. The structure
of these 1-dependance classifiers are illustrated in Figure 10. In AODE, the
joint distribution is factorized as:

P (X, C) =
1

n

n∑
i=1

P (Xi, C)
n−1∏

j=1,j 6=i

P (Xj|C,Xi) (30)

The AODE classifier has been shown to be as accurate as TAN, but more
computationally efficient in training. Also, since AODE performs model av-
eraging rather than model selection, it has been shown to have lower variance
[19].

Coming back to the problem of incorporating high-order feature interac-
tion into MI-based feature selection, we face the similar problem of how to
choose the feature Xj to condition on in Eq. (25). One possible approach
would be to search for the optimal feature to condition on, similar to the
TAN method for building relaxed Bayes classifiers. Our proposal of RelaxM-
RMR in this paper by averaging over all features is inspired by the AODE
approach.
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(c)

Figure 10: Bayesian network representation of the base classifiers for the AODE model.
Each feature takes turn to be the parent of all other features.

7. Conclusion

The range of MI-based feature selection approaches could be visualized
as in Figure 11. From left to right, the methods make use of increasingly
higher-dimensional MI quantities and thus are able to detect increasingly
higher-order feature dependancies. The associated cost is two-fold: (i) in-
creased computational complexity, and (ii) larger amount of data is needed
for accurate training.

Low-dimensional mutual information High-dimensional mutual information

I(Xi;Xj)
I(Xi;C)

1st-order dependency 2nd-order dependency

I(Xi;Xj |C)
I(Xi;Xj |Xk)

Higher-order dependency

I({X1, X2, . . . , Xm};C)
...

Unexplored

1

Figure 11: A continuum of mutual information based feature selection methods.
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From the left end, to our knowledge, there are MI-based methods that
make use feature dependancy quantities up to second-order, for example the
conditional relevancy I(Xi;C|Xj) and joint mutual information I({Xi, Xj};C).
From the right end, there are a few methods that make use of the full high-
order dependancy, i.e., the high-dimensional MI criterion I({X1, X2, . . . , Xm};C)
[21, 22, 23]. In-between second-order dependancy and full high-order depen-
dancy, there is currently no or little research to our knowledge.

The theoretical framework presented in this paper hopes to stimulate
more research to fill in this gap. We identified the assumptions needed for de-
composing the full joint mutual information criterion into lower-dimensional
MI quantities. We then proposed a principled approach for deriving new
higher-dimensional MI based feature selection approaches by relaxing the
identified assumptions. Our work is the first to explore the use of the three-
way feature interaction terms I(Xi;Xj|Xk). The proposed RelaxMRMR
method is demonstrated to be effective via extensive experimental evalua-
tion.
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