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Abstract. In an agent system, the ability to handle prob-
lems and recover from them is important in sustaining sta-
bility and providing robustness. We claim that execution log-
ging is essential to support agent system robustness, and that
agents should have architectural-level support for logging
and recovery methods. We describe an infrastructure-level,
default methodology for agent problem-handling, based on
logging, and supported by declaratively encoding domain-
specific knowledge related to changes in goal status and se-
mantic compensations. Via logging, the approach allows re-
pair of already-completed as well as current goals. We de-
fine a language, APLR, to support and constrain incremen-
tal specification of problem-handling information, with the
agents’ problem-handling behaviour increasing in sophisti-
cation as more knowledge is added to the system. The ap-
proach is implemented by mapping the methodology and do-
main knowledge to 3APL-like plan rules extended to support
logging.

Keywords: Robust agents, Agent reliability, Agent safety,
Agent recovery

1. Introduction

Situated multi-agent systems are often complex,
with decentralised models of control. Changes in the
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environment as well as agent actions can trigger prob-
lems, and unaddressed problems can propagate from
one agent’s tasks to another’s. When problems oc-
cur, it is often difficult to characterise the global state
of a system of agents working towards a shared set
of goals and to determine if its behaviour is correct.
Thus the ability to handle problems and recover from
them can be important in sustaining a stable and robust
agent system. Traditional recovery methods employed
in (distributed) database systems are not adequate be-
cause of the situated nature of agent actions [22].

We will show that by using two types of declaratively-
specified domain-dependent knowledge in conjunction
with maintenance of execution history for an agent,
and by defining a developer-level language in which
to organise and specify this information, we can sup-
port a default agent problem-handling method termed
RCPH (Retry-Compensation Problem-Handling). By
“problem-handling”, we refer both to addressing fail-
ures, and situations where the effects of a task are un-
desirable. A default method is one that has general ap-
plicability in the absence of more specific knowledge
about how to handle a problem.

RCPH is employed at the agent framework level
and underlies a high-level agent development language
called APLR (Agent Programming Language for Ro-
bustness), which provides a goal atomicity abstraction
to shield an agent developer from the details of prob-
lem recovery, allowing increased robustness and con-
sistency of agent behaviour. By means of this method-
ology a matrix of agent problem-handling behaviours
is supported, which increase in sophistication as do-
main knowledge is added by the developer, and pro-
vide a search heuristic over a ‘plan repair’ space.
We further describe an implementation in which the
problem-handling algorithm and declarative domain
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knowledge are mapped to sets of 3APL-like [11] plan
rules.

1.1. Example

In this section, we give a motivating example that il-
lustrates many of the robustness issues we will address
in this paper. Fig. 1 describes a scenario of robotic
agents in a hospital. It considers some of the prob-
lems that could occur as an agent is trying to perform
a task, and how the agent might usefully react to them.
From this example, several observations about robust
behaviour may be made:

– It can be useful and often crucial to ‘clean up’
problems to keep their effects from propagating to
other tasks and agents. Re-attempts alone will of-
ten be insufficiently robust; and cleanups can ‘re-
set’ state such that retry conditions are met. But,
useful cleanups are not necessarily ‘undos’ of a
task: it depends upon application semantics.

– The assumption that a goal has succeeded or
failed based on execution history is not robust
when situated actions can have variable results or
are not fully modelled. E.g., a movement may not
take an agent to exactly the location intended.

– Observation of full task results can be delayed,
triggering reconsideration of task status. E.g., in
making a reservation, an agent may charge a
credit card, and later discover that the card was
fraudulent, rendering the charge unsuccessful.

– The agent needs to reason about the status of
high-level goals (abstract plans) as well as leaf
goals (basic actions). The agent should be able
to determine whether a goal has already been
achieved. Additionally, goals can fail/succeed un-
predictably due to exogenous events.

– An agent should reason about the conditions un-
der which a task should be persisted when there
is a problem. E.g., if the agent breaks the equip-
ment, it should not persist in carrying it to the
doctor. If the equipment is dropped but not bro-
ken, the agent should try to pick it up and con-
tinue. In either case, it should persist in working
towards its higher-level goal of getting equipment
of a given type to the doctor.

In the following sections, we will describe an ap-
proach to making BDI [17] agent systems more robust
by supporting architectural-level problem-handling.

Primary aspects of our approach include the follow-
ing:

– Architectural-level problem-handling should be
employed to support robust and consistent be-
haviour in multi-agent systems. Domain-independent
aspects of a problem-handling methodology should
not be coded in an ad-hoc manner by the devel-
oper of an agent system.

– Maintenance of execution history is key to sup-
porting robustness and recovery mechanisms in
agents. For sensible recovery, it is necessary to
know what has been done previously. Our ap-
proach supports this via systematic abstract log-
ging at the architectural level, factored from the
application semantics, rather than requiring ad-
hoc coding by the developer. Our use of declar-
ative domain-specific agent knowledge is ex-
ploited in conjunction with logging to produce
more robust agent behaviour. A powerful aspect
of the approach is that the log allows the agent
not only to address problems with tasks it is cur-
rently executing, but problems with completed
tasks whose effects later need to be changed.

– Declarative specification of problem-handling
domain knowledge is key in allowing separation
of the domain-independent aspects of a problem-
handling approach from developer-specified domain-
dependent knowledge. In particular we express
goal status information and semantic compensa-
tion knowledge declaratively.

– Use of a high-level agent programming lan-
guage enforces robustness abstractions, insu-
lates the user from the agent’s infrastructure-level
problem-handling, and supports modular system
design.

Our approach supports a spectrum of default meth-
ods that increase in sophistication as the user pro-
vides more domain knowledge, yet provides sensi-
ble ‘baseline’ behaviour. It defines repair in terms
of semantic compensation and goal persistence, and
exploits logging in conjunction with the incremen-
tal provision of declarative goal information. A con-
straint that shapes our approach is that our model
must be consistent across multi- and single-agent sce-
narios in an open agent system. That is, we should
not require tight control/synchronization between the
agents; at run-time, an agent should not rely on know-
ing the details of the tasks the other agents are per-
forming. Thus, the approach allows modular, goal-
centred problem-handling knowledge to be composed
by loosely-coupled agents. We implement the method-
ology by mapping it to 3APL-like [11] plan rules, pro-
viding a semantics for the approach.
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An agent is given a high-level goal of getting a piece of equipment to a doctor. It must locate the doctor and obtain equipment of the given type. The 
agent can either retrieve the equipment from a hospital storeroom, or if there is no equipment of that type available, arrange for it to be delivered from 
another hospital and take delivery. The agent then carries the equipment to the doctor’s location . Other agents will be moving about at the same time. 
The agent might encounter these problems during its task: 
- The agent drops but does not break the equipment it is carrying. It should re-attempt its ‘carry’ goal (perhaps using an alternative decomposition 
of the goal). However, it will need to pick up what it has dropped before the re-attempt can be successful. 
- The agent drops and breaks the equipment it is carrying. 
• The breakage should be cleaned up. Other agents will have problems navigating the corridor; and the materials may be hazardous. 
• If the item is broken, then the agent should not persist in carrying that piece of equipment, but will still try to get some instance of that equipment type 
to the doctor. 
• After arranging for cleanup, if the agent is in a narrow corridor, it should move to a central hall– it will be in the way if it remains, and it should move 
to a standard dispatch area. 
- The doctor can not be located in a given period of time. This timeout should cause failure. 
- While carrying the equipment, the agent learns that the doctor is no longer in the original room. The agent should not continue to carry the 
equipment to the original location, but should attempt to learn the new location of the doctor and take the equipment there. 

Fig. 1. Some problems that could occur as an agent is performing tasks in a ’hospital’ environment.

The subsequent sections of the paper are organized
as follows. In Section 2 we describe the concept of
atomic goals, which are the foundation of the approach
described. In Section 3, we define a problem-handling
model, called RCPH, which realises the goal atomicity
semantics, based on a compensation-retry model for
addressing goal achievement issues, and supported by
reasoning about goal status and persistence. The ap-
proach is embodied in a high-level agent programming
language, called APLR, which supports the goal atom-
icity model.

Then, in Section 4, we describe a BDI-specific
realisation of the model, supported by specification
of declarative knowledge about goal status and goal
compensation definitions; and logging. Section 5 il-
lustrates the way in which the approach maps to a
multi-dimensional spectrum of problem-handling be-
haviours, and outlines our implementation. Section 6
discusses related work, and Section 7 concludes.

2. Foundation of Approach: Goal Atomicity
Semantics

A foundation of our problem-handling methodol-
ogy is the definition and realisation of what we term
atomic goals. These are conceptual entities for which
state transitions and predictable terminating states are
defined, supporting a goal atomicity model that is mo-
tivated by transaction semantics. Here, we define and
motivate the concept of atomic goals; the following
sections then describe how they are supported and re-
alised by our approach.

Atomic goals are problem-solving abstractions for
which processing to reach terminating states is not ex-

posed. An atomic goal may be in one of the following
states:

– not_yet_active,
– one of two active states: in_progress,
cancelling

– one of the following three termination states:
succeeded, cancelled, or aborted

The terminating state reflects only whether the work
succeeded, was cancelled, or was aborted. (Note that
‘Failure’ is not a terminating state). Thus, arbitrary
processing may be performed to reach a terminating
state– e.g., it may include work done to address prob-
lems (such as reversing action effects and performing
retries).

More specifically, the following conditions on atomic
goal transitions are defined:

1. For an atomic goal to reach either the succeeded
or cancelled states, explicit state transition
conditions for success or cancellation, associated
with the atomic goal, must be met. This means
that a change in goal state will not be triggered
solely by execution history, but only by the envi-
ronmental state resulting from those actions.

2. Once a goal is initiated, the goal can only termi-
nate as succeeded unless cancellation is initi-
ated or the goal is aborted.

3. Once cancellation is initiated, the goal can only
terminate as cancelled unless aborted– that
is, it can only terminate as cancelled or
aborted.

4. When a goal is terminated, its active descendants
are terminated as well.
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Fig. 2. Atomic goal states and their transitions.

This semantics is captured in Figure 2. It supports
robust agent behaviour in several ways:

– The move to a termination state, based on the
termination conditions, is decoupled from the
agent’s activities towards the goal.

– Cancellation will not be initiated, and the
cancelled goal state may not be transitioned
to, without an explicit decision to cancel. Thus, an
agent will keep working to reach the succeeded
state for all its goals unless an explicit decision is
made not to do so.

– After the cancellation process is initiated, the
succeeded state may not be transitioned to.
This enforces atomicity of recovery activities.

Thus, provision of this semantics enables a foun-
dation for supporting robust agent behaviour. More
specifically, goal atomicity is an approach to support-
ing and reasoning about agent goal persistence, and
consequently can be viewed as supporting an agent
commitment strategy [24,18].

The definition above does not specify what condi-
tions define transition to the succeeded or
cancelled states– this is domain-dependent knowl-
edge. If a cancellation were to be an exact undo of the
work done towards the goal, then the definition above
maps to transaction-like atomicity. However, the ex-
amples of Section 1.1 showed that exact transactional
atomicity is usually not possible in a situated agent
context. ‘Cancellation’ semantics are only restricted
by the atomic goal’s state transition constraints and
may be realised in any way that is sensible for the ap-
plication domain.

In the approach described below, we operationalise
these semantics for BDI [17] agents by specifying how
the atomic goal states are defined and identified, and a
methodology for reaching the termination states, in a
way that implements a useful definition for cancella-
tion and addresses the issues raised in the examples to
support robust agent problem-solving. In conjunction,

we define an agent-developer-level programming lan-
guage called APLR (Agent Programming Language
for Robustness), which supports both the atomic goal
abstraction, and specification of the domain informa-
tion that to supports it.

The model above supports concurrent goal execu-
tion, but does not address concurrency management, in
the sense that it does not specify goal semantics with
respect to isolation and/or collaboration. We return to
this topic in Section 7.

3. Supporting goal atomicity: the RCPH
Problem-Handling Model

Our approach is centred on a problem-handling
model we term RCPH (Retry-Compensation Problem-
Handling). The RCPH model is a realisation of the
goal atomicity semantics of the previous section for
BDI agents, based on a compensation-retry model for
reacting to goal achievement problems. RCPH uses a
compensation-based repair strategy, and allows rea-
soning about what goals to persist towards achieving,
and at what task level. RCPH may be viewed as a de-
fault strategy in support of goal atomicity, which may
be used by an agent to increase the robustness of its
behaviour. In this section we describe the key ideas of
the model without discussing BDI-specific [17] reali-
sations; then in the following sections describe our ap-
proach for supporting it.

The RCPH model separates two primary aspects of
problem-handling, for robust agent behaviour: it sepa-
rates detection and characterization of a problem from
the semantics of how to handle the different types of
detected problems. This allows both types of knowl-
edge to be expressed declaratively, both default and
domain-specific knowledge to be represented, and dif-
ferent default models to be employed.

By separating detection from handling, explicit rea-
soning about goal persistence is supported. The abil-
ity to reason about goal achievement and persistence
(sometimes termed commitment strategies) can be key
in supporting robust agent behaviour [24,18]. For ro-
bustness it is often necessary to reason about whether
an agent should continue to work to achieve a goal. For
example, detection of failure state for a goal does not
necessarily imply that the goal should be dropped (not
further worked towards). Conversely, it may be that
a goal has not failed, but should be dropped. Exam-
ples are cancelling a trip due to an emergency; or from
Sect. 1.1, cancelling the ‘carry to location’ goal if the
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Termination status: one of:
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Fig. 3. Goal instance states and their transitions. Work on a given
goal instance stops when the terminating state is reached. However,
the termination may trigger subsequent related problem-handling in
RCPH.

doctor moves. Note that there are two aspects of goal
persistence. One is whether the agent should persist in
trying to achieve a specific (sub)goal (perhaps using
a different decomposition of that goal). The second is
whether the agent should persist in trying to achieve an
ancestor goal of a subgoal that is dropped.

We define RCPH in the context of use by a BDI-
like agent architecture, where agents make use of a
plan library specifying alternative ways of decompos-
ing or refining tasks. Thus, for a given abstract goal,
the agent has been provided a specification of way(s)
to decompose or refine that goal into subgoals. With-
out loss of generality we can view this knowledge as a
set of rules. We assume that each such plan refinement
rule includes guard conditions, which determine eligi-
bility, and a plan body which defines the refinement. If
the guard conditions are not met, the rule is not eligible
to be selected for application. As the state of the world
changes, some decompositions of a goal may no longer
be applicable, and others may be newly applicable. If
a goal is attempted more than once, the eligible set of
decompositions may not be the same each time. When
we refer to a goal retry, there is no assumption that
a previously-attempted decomposition, if still eligible,
will or will not be selected for the retry– the model im-
poses no constraints on how a goal re-decomposition
must be performed.

3.1. Goal Instance States

Goal instances are the (sub)goal instantiations cre-
ated by an agent when a plan with specific parameter
bindings is selected and instantiated. We alternatively
refer to these as tasks. To support the RCPH model that
we describe below, we require the agent to be able to
represent and distinguish between the following goal
instance states:

– not yet activated - the goal instance is
not eligible for consideration for execution or re-
finement as defined by the agent’s deliberation
model.

– active - execution of the goal instance is not
yet initiated, but it is eligible for consideration for
execution or refinement as defined by the agent’s
deliberation model.

– delegated- the goal instance is eligible for
consideration and has been delegated to another
agent. Delegation sets up an explicit relationship
between the task and a corresponding task of the
second agent. (Our model accommodates delega-
tion, which requires a set of communication pro-
tocols; however, we do not focus on that aspect of
the model in this paper).

– initiated - The goal instance moves to this
state when execution of the goal instance has
begun. If a goal instance has moved to the
initiated state, then its ancestor goal in-
stances, with respect to the task decomposition
hierarchy, move to the initiated state if they
have not already done so.

– terminated - the goal instance is no longer be-
ing worked on. If a goal instance is terminated
then all of its descendant instances, with respect
to the task decomposition hierarchy, also move to
the terminated state1.

Figure 3 shows these states and their transitions.
A terminated goal instance may not be re-activated.
(However, as will be described below, another version
of that goal parameterization may be instantiated in or-
der to re-attempt achievement of a terminated goal).
When a goal instance transitions to the termination
state, then to support the RCPH model, it must provide
a termination status, one of: success, fail, halt,
and revise. In all cases– by definition– work on the
given goal instance terminates regardless of termina-
tion status. However, the termination and its status is
used by RCPH to reason about subsequent problem-
handling, and may trigger initiation of a new goal in-
stance to implement a retry of the goal.

– success indicates that the task has succeeded.
– fail indicates that failure has been detected for

the task.

1Note that the implementation of the initiated and terminated se-
mantics, in a context where subtasks are delegated between agents,
requires inter-agent communication.
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– halt indicates that execution of a task should be
stopped, with no associated goal achievement se-
mantics.

– revise indicates that even though the goal was
considered achieved, its effects now are viewed
as unsuccessful and should be addressed. Thus
by definition a revise status may be generated
only for already-terminated goal instances that
are set to status success.

3.2. The RCPH model: problem-handling semantics

In the remainder of this section, we describe the way
in which RCPH leverages this representation of goal
instances, in conjunction with information about the
agent’s execution history, to serve as a realisation of
the goal atomicity semantics described in Section 2.
Subsequent sections will then describe in more detail
how the model is supported, both via declarative rules
and architecturally.

We first describe RCPH’s problem-handling model.
By problem-handling, we mean the agent’s model for
reacting to both goal failures, and situations in which
work towards a goal should be halted. The RCPH
model has two primary characteristics: a compensation-
retry model of problem-handling, and explicit reason-
ing about goal persistence.

RCPH supports the goal event handling semantics
outlined in Figure 4. (The concept of escalation is
described below). In the figure, repair indicates an
‘undo’, or ‘cleanup’, of the work done towards the
problematic goal. As will be discussed below, our re-
alisation of RCPH supports repair via semantic com-
pensation; however, other repair models would be pos-
sible as well. (Section 4.2 will specify how semantic
compensation is defined and supported). In RCPH, a
detected problem always triggers repair– that is, repair
of a task is always required prior to a re-attempt of that
task– though the manner of repair (compensation) is
situation-dependent (and may be null).

Revision indicates that the goal will be re-attempted
after repair, and cancellation indicates that the given
goal should be halted if active and will not be pursued
further. Thus a decision to cancel vs. revise a goal in-
dicates a local decision about goal persistence: reason-
ing about whether to pursue achievement of a specific
goal.

The behavioural modes of the figure indicate de-
rived handling semantics, not the termination status
of the goal instance. For example, cancellation mode
does not indicate whether the goal instance has ter-

minated in failure; but rather indicates that a reat-
tempt on the terminated (and possibly failed) goal
should not be pursued. For example, this may be the
case if multiple re-attempts of the goal have failed.
Conversely, cancellation might be initiated even if the
goal has not yet failed; e.g. as determined by detec-
tion of exogenous events which obviate the need for
goal achievement. Similarly, a revision might be trig-
gered either via directly detected failure or via escala-
tion of problem-handling as discussed below. As will
be described in Section 4, determining what handling
behaviour is applied when, requires both detection of
goal status changes, and reasoning about goal persis-
tence.

As indicated by the figure, decoupled repair and
retry (task re-achievement) activities serve as two key
building blocks of RCPH. Decoupling repair and re-
achievement can support robust problem-handling in a
number of ways:

– It allows reasoning about goal persistence (some-
times termed commitment strategies): explicit
reasoning about whether to persist towards goal
achievement after (possibly multiple) repair ef-
forts, and at what level of a goal hierarchy. Thus
it gives the agent the ability to drop lower-level
goal re-attempts but persist towards achieving a
higher-level goal.

– It supports the concept of cancellation (where no
further work should be done to achieve the goal).

– It allows reasoning about handling problems that
come up during repair.

3.2.1. Escalation of problem-handling and goal
persistence

If an agent cannot repair a problem at task level at
which the problem was originally detected, then a use-
ful strategy is to trigger handling at the parent task
level: that is, to generate a goal event which triggers
repair and retry activities at the parent level. We call
this strategy, in which a handling decision is generated
at a higher task level based on lower-level activity, es-
calation. Escalation encompasses exception handling–
i.e., passing up (‘throwing’) an exception or fault for
handling by the parent context.

However, escalation is of broader scope: it can also
be used also to address a need for revision of a goal
implementation in the context of cancellation. If a cur-
rently executing subtask is cancelled, then as defined
above above, the semantics of the cancellation are that
the task effects should be ‘cleaned up’– addressed via
compensation– but the task should not be persisted:
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1. Goal success: no further work is needed (the goal is terminated), and no repair is needed.
2. Goal revision: The goal instance is terminated. However, the problem should be repaired, and another

attempt towards achieving the same goal should be made after repair – that is, the agent should keep
working towards that goal.

3. Goal cancellation: The goal instance is terminated. Repair should be made. No further work towards
that specific goal should be done after repair. Handling should be escalated to the lowest ancestor of that
goal on the execution path, by subsequently applying the revision mode to that goal after the repair.

Fig. 4. Informal description of the semantics of goal termination handling supported by RCPH, in terms of termination handling modes. ‘Repair’
is used to denote compensation or ‘cleanup’ of the goal instance’s effects; as distinct from goal re-achievement efforts. The concept of escalation
is explained below.

no further attempt to re-achieve the subtask should be
made. A subtask cancellation will semantically com-
pensate for the effects of that subgoal as appropriate
for the context of the parent decomposition. So, sim-
ply continuing with the other subtasks of the parent de-
composition will not (necessarily) be correct with re-
spect to producing the results intended for that parent
goal, which the agent still intends to achieve.

This means that, in the absence of domain-specific
knowledge about the parent task2, a cancellation of
a child task should also trigger subsequent revision–
compensation and then a retry– at the parent goal
level in order to preserve decomposition semantics.
Any parent goal re-decomposition will by definition
be based on the agent’s current environment, includ-
ing the aspects of the state that caused the child goal
cancellation, thus the re-decomposition may be dif-
ferent than the prior decomposition. With the ‘hospi-
tal’ example of Sec. 1.1, if a piece of equipment be-
comes broken, a re-decomposition of the parent task
may involve obtaining a replacement. As will be de-
scribed in the following sections, subgoals of the re-
decomposition may be detected as already achieved,
obviating the need for further work towards them.

More generally, in addition to tasks under current
execution, RCPH supports cancellation of the effects
of a finished, successfully-performed task. In such a
case, the effects of that cancellation can impact the
ongoing higher-level activity of which this task was a
(finished) subtask. For example, suppose that a credit
card charge that was initially thought successful is later
marked as fraudulent. This can impact a higher-level
“process order” task of which the credit card charge
task was a part. To remediate interactions in such
cases, a revision– a compensation and retry– is sub-

2A BDI agent need not have explicit models of action effects.
In fact its models may be primarily implicit, encoded as selection
knowledge for plans from libraries.

sequently triggered for the lowest-level (nearest) an-
cestor in the task decomposition hierarchy of the can-
celled task, that is on an execution path. (Note that if
a goal is cancelled before it is terminated by success
or failure, the lowest-level ancestor on the execution
path will always be its parent, reducing to the scenario
above).

E.g., with the credit card card example above, sup-
pose that the lowest-level ancestor of the credit card
task is the “process order” task. Post-execution failure
of the credit card task will therefore trigger both com-
pensation for the credit card charges, and compensa-
tion for and re-decomposition of the parent task (e.g.,
recall the shipment if possible, then handle the order
in light of the new situation by logging it in the com-
pany’s fraud database).

Escalation does not imply that there has been an ex-
plicitly detected failure of the goal instance to which
repair is escalated; rather the failure is implicit in
the failure to successfully perform lower-level repairs.
With escalation, the handling behaviours support a
model of goal persistence at some level of the task hi-
erarchy; goals for which a problem has been detected
will either be persisted at that level via revision be-
haviour, or cancelled and then revision precipitated at
a higher goal level.

Escalation is thus part of the RCPH model, as in-
cluded in Figure 4; it is employed to ensure that
implicit interactions between cancellation of finished
tasks, and ongoing work, will be addressed. As dis-
cussed in more detail below, default logic about persis-
tence provides guidance about when the agent should
persist a local goal, and when to cancel that effort and
‘push’ handling upward via escalation to a higher-level
revision. The default knowledge may be overridden by
the developer with situation-specific problem-handling
knowledge where available.
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3.3. Supporting goal atomicity with the RCPH model

The two key characteristics of the RCPH model–
its repair/retry model, and its support of goal persis-
tence via escalation– allow it to support and map to the
atomic goal abstractions of Section 2.

We describe this mapping in terms of APLR, our
high-level agent programming language for robust-
ness. APLR supports the atomic goal abstractions of
Section 2, thus shielding the developer from the de-
tails of execution. Atomic goals are by definition trans-
parent to the ‘internal’ processing that takes place
before one of the terminating atomic goal states is
reached, and thus may include repair and retry ac-
tivities. Atomic goals are a run-time, not define-time
abstraction; the ability to access execution context in
specifying domain knowledge, while shielding the de-
veloper from details of the problem-handling method-
ology, is key to supporting robustness in an APL.

Below, we reconcile the APLR-level abstract goal
representation with the RCPH methodology by defin-
ing how the APLR goal references– which have atomic
goal semantics– are mapped to the underlying exe-
cution model, and how the status values of APLR
(atomic) goals map to goal instance information. Us-
ing this mapping, the status of a referenced goal in
APLR does not evaluate to failure until recovery
work on the goal has finished.

It is worth noting that the APLR-level atomic
goal abstractions may be decoupled from the RCPH
methodology; other underlying problem-handling mod-
els might also be mapped to the APLR-level goal
atomicity semantics.

3.3.1. Task trees and RCPH-driven task tree rewriting
We define a task tree to be the tree formed by recur-

sively following the task decomposition child_of re-
lationships from a root task, created at run-time. An
agent may have a ‘forest’ of such trees, each corre-
sponding to a current root task that it is working on.

Given a partial-order tree in which serial siblings are
ordered from left to right, the execution paths in a task
tree are:

– The rightmost leaves which are in an initiated,
delegated, or terminated state; and

– the ancestors of those leaf nodes as defined by the
task decomposition relationship.

Thus, an execution path can be viewed as describing
an ‘execution edge’ in its task tree. If a tree contains
concurrent subgoals, it will have more than one exe-

G1

G2

G5 G6

G3

G8 G9G4 G7

G10 G11 G12
failed

G13

failed

Fig. 5. Task tree execution paths. Concurrently-executing subtasks
are denoted by double bars. Terminated task nodes are darkened;
task which are not yet initiated are grayed-out. Nodes with heavy
borders are in an initiated or delegated state; the two execu-
tion paths are shown by the heavy arrows. In our model, sequential-
ly-ordered subgoals can not become active until their previous sib-
lings have terminated. The figure shows detection of failure for an
abstract (non-primitive) subgoal instance (G3) as well as post-facto
detection of failure for a task (G11) originally thought to have been
successful; both of which are supported by RCPH.

cution path3. Figure 5 shows two execution paths in a
task tree.

As described above, the RCPH model utilizes task
compensation and retry to effect its problem-handling.
We extend the task tree model to include RCPH by
additionally requiring that:

– the compensation (repair) for a task, optionally
followed serially by a retry of the task, replace
the original task in the task tree. The original task
is by definition terminated. (Recall that ‘replace’
is defined to mean that the new goal(s) are inline
replacements for the goal that got the event, with
respect to its task decomposition and sibling re-
lationships. The replaced task and its children are
no longer active and are removed from the task
tree.)

– retry_of and compensation_of relation-
ships between tasks (goal instances) are recorded.

We can then define the versions of a goal to be
the temporally ordered series of goal instances with
the same parameterization (argument bindings) in the
execution history that are related by retry_of re-
placement relationships4. Fig. 6 illustrates a problem-

3These definitions do not enforce any particular implementation
models; however, many agent architectures maintain non-terminated
tasks in a goal base.

4Our model also supports other types of replacement relationships
in relating goal versions; but for simplicity we do not discuss them
in this paper.
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iG1 iG2 comp
(iG2) iG2' comp

(iG2')

iG

failed

failed

iG2''

G2, 
decomp. 2

G2, 
decomp. 1

compensation
of iG2 compensation

of iG2'

iG3

G2, 
decomp. 2

iG21 iG22

iG32

retry_of
retry_of

Fig. 6. An example problem-solving history which includes handling of problems in achieving G2. The prefix i is used to indicate that the
history contains goal instances. Goal G is defined to have one decomposition, which expands to the subgoal sequence G1; G2; G3. Goal G2,
one of G’s subgoals, has two different decompositions defined, and both are utilised in this history (the goal instances iG2 and iG2’). The term
compensation will be defined in the next section and refers to the work done to compensate for a task’s effects. (As will be described, the of the
different decomposition instances may themselves be different).

handling execution sequence, or history, which in-
cludes multiple versions of a goal.

With this model, a task tree can then be viewed
as a ‘current snapshot’ of problem-solving, excluding
tasks which terminated unsuccessfully and have been
replaced by subsequent versions of repair tasks, but in-
cluding those subtasks of a current activity for which
work is in progress or has not yet begun.

Maintenance of such an execution history, including
maintenance of the current task tree and the relation-
ships between goal instances in the history, requires
logging of (abstracted) execution history. As will be
shown in subsequent sections, logging is required for
and supports other aspects of our methodology as well.

3.3.2. Mapping task tree information to atomic goal
states

Leveraging the relationships between goal instances
that are created via the RCPH rewriting (replacement)
model above, the execution history– in the form of
the task tree and its related terminated tasks– defines
and provides a mapping to the atomic goal states of
Section 2. That is, by enforcing the model above, a
BDI agent’s current problem-solving runtime state–
described in terms of goal instances– can always be
expressed abstractly in terms of references to atomic
goal states.

The mapping from goal instance history to atomic
goal abstractions requires a recursive definition: the
compensation tasks within a repair history must them-
selves be treated as atomic when performing the map-
ping. Without this semantics– that is, without treating

compensation activity as atomic with respect to analy-
sis of the ‘forward’ problem-handling history– it is not
possible to distinguish whether atomic goal achieve-
ment has been aborted or is still in progress.

Our high-level language, APLR, allows goal pred-
icates to be used in its definition rule bodies, of the
form:
<goalname>(<arg1>...<argN>). For exam-
ple, goal predicates are used in the definition of de-
composition rules, which define rules for implement-
ing a goal by decomposing it into subgoals. (APLR
definitional syntax will be described in more detail
in the next section). In order to represent and use
atomic goal abstractions as concepts, APLR must be
able to use atomic goal references– which are run-
time abstractions– in its definitions. This requires two
things: tying the goal references in the rules to the goal
predicates in associated rule definitions; and run-time
determination of the status of a goal reference, from
execution history. The former is required because in
writing rules that include goal status conditions, there
must be a way to tie that goal reference to specific in-
formation in the agent’s execution history. The latter
is required because an atomic goal abstraction maps to
a series of goal instances in an execution history; the
current status of the atomic goal must be derived from
that history.

APLR uses the following syntax to allow access to
the status of referenced runtime atomic goals:

status(<goal_ref>, <status_value>)
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Since a <goal_ref> must be tied to a specific def-
initional goal predicate in an associated rule, and be-
cause a rule might contain more than one predicate
with the same goal name and arguments, APLR uses
a notation in which references to run-time subgoals
are made by specifying the index position of the cor-
responding goal in the decomposition definition body,
with the rule body read from left to right. The syn-
tax: child[<i>] is used to indicate the correspon-
dence5. A reference to an ‘out-of-bounds’ index re-
turns undefined.

Once identified in this manner, an APLR goal ref-
erence then corresponds to a set of of goal instances
in the actual execution history– generated via rule
execution– which are versions of the referenced goal
element in the specification. All tasks instantiated from
the same goal element, including retries due to fail-
ure, are members of this set. We refer to the tempo-
rally newest version of a goal as its most recent ver-
sion. Only references to non-repair goals may be made
in this manner.

APLR defines the following status values for a goal
reference, reflecting the states of Section 2:

not_yet_active, in_progress,
cancelling, succeeded, aborted,
cancelled, failed, and
failed_escalation

We have introduced new status values failed and
failed_escalation, which were not a distinc-
tion made in the model of Section 2. These two
status values map to the atomic goal terminating
state cancelled of Figure 2. In APLR these addi-
tional status distinctions provide information about the
problem-solving which led to the cancellation, which
may be used to make decisions about how to handle
the problem.

Figure 7 shows how the APLR (atomic) goal states
are defined based on the status of its corresponding
goal instances, and the agent’s problem-handling his-
tory. Note that APLR semantics make no requirements
on the implementation of the logging which supports
this reasoning, which need not be homogenous across
an agent system. The ‘associated compensation’ for a
goal instance refers to a compensation task to repair
problems with a given goal instance; the compensa-
tion model itself is described in the next section. One

5APLR imposes certain definitional constraints so that such a cor-
respondence is always well-defined.

important implication of this mapping is that the sta-
tus of a referenced goal in APLR does not evaluate
to failure until recovery work on the goal has fin-
ished. Failure of a goal instance does not necessarily
indicate atomic goal failure. The example of Fig. 6 il-
lustrates this concept.

Thus, the RCPH semantics described in Figure 4
may be mapped consistently to the atomic goal states
of APLR. In the following section, we describe a rule-
based specification of RCPH which realizes this se-
mantics.

4. Realisation of the RCPH model: APLR with
BDIH

In this section we specify APLR in more detail, and
describe how RCPH, and its use by the APLR lan-
guage, is supported both via a declarative rule model
and via agent architectural support.

Our approach is developed for BDI agents, which
treat goals procedurally (e.g. dMARS [5], JACK [12],
and 3APL [11]). There are two issues with a canonical
BDI model from the perspective of agent robustness
and the RCPH model.

First, we claim that some form of execution logging
is required in general for robust agent behaviour: in
order to react robustly to problems it is necessary for
the agent to reason about its past actions. However, it
is not robust to require the agent developer to support
direct execution log management and access. Instead,
the agent architecture should support automatic execu-
tion logging at the framework level. A developer-level
agent programming language, such as APLR, should
then provide abstractions of the logged information to
support problem-handling and robust behaviour. We
name the architectural extension developed in this re-
search BDIH, where H denotes ‘History’.

Additionally, a procedural representation does not
allow reasoning about the agent’s goals [24] and is
thus limited with respect to supporting robust be-
haviour. By representing domain knowledge about
procedural goals (abstract plans) declaratively, the
agent can reason about how to revise them in response
to problems, and can separate its reasoning algorithms
from domain knowledge.

We exploit declarative domain-specific agent knowl-
edge in conjunction with logging to produce more ro-
bust agent behaviour. The APLR language allows the
developer to organise and specify this declarative in-
formation, and leverages the underlying logging trans-
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– If its corresponding goal instance has status not_yet_active, the APLR goal reference status is not_yet_active.
– An APLR goal reference G has status in_progress when:

Given G’s most recent version V:
- the state of V is not terminated, or
- the termination status of V is fail or halt; and the termination handling mode for the goal instance V is revision.
That is, G’s status is in_progress when local problem-handling for the referenced goal is still underway. This will be
the case if implementation of the the most current version or retry of a subgoal is still in progress.
(In the example of Figure 6, if child[1] were to be referenced in the context of G’s decomposition specification–
referring to G2– then status(child[1], in_progress) will hold until iG” terminates successfully).

– A goal reference G has status succeeded if the goal has terminated with success. This is the case when:
Given G’s most recent version V:
- the termination status of V is success
(Continuing the example of Figure 6, status(child[1], succeeded) will hold once iG2” terminates success-
fully).

– A goal reference G has status aborted if:
- For G’s most recent version V, V’s subsequent (atomic) compensation task has terminated with non-success.

The status types failed, failed_escalation, and cancelled are all subclasses of the atomic goal cancellation state.
These conditions must hold for all of the following:

– the subsequent (atomic) compensation task for G’s most recent version V has terminated with success.
– the termination handling mode for the goal instance V is cancelled.

The cancellation subclasses are then distinguished as follows:

– An APLR goal reference has status failed when additionally:
- G’s most recent version V has goal instance termination status fail.
Thus, a goal reference will not return failed status until the local recovery effort for that goal has completed.
(In the example of Figure 6, status(child[1], failed), referenced in the context of G’s decomposition speci-
fication, will never hold. However, if instead after N retries of G2, problem-handling had instead been escalated to iG
(terminating local goal persistence), status(child[1], failed) would then hold).

– An APLR goal reference G has status failed_escalation if a recovery process for that goal, initiated because of an
escalation goal event action, has terminated unsuccessfully. This is the case when additionally:
Given G’s most recent version V:
- the termination status of some version V’ of G was halt set via escalation from a failure event;
- the termination status of G’s most recent version V is fail

– An APLR goal reference G has status cancelled when additionally:
- G’s most recent version V has goal instance termination status halt.

Fig. 7. Mapping between APLR atomic goal states and goal instance handling mode and execution history information. The definition of an
aborted atomic goal reflects the recursive nature of the mapping.

parently to the developer, supporting a simple, unified

algorithm for agent system problem-handling.

We utilise two types of declarative problem-handling

knowledge: knowledge about detecting changes in

goal status; and information about how to semantically

compensate a goal. We take the approach that problem-

handling knowledge in a BDI context be organized

by goal and goal decomposition structure to aid ro-

bust design. Our default problem-handling method is

based on and leverages decomposition knowledge6.
(An agent system need not itself be hierarchically or-
ganized to exploit goal decomposition).

In Sec. 3, we described the way in which APLR’s
reference to atomic goal concepts are mapped– trans-
parently to the user– to the underlying goal instance
execution history. In this section, we describe in further
detail our agent programming language, called APLR,
which allows the developer to leverage the vocabulary

6By ‘decomposition’ knowledge, we mean knowledge about how
to decompose a goal into subgoals (we include means-end analysis
knowledge).
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<goal_spec> ::= 'goal: ' <head> ':-'  
  'decompositions: {' <decomp_list>  '},'
 # goal-level problem-handling knowledge
 <problem_handling_knowledge> 

<decomp_list> ::= <decomposition>| 
         <decomposition> ‘,’ <decomp_list>

<decomposition> ::=
 '{' <decomposition_spec> ','
  # decomposition-specific problem-handling knowledge
  <problem_handling_knowledge> '}'

<decomposition_spec> ::= <guard> ‘|’ <body> | <base_action>

<problem_handling_knowledge> ::= 
 'p:{' <decl_goal_event_rules> ','<compensation_specs> '}'

<decl_goal_event_rules> ::= 'g:{' <dg_list> '}' | 'g:{}'
<dg_list>  ::= <dg_rule> | <dg_rule> ',' <dg_list> 
 <dg_rule>  ::= <hguard> '->' <goal_event_action> | <dg_param_setting>
<dg_param_setting> ::= 'retries:' <posint> | 'timeout:' <posint> | 'persist:' <boolean>

<compensation_specs> ::= 'c:{' <cs_list> '}'
<cs_list>  ::= <compens_spec> | <compens_spec> ',' <cs_list>
<compens_spec> ::= <guard> '|' <body> | COMPOSITIONAL | NULL

Fig. 8. Fragment of EBNF specification of APLR syntax for specifying decomposition and problem-handling knowledge for a goal, with head,
guard, and body as defined by the 3APL BNF spec. [1]. By grouping the decompositions for a goal, all decompositions have the same ‘head’.
Thus each decomposition rule includes only the guard and body for that decomposition.

of atomic goal expression to encode high-level agent
problem-handling knowledge. APLR explicitly dis-
tinguishes goal decomposition semantics from other
‘plan rule’ semantics, such as composite plans and re-
active rules (rules of the form Condition ⇒ Action,
which may create new goals). In this paper, we de-
scribe only the structure of APLR’s goal decomposi-
tion information.

Figure 8 shows the high-level structure of goal in-
formation in APLR7. For a given goal, the user may
include both problem-handling knowledge specific
to a particular decomposition– decomposition-level
knowledge– as well as goal-level problem-handling
knowledge, applicable to all decompositions of a goal.
This definitional approach is analogous to the ob-
ject/method association in OOP languages, and has
similar organisational benefits in both definitional clar-
ity and support for refinement. APLR’s decomposi-
tion rule model is as in 3APL, where tests on ‘do-
main events’ (information about the agent’s state) may
be expressed in a rule’s guard conditions, determin-
ing the rule’s eligibility. Sections 4.1-4.2 will describe

7This specification listing does not include the syntax for specify-
ing user-defined goal-event-handling knowledge as will be described
in Sec. 5.1.

the <problem_handling_knowledge> component
of the specification. The problem-handling knowledge
associated with a goal does not need to be complete for
it to be used.

For effective problem-handling, it is necessary for
the agent to consider execution state in terms of goal
status. We assume that agents do not necessarily have
full access to the details of each other’s history and
activities. Thus APLR maintains compatibility with
agent modularity by only allowing goal status tests on
a goal’s parent and children in the task decomposition
hierarchy; this information will always be available re-
gardless of the agent’ delegation model. Thus APLR–
as described below–allows access to subgoal execution
history in defining information about a goal.

4.1. Goal status rules: Reasoning About Goal
Achievement and Persistence

We now describe how the goal status handling
modes, which support the problem-handling semantics
of Section 3, are determined. Derivation of this infor-
mation involves reasoning about both changes in goal
status, and when and which goals should be persisted.

Knowledge about goal achievement and persistence
should be applicable at all levels of an agent’s goal
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decomposition hierarchies, not only for its abstract
goals8, and thus in the context of problem-handling we
do not make the distinction that is sometimes drawn
between high-level goals and ‘abstract plans’. This
reasoning capability allows:

- decoupling goal failure from decomposition fail-
ure, and distinguishing between a goal that has failed
based on domain conditions, and one that requires re-
pair because recovery at a lower level was not success-
ful.

- detection of changes in goal status at any level of
a goal hierarchy, not only at the point of execution;
and deliberative reasoning about which changes to ad-
dress, if multiple changes are triggered simultaneously
by domain events.

Further, the ability to represent and reason about the
conditions for success or failure of a goal increases
agent robustness with respect to modelling of domain
actions: the agent terminates work on a goal when ter-
mination conditions are met, rather than simply assum-
ing success when all subgoals are executed or assum-
ing failure if a subgoal fails. The example of Sec. 1.1
illustrated that such assumptions are not always safe.

Note that any persistence logic must be able to ac-
cess an abstraction of the agent’s execution history
to be effective: the agent can not make useful deci-
sions about whether to continue to work towards a spe-
cific goal without information about previous retry at-
tempts.

To support declarative reasoning about goal status
and persistence we must associate several classes of
information with each goal instance and define how
this information is manipulated. The first type of in-
formation is goal instance termination status, one of:
success, failure, halt, and revise as in Figure 3.
Second, we define two attributes associated with each
goal instance, persist and repair.

APLR abstracts from this information, which the de-
veloper does not manipulate directly, by defining a set
of goal event actions. Application of an action termi-
nates a goal instance, causing a change in goal instance
status, which we term a goal event. (The handling of
generated goal events is described in Sec. 5.1). Fig. 9
lists the set of goal event actions and the status changes
(goal events) and attribute changes they cause.

8We assume an agent architecture where leaf goal (basic action)
success or failure status is generated as part of execution, and that
execution can change the agent’s environment as well as its internal
belief base, thus potentially triggering changes in achievement status
of any goal.

APLR then supports specification of goal status
rules, which encode the conditions under which a goal
event action may be applied and thus a goal instance
terminated. The rules allow expression of the condi-
tions under which a goal achieves success or failure, or
work is halted, as well as the conditions under which
handling of a goal is escalated. By allowing declara-
tive specification of this information, APLR supports
explicit detection and reasoning about goal achieve-
ment and persistence. Fig. 10 shows goal status rules
from the example of Sec. 1.

In general it is difficult to specify all conditions that
determine goal failure/success/cancellation in a given
domain (determination of failure can be undecidable).
It is not robust to require a developer to specify such
information on a per-goal basis. Thus default goal sta-
tus rules are required so that that the developer may
add goal status knowledge incrementally, with sensi-
ble behaviour resulting. APLR defines a system-wide
default rule for goal success, included in Fig. 10, and
supports system-wide overrideable default logic for
goal escalations and goal timeouts. (Default failure-
detection rules are not required: default reaction to fail-
ure is subsumed by our problem-handling model, as
will be described in Sec. 5). The developer then may
add more specific goal status rules, which override de-
fault behaviour where applicable. As will be described
in Sec. 5, the goal status rules, and the goal events they
generate, then allow the agent to support the problem-
handling status modes and behaviour of Section 3.2.

Fig. 11 shows examples of goal status rules defined
in APLR. Goal-level knowledge, defined for all de-
compositions of a goal, is applied only if decomposition-
level knowledge has not been defined.

4.2. Semantic Compensation

The second type of declarative domain-dependent
problem-handling knowledge specified in APLR is se-
mantic compensation knowledge. Semantic compen-
sation is used as the repair component of RCPH. The
example of Section 1.1 showed that some form of
‘undo’, or cleanup, is often key to successful recov-
ery. In a system of situated agents, interacting with
their environment, most actions ‘commit’ immediately
. Thus in an agent system, a cleanup must usually be
approached via semantic compensation, as rollback is
not feasible [21]. A semantic-compensation-based ap-
proach can be viewed as a (default) search heuristic for
replanning: often, an effective way to fix a problem is
to ‘reset’ and then re-address the problematic goal.
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The goal event attributes used by RCPH:

– repair flag: boolean
– persist attribute: one of false, local, or escalate.
– (optional) goal event MODE information

The goal event actions defined by RCPH, which utilize the attributes above:

– success action: place success event + repair=false + persist=false. May be applied only to tasks on an
execution path.

– fail action:
if task is on execution path: place fail event + repair=true + persist=local
if task is successfully finished: place revise event + repair=true + persist=escalate

– cancel action:
if task is on execution path: place halt event if an event is not already placed + repair=true + persist=escalate
if task is successfully finished: place revise event + repair=true + persist=escalate

– escalated action: place halt event + repair=true + persist=local. May be applied only to tasks on an
execution path.

– halt action: place halt event + repair=false + persist=false. May be applied only to tasks on an execution
path.

– The following two actions, which do not set a goal event, are only applicable if the goal instance has already terminated via
a previous goal event.

∗ set_escalate action: persist=escalate
∗ unset_persist action: persist=false

Fig. 9. The set of goal event actions which support RCPH, and their associated event attributes. Most of the goal event actions generate goal
status events, moving the goal instance to the terminated state. Two actions only modify the goal event attributes; not generating a new event but
changing attribute value(s), thus affecting the event’s handling. All actions may include optional specification of termination mode information
associated with the event, but for simplicity we do not include this above.

- Cancel carry_to(Equip, Loc) when it is a subgoal of 
get_equip_to(Equip_type, Doctor) if the agent learns that the Doctor is no longer at that Loc.
- Detect success of get_equip_to(Equip_type, Doctor) if the Doctor obtains equipment of that type, possibly 
by other means.
- Cancel carry(Equip, Dir) if Equip is broken.
- Cancel a carry_to goal if child goal carry has been cancelled. 
- Retry a get_equip_to goal at most 3 times.
- Timeout on locate_doctor if the goal is not achieved after 1 hour.

Default success: if all subgoals are successful and more specific rules are not defined.

Fig. 10. Goal status rules from the example of Section 1.1, expressed in pseudo-code. Note that the rules require access to the agent’s execution
history; both for reasoning about retries and escalation, and to access the status of previously-executed subgoals of a given goal. As the example
shows, the rules may also access the status of subgoals for a given goal, where the subgoal status semantics is atomic.

There are several robustness benefits to using se-
mantic compensation as a component of a default
problem-handling method: it can restore scarce re-
sources; and keep problems from propagating. Further,
it can ‘reset’ an agent and system to match implicit
assumptions made in application design: a planner is
more likely to have knowledge applicable to states that
were considered during development. Semantic com-
pensations can be used to address anticipated as well as
as unexpected exceptions, and may perform ‘forward’
repair as well as cleanup.

A key aspect of using semantic compensation in

agent problem-handling is that it can be used to

address partially- as well as fully-achieved goals,

and address both goal cancellation and failure situ-

ations in a consistent way, supporting a unified re-

pair/persistence model. Compensation can also apply

to tasks that have already completed, but whose effects

later need to be cancelled.
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goal: carry_to(Equip, Loc) :-
 decompositions: {
  #decomposition 1
  {east_of(Agent, Loc) | 
    carry(Equip, west); carry_to(Equip, Loc), 
   p:{}}, # no decomposition-level problem-handling knowledge
  # decomposition 2

{north_of(Agent,Loc) | 
  carry(Equip, south); carry_to(Equip, Loc), p:{}} 

    ... },
 #goal-level problem-handling knowledge
 p: {g:{status((child[0], cancelled) -> cancelled(self) }, 
  c:{...}   }

goal: get_equip_to(Equip_type, Doctor) :-
 decompositions: {
 {obtain(Equip_type); locate(Doctor); 
 (if ((isa(Equip, Equip_type)) && holding(Agent, Equip) 
   && location(Doctor, Loc))) 
    then carry_to(Equip, Loc)), 
  p:{} }},
 #goal-level goal status rules
 p: {g:{ retries:3, timeout:1hr,
   ~location(Doctor,Loc) -> cancelled(child[2]),
   holding(Doctor, Equip) -> success(self) },
   c: { (T) | COMPOSITIONAL }   }

Fig. 11. Defining declarative goal status knowledge in APLR. The goal is referenced with ‘self’. ‘p’: is the problem-handling component
of the specification and ‘g’ refers to its goal status knowledge component. ‘Agent’ refers to the agent executing the rules. (The decomposition
body includes an ‘if’ composite which will not be further discussed here). ‘Head’ goal and decomposition variable bindings are accessed
within the problem-handling component of the definition. Subgoals are referenced via the ‘child[N]’ construct, where ‘N’ is Nth order of
subgoal specification in the forward decomposition rule body, and the status of such a goal reference has atomic goal semantics. The ‘c:’
(compensation) specification is described below.

 goal: obtain_equip(Equip_type): {
 decompositions: {
  # decomposition 1
  {avail(Equip_type, Storeroom) | fetch(Equip_type, 
    Storeroom), 
    p:{g:{},
      c: {obtained(Equip, Equip_type) | store_nearby(Equip)}}},
  # decomposition 2
  {~avail(Equip_type, ?) | order(Equip_type), 
    p:{g: {...}
     c: {(T) | comp(child[0])}}}
    },
   #no goal-level compensation knowledge
 p: {g: { ... }, c: {}    }}

Fig. 12. Specification of compensation knowledge for a goal and
its decompositions in APLR. As with the example of Section 4.1,
variable bindings in the forward decompositions may be accessed in
defining the compensation specifications.

4.2.1. Definition of Compensation Knowledge
RCPH initiates compensation of a goal instance

during problem-handling via introduction of explicit
‘comp(<goalref>)’ goals into the agent’s goal
base, which then trigger compensation activity. (The
RCPH algorithm for task tree modification will be de-
scribed in further detail in Sec. 5). In this section we
describe how the APLR goal compensation definitions
determine the compensation activity that occurs when
a comp() goal is selected and expanded.

In APLR, a developer specifies compensation knowl-
edge for a goal in the context of the definition for that
goal. This approach is roughly analogous to defining
associated object ‘end’ methods in OO languages. As
with goal status knowledge, compensations may be de-
fined for all decompositions of a goal, or for a specific
decomposition of that goal (thus compensating for a
particular way of achieving that goal). For each con-
text, e.g. a certain goal decomposition, there may be
multiple compensations defined. The guard conditions

of a given definition determine its applicability within
its context.

The compensation definitions are decomposition
rules themselves. The implicit head of each rule is a
compensation goal comp(<goalref>), where the
argument refers to the goal of the enclosing defini-
tion, and the body specifies the goals that should be
achieved in order to affect the compensation. (A com-
pensation rule head is always a compensation goal,
and thus the head is always implicit in the specifica-
tion). During execution these rules will match against
comp(...) goals in the goal base).

A compensation decomposition rule body may in-
clude compensation goals with a subgoal reference
as the argument, e.g. ‘comp(<subgoal_ref>)’. The
construct indicates that the compensation for the given
subgoal should be initiated as part of the parent com-
pensation. APLR provides a shorthand for defining a
compensation in terms of the compensations of its sub-
goals (executed in reverse order if the ‘forward’ goals
were sequential), called ‘COMPOSITIONAL’. If all but
leaf goal compensations are defined compositionally,
this is analogous to an open nested transaction model
[8]. Non-compositional compensations require addi-
tional domain knowledge, but tailor a repair to a situa-
tion, and thus can better reflect application semantics.

Because compensation definitions are specified in
terms of a guard condition and a rule body, as are ‘for-
ward’ task decomposition rules, they allow context-
sensitive expansion of compensation goals at run-time
in the same manner. That is, compensations are not
predefined plans, but rather are expanded when the
compensation goal is selected for execution, according
to state and to which decomposition– of the goal being
compensated– was executed.
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However, the difference between compensation and
regular ‘forward’ decomposition rules is in how they
are selected and constructed: in RCPH, compensa-
tion definitions allow use of subgoal execution his-
tory in both the selection and run-time instantia-
tion of the compensation rules. Reference to (atomic)
subgoal status is allowed in compensation definition
guard conditions. Further– as with COMPOSITIONAL
compensation– the actual child subgoal execution or-
der for the goal being compensated may be used at run-
time to determine the specific compensation. The com-
pensation definition is an abstraction. Thus compensa-
tions are defined in a modular, recursive, and history-
and context-dependent manner: a compensation can be
defined in terms of subgoal compensations without re-
quiring access to the specifications of those compensa-
tions. The specification and creation of a compensation
are disjoint from its implementation, which is deter-
mined by context. This results in recursively-defined
compensations, which terminate when a compensation
is not defined in terms of subgoal compensations.

Fig. 12 continues the example of Section 1.1.
The example described ways an agent could “clean
up” problems encountered while working towards its
goals; a subset of these activities are translated to com-
pensation specifications in APLR. The obtain_equip
goal– a subgoal of get_equip_to– has two decom-
positions: one for obtaining the equipment locally
from a storeroom (‘Decomp1’), and another for order-
ing an instance of that equipment from another hospital
(‘Decomp2’). The compensation for Decomp2 is de-
fined in terms of the compensation of its subgoal. The
compensation for Decomp1 is different: it does not
make sense to ‘undo’ the fetch goal in the Decomp1
context. Instead, Decomp1’s compensation is defined
as a goal to store the equipment in the nearest store-
room. The get_equip_to goal, shown in Fig. 11, has
one only decomposition. The compensation for that
decomposition is defined compositionally: on compen-
sation, the ‘comp()’ goals for its subgoals will be in-
voked. The compensation of the obtain_equip sub-
goal will be determined by which decomposition of
obtain_equip was performed.

At run-time, a ‘goal-level’ compensation definition
will only be used if no ‘decomposition-level’ definition
is applicable. A compensation may be defined to be
NULL (take no action). Defaults support sensible be-
haviour where compensations are not specified: NULL
compensation is the default at a leaf goal (thus support-
ing retry on leaf failure), and compositional compen-
sation is the default for abstract goals. This allows the

system to ’bootstrap’ repair knowledge by defaulting
to a recursively compositional model.

Compensation of partially-executed goals via execu-
tion history. An agent’s ability to sensibly compen-
sate partially-executed goals is key to the utility of
compensation. Our model supports this in two ways.
The agent’s history maintenance allows it to determine
how much of the forward decomposition has been exe-
cuted prior to compensation initiation. If a compensa-
tion is compositional, then only the compensations for
the child goals for which work has begun, are invoked;
and if a compensation for a child goal has just been
performed prior to addressing a problem at the parent
level (as described below), the child compensation will
not be re-invoked.

Additionally, an agent’s declarative goal status de-
tection knowledge allows it to identify which subgoals
of a compensation have already been achieved. Such a
goal instance will trigger termination with status suc-
cess and thus will not be be worked on. (The agent
employs this approach for any domain goal, not just
goals that are part of a compensation.) For example,
in the hospital scenario of Sec. 1.1, the compensation
definition for the carry goal might include a subgoal:
area_non-hazardous. If a carry goal instance
is cancelled because of problems with the robot carry-
ing the equipment, then there may be cleanup to per-
form in order for this subgoal to be achieved. However,
if the subgoal’s conditions for successful termination
are already achieved, no cleanup activity will be initi-
ated.

5. A Matrix of Problem-Handling Behaviors

The declarative domain knowledge described in
Sec. 4, in conjunction with the use of logging and re-
pair as compensation, allows the agent to support a
default problem-handling method that increases in so-
phistication as the developer adds domain-dependent
knowledge. Fig. 13 shows the spectrum of behaviours
produced by this method.

Without user-defined compensations, the system
does only goal retry on failure– with no ‘cleanup’ prior
to retry– thus defaulting to a failure-handling model
used in many BDI systems. With no domain-specific
knowledge about detecting changes in abstract goal
status, the system implements bottom-up exception-
handling. Failures are triggered (only) by execution
problems, with the failure propagated to the parent af-
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Fig. 13. The spectrum of problem-handling behaviour that is generated as domain knowledge is introduced along two dimensions. The frame-
work-level algorithm remains the same; emergent behaviour becomes more sophisticated as the user adds more information.

ter after N re-attempts (where N is defined by the sys-
tem’s defaults.)

If compensation knowledge is associated only with
leaf goals, the resultant compensation behaviour de-
faults to compositional. That is, the compensation of a
task is defined in terms of the compensation of its sub-
tasks. For example, a ‘travel planning’ task could be
compensated by initiating the compensation for each
subtask (‘book flight’, ‘arrange hotel’, etc.).

Compositional compensation can often be useful,
but in some situations it may be more effective to con-
sider overall task semantics in defining the compen-
sation. For example, a ‘cooking’ task might involve
obtaining, preparing, and mixing different ingredients.
Once the food is mixed, a compositional approach to
compensation makes little sense. A sensible compen-
sation of these activities addresses the task as a whole
and depends upon context and application goals. If the
task was cancelled for external reasons (a catering job
cancelled), then the prepared food might be used else-
where. If the task has failed due to inability to ob-
tain an ingredient, then it may be possible to use the
already-mixed ingredients as a base for another dish.
The greater the extent to which compensation defini-
tions for non-leaf goals are defined– where these def-
initions may be conditional– the greater the use of se-
mantic compensation in that context.

There are three aspects to supporting this matrix
of problem-handling behaviours: defining a seman-
tics for handling goal status events, defining a set of
domain-independent rules that generate new goal sta-
tus events under various circumstances, and defining a

set of rules to manage run-time expansion of compen-
sation goals. We first outline the approach with respect
to the first two aspects, then sketch how it is realised
as sets of plan rules employed by a 3APL-like agent.
Fig. 14 summarises the information flow that supports
our methodology.
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Fig. 14. An overview of the information flow for our problem-han-
dling methodology. Additions to the APLR specification trigger do-
main rule recompilation.

5.1. Goal Status Events

Section 4.1 described the declarative information
APLR associates with a goal instance: status and per-
sistence information, encoded via goal event actions.
We define a goal status event as a change in status
information for a goal instance9. Success or failure

9Note that this use of ‘event’ is different than that of e.g. a dMars
event, since here these are not domain triggering events (which are



18

1. Terminate work on abstract goals (only) in response to goal status events.
Termination of an abstract goal recursively terminates its children, halting those that are under execution.

2 . For a selected goal status event E on task G:

If there is user-defined knowledge for handling E in that context
then { invoke the defined task tree modification }
else: {
if repair==true for G then {
if G was current then {
replace G with an instance of
a compensation goal for that task: comp(G). }

else { // task was already terminated
create a new (root) tree for the compensation comp(G)
}

}
if persist==local for G then {

create a new instance of the goal,
inserted serially after comp(G). }

}

Fig. 15. The goal-event-handling algorithm which supports RCPH. ‘Replace’ means: the new goal(s) are ‘inline’ replacements for the goal that
got the event, with respect to its task decomposition and sibling relationships. The replaced task (and its children) are no longer active and are
removed from the task tree. The compensation goal comp() goal was defined in Section 4.2.

events are generated for leaf goals as the result of ex-
ecution. Additionally, via goal status rules, goal sta-
tus events may be generated for current goal instances
at any level in the task tree, as well as for previously-
executed goals that are part of a current high-level task
but are no longer current. (A completed subgoal may
later be detected as failed due to new information; log-
ging is required to detect such situations). Thus goal
status rules are a form of monitoring.

We define a goal status event semantics that speci-
fies how the agent responds to a given event, using re-
move, repair, and retry responses, shown in Fig. 15.
‘Remove’ is removal from the goal base. ‘Repair’ is re-
alised as semantic compensation, allowing response to
partially- as well as fully-achieved goals, and both can-
cellation and failure. ‘Retry’ means to re-attempt a new
instance of the goal (perhaps via a different decom-
position). While not covered in this paper, APLR as
well as its underlying event-handling algorithm allow
the definition of user-defined handling rules to over-
ride the application of the RCPH model. Thus the re-
pair+retry model is not invoked if more specialized
event-handling knowledge overrides it for a specific
situation. Figure 16 shows an example task tree modifi-
cation process (temporal relationships between sibling
tasks are not shown). Goal event selection is discussed
below. The algorithm of Figure 15 may be applied in a
uniform manner to all parts of the goal tree, allowing
repair activities within the context of a compensation.

supported in the APLR language via rule guard conditions) but a
canonical set of architectural-level goal events.

The goal-event-handling model enforces persis-
tence of a goal until explicitly dropped, and enforces
repair prior to a reattempt10. Realisation of goal-
event-handling in a multi-agent context requires the
use of interaction protocols similar to those in [20].

5.1.1. Goal-Event-Driven Problem-handling
Leaf goal execution provides ‘baseline’ goal event

generation. When a leaf goal executes with suc-
cess, ‘persist=false’ is set for it atomically
with its execution. If a leaf goal executes with fail-
ure, ‘persist=local’ is set. We build on the
goal-event-handling semantics to define a domain-
independent set of default rules, shown in Fig. 17, that
describe when to ‘escalate’ problems by generating
new goal events. These rules can match against the log,
and do not distinguish goal events generated during
repair from those generated during ‘normal’ problem-
solving (thus repair in the context of a compensation
goal is treated in a unified way), nor between current
and ‘finished’ goals (logging supports compensation
of terminated tasks).

The default rules of Fig. 17 thus provide the
architectural-level foundation for the basic problem-
handling behaviours of Fig. 4. Then, user-defined
domain-dependent knowledge can refine this behaviour
on a goal or goal-decomposition basis by: specifying
conditions under which to cancel a current or already-
executed goal; under which a goal succeeds or fails;

10While it is beyond the scope of this paper, the persistence model
allows modelling of maintenance goals as well).
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Fig. 16. Example of goal-event-triggered task tree modification in RCPH.

- Default success: IF all child tasks of a parent task P have achieved success,⇒ apply the success action to the
task P.

- Failure by timeout: IF a task T is still under execution (still current) I time units after initiation,⇒ apply the fail
action to T.

- Escalation: IF a task T has persist==escalate, and compensation for T has finished, ⇒ apply the escalation
action to LCA(T).

Determine escalation after multiple attempts at achievement:
- IF persist==local for a task T, and have a history of N retries with previous instances of that goal, and T
failed, and if escalate_p is true,⇒ apply the set_escalate action to T.
- IF persist==local for a task T, and have a history of N retries with previous instances of that goal, and T has
failed, and if escalate_p is false,⇒ apply the unset_persist action to T.

Fig. 17. The set of goal status event rules, in pseudo-code, which support RCPH.

and under which to ‘push’ handling of a goal to its
parent goal; and defining goal timeout intervals.

Domain knowledge determines the goal level at
which a goal event originally occurs, and the nature of
its repair. As a developer adds more knowledge about
goal status detection and compensations, the problem-
handling increases in sophistication along the dimen-
sions shown in Fig. 13.

5.2. BDIH Implementation: Goal Base Revision with
Logging

In this section we outline how the problem-handling
methodology above, in conjunction with APLR-specified
domain knowledge, is mapped to sets of 3APL-like
plan rules [11]. (3APL plan rules have the form:
<head> :- <guard>| <body>, where the head of
the rule is an expression that matches a goal base pat-
tern, the guard determines rule eligibility, and the body
replaces the head in the goal base). The mapping re-
sults in a ‘compilation’ of both domain-dependent and
-independent rules, as was suggested in Fig. 14. The
resultant plan sets provide a semantics for the APLR
syntax and the methodology. Space does not permit a
detailed description, but we sketch our approach.

First, to support our problem-handling methodol-
ogy, the agent must log information about goals and
their relationships. For example, it must record ‘com-
pensation_of ’ and ‘retry_of ’ relationships between
goals, and log goal start and end times. To do this, the
agent must support two capabilities. It must be able to
represent goal instances and test for them in rule guard
conditions (goal instances are implicit in APLR, but
must be made explicit in the plan rules that implement
it); and goal base revision and action execution must
occur atomically with maintenance of execution his-
tory, or logging of that activity. As mentioned previ-
ously, we refer to the architecture that supports this ex-
tended set of behaviours as a ‘BDIH’ architecture, to
emphasize the role played by maintenance of execu-
tion history, for this general class of robustness algo-
rithms.

Goal status rules are modelled as reactive rules,
while selection of goal status event(s) to handle is
modelled as a deliberative, not reactive activity. This
allows us to cast goal status event handling as domain-
independent goal base revision. Repair rule ‘heads’
match against goal patterns (both current and previously-
executed), and the guard conditions of these rules
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test for goal status events. The rule bodies revise the
goal base according to the matched event. For ex-
ample, a failure event makes eligible a rule that re-
moves the failed goal from the goal base, then adds a
comp(GID) goal (where GID refers to the failed goal
instance), followed by a new instance of the failed goal
(a retry).

We have extended the 3APL plan rule syntax and
execution semantics to support these capabilities. The
rules perform logging actions atomically with goal
base modification, and provide support for matching
against and managing goal instances. Our BDIH im-
plementation is written in the Jess rule language [7].

We claim that the extensions required to support our
methodology result in a more robust agent architecture
by providing a consistent infrastructure-level mecha-
nism for execution logging, necessary for many classes
of agent recovery models.

The implementation supports concurrent subgoal
execution, but for simplicity our examples have in-
cluded only sequential decomposition. The agent’s de-
liberation cycle, shown in Fig. 18, extends a ‘canoni-
cal’ cycle with additional rule precedence ordering and
an explicit distinction of of meta-goals. RCPH models
meta-goals specifically for goal status event selection,
but this capability more generally allows any type of
meta-reasoning to be made explicit.

Meta-reasoning about goal status event selection is
required to support RCPH, particularly in a multi-
agent context with delegated tasks. Goal status event
rules– both the RCPH ruleset and the rules defined by
the developer via APLR– monitor the status of spe-
cific goal instances, with events generated on status
changes. It is possible for events to be detected on
more than one goal instance. Thus, given multiple goal
events, the agent must decide which subset of these
events it wants to select to handle first as in Fig. 15.
There is no way to ensure that detection of the goal
events among which the agent should choose, will all
occur in the same deliberation cycle. For example, con-
sider a multi-agent situation where message latency is
a factor. Thus, event selection itself must be a deliber-
ative process, for which a goal is posted. This goal is
a meta-goal, which is given priority in the deliberation
cycle over domain application goals. When goal event
selection is thus treated deliberatively, this allows the
agent to e.g., reason about expected windows of time
in which related goal events will be reported.

In a thread separate to the deliberation cycle, the
agent asynchronously senses changes in its environ-
ment, and the implementation supports non-monotonicity

in goal status events based on environmental changes.
The method and implementation have met our expec-
tations of utility in several test domains, including a
‘hospital’ domain like that described here.

6. Related Work

Earlier versions of 3APL supported the concept of
failure rules [10], a rule type with high precedence
in the deliberation cycle. With these domain-specific
rules, goal status changes were not represented declar-
atively, and all failure rules were applied reactively and
‘at once’ in the deliberation cycle. We take a different
approach by treating goal status events declaratively.
This supports more robust behaviour by allowing de-
liberative selection of which events to handle, and by
factoring domain-independent goal base modification
rules from compensation knowledge.

Section 5 discussed how our problem-handling ap-
proach can be viewed as subsuming an agent exception-
handling behaviour. Other approaches to exception-
handling encode handler logic within separate moni-
toring/sentinel agents, e.g. [14]. In our approach, while
we decouple the problem-handling model from the
agent’s application-level knowledge, its domain logic
is leveraged to implement repair.

Workflow systems encounter many of the same re-
covery issues as agent systems. Recent process mod-
eling research attempts to formalize some of these ap-
proaches in a distributed environment. For example,
BPEL&WS-Coordination/Transaction [3] provides a
way to specify business process ‘contexts’ and scoped
failure-handling logic, and defines a ‘long-lived trans-
action’ protocol in which exceptions may be compen-
sated for. Their scoped contexts and coordination pro-
tocols have some similarities to our nested failure-
handling model. [19] take a related approach in an
agent context. However, our approach doesn’t require
explicit definition of separate handler methods, can
generate and handle events for goals not under current
execution, and operates at a different level of granular-
ity.

The SPARK [15] agent framework is designed to
support situated agents, whose action results must be
sensed, and for which failure must be explicitly de-
tected. ConGolog’s treatment of exogenous events and
execution monitoring has similar characteristics [4].
While these languages do not directly address recov-
ery, their action model and task expressions are com-
plementary to the approach described here. Eiter et al.
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1. Apply all instantiated goal creation (‘empty head’) rules. These will create new goals.

2. Apply all applicable reactive rules, including those for detecting goal status events and
propagating goal state change.
[Implementation must handle the nonmonotonicity of goal instance status, which may
change over time]

3. Find eligible deliberative rule instantiations.

4. Select one instantiated rule to apply.
Prefer rules that match a meta-goal. (Event-selection goals are meta-goals.)
Next, prefer goal-event-handling rules. [These rules only apply to SELECTED goal events].
Of these rules, prefer user-defined rules to RCPH default rules.
Lastly, prefer plan refinement and action execution rules.
(A modification of this algorithm prefers compensation goal refinements over
’normative’ refinements.)

5. Apply the selected rule. Execution of a basic goal action terminates the matched
goal instance with status information.

Fig. 18. A deliberation engine model to support RCPH. The agent’s deliberation cycle extends a ‘canonical’ cycle with additional rule precedence
ordering and explicitly distinguishes meta-goals. While this paper has not discussed the definition of user-defined event-handling knowledge
(which may override the RCPH model), this deliberation cycle accommodates its use. The agent’s sensing cycle occurs asynchronously. (Sensing
incorporates information about domain events, including messages, into the agent’s belief base).

[6] describe a method for recovering from execution
problems by backtracking to a diagnosed point of fail-
ure, based on execution monitoring, from which the
agent continues towards its original plan. Their com-
pensations are defined at a plan segment level rather
than a goal level, and do not address scenarios where
higher-level semantic compensation is required. How-
ever, the problem-handling model we describe in this
paper can be viewed as falling into the same class
of ‘plan repair’ approaches: the use of compensa-
tion/reversal is employed as a search control heuris-
tic over the plan repair space. In Nagi et al. [16], an
agent’s problem-solving drives ‘transaction structure’
in a manner similar to that of our approach. However,
they define specific compensation plans for (leaf) ac-
tions, which are then invoked automatically on failure.
Thus, their method will not be appropriate in domains
where compensation details must be more dynamically
determined.

Work in the programming language community has
examined more sophisticated strategies than what we
propose for the default retry, which carries out N at-
tempts. An example of a ‘smarter’ strategy is work
in [9], which attempts a retry only after some change
has occurred to the information in question. There is
also a growing body from the Web service community
(e.g. [13,2]) also addressing this aspect, incoporating
it within an infrastructure. One problem with this kind
of ‘some-change’ approach is that it assumes that the
agent can explicitly detect and model those aspects of
the environment that caused the failure, which not will
not always be the case for agents that interact with the
environment. A simple-counter example is - an agent

has trouble making a phone or network connection. It
may not be able to detect that the network is back up,
independently from trying again to connect and seeing
if it is successful. On the other hand, there are scenar-
ios where the relevant change in environment is inter-
nally reflected and such an approach (‘wait until some-
thing happens’) would make more sense.

7. Discussion and Conclusions

A theme underlying the methodology of this pa-
per has been to leverage the use of logging, and com-
position of modularly-defined task-decomposition-
structured knowledge, in support of run-time recov-
ery for robust behaviour. The foundations that support
RCHP can also support other aspects of robustness.

Of course logging is only one aspect of robust-
ness and recovery and in some situations it may be be
preferable to do more than the equivalent of a ‘roll-
back’. Following this direction, in [22] we suggest that
criteria for crash recovery to an acceptable rather than
consistent state sometimes has more utility in an agent
context, and describe an approach to managing agent
recovery that addresses some of these criteria, which
allows a unified treatment of both crash recovery and
run-time failure handling, centered around an event-
and task-driven model for employing semantic com-
pensation and re-decomposition of the agent’s tasks.
A notable feature of this model is the way in which
compensations can be systematically applied to com-
pleted as well as currently-executing tasks. By treating
crashes as execution failure points, the agent is able
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to support an integrated reaction to environmental and
task changes that require repair.

Because faults can lead to an agent entering a dan-
gerous or incoherent state, it is often useful that re-
covery first focuses on steps to stabilize the system
by moving it to a known, safe state. In this paper,
we did not discuss explicit stabilization as a part of
the RCPH recovery model distinct from compensa-
tion. Stabilization can often be productively viewed
as a local activity, applied recursively in a bottom-up
manner as tasks are halted upon receipt of a termi-
nation event, prior to (possibly top-down) compensa-
tion. Thus, RCPH’s task-decomposition-structured re-
covery model can support this approach to stabiliza-
tion in an integrated manner. To do so, APLR is ex-
tended to allow specification of stabilization as well as
compensation knowledge.

A powerful aspect of the approach described in this
paper is that the execution log allows the agent to
address problems with completed tasks whose effects
later need to be compensated for. Goals introduced
to compensate for a problem are logged as any other
goal, and compensations of compensations are sup-
ported transparently. That is, a compensation goal has
distinct heuristics used in generating its subgoals, but
its execution generates a trace which can be treated as
any other decomposition. In its ability to compensate–
and to refine compensations– after goal execution, the
model addresses some of the organisational aspects
of an agent system. For example, a bank may realise
that it has overcharged customers, later requiring reim-
bursement.

The repair and compensation model of RCPH, as
well as APLR and its prototype implementation, sup-
port concurrent as well as serial task decomposition.
The model described in this paper does not address
framework-level semantics for concurrency manage-
ment. That is, concurrent execution is supported by
RCPH, but the knowledge to avoid problematic inter-
actions between concurrently-executing tasks must be
added programmatically.

However, our current research explores this impor-
tant aspect of robustness. In particular, we can leverage
the modularly-defined, task-decomposition-structured
nature of RCPH, and the logging required to support
it, to support an isolation semantics integrated with the
RCPH problem-handling model. (Sub)task isolation
characteristics may be defined compositionally and dy-
namically, where each task decomposition specifica-
tion defines the isolation characteristics of the subtasks
in that decomposition and creates its isolation context.

Compensation task isolation semantics are based on
the ‘forward’ task being compensated; compensations
are performed within the isolation context of the for-
ward task, and for compositional compensations, com-
pensation subtask isolation semantics depends upon
forward subtask isolation characteristics.

As described in [23], in related research, we are
also developing the foundational concepts underlying
RCPH in the context of a more ‘closed’ agent system
model. This model, called ARTS, utilises a shared ex-
ecution context, where problem-handling knowledge
is supported by specification of nested exception han-
dlers, and the task interface is made more formal by ex-
plicitly requiring specification of post-conditions and
maintenance conditions as well as guard (pre-) condi-
tions.

In this paper we have described how infrastructure-
level logging and the provision of declarative informa-
tion about goals can support agent recovery from run-
time problems in BDI agents. We have argued that the
use of an execution history is crucial in building robust
agents, and that it should be supported at the architec-
tural level. Thus we claim that the BDIH extensions re-
quired to support our methodology result in a more ro-
bust agent architecture independent of RCPH by pro-
viding a consistent infrastructure-level mechanism for
execution logging, necessary for many classes of agent
recovery models.

We have defined a developer-level language, APLR,
to support specification of declarative problem-handling
information, and insulate and constrain the developer
from the infrastructure-level reasoning. Knowledge
can be added incrementally to APLR, with the agents’
problem-handling behaviour increasing in sophistica-
tion as it is added. We map the information encoded
in APLR, in conjunction with the ‘framework-level’
problem-handling rules, to an implementation in the
form of 3APL-like plan rule sets. Our implementation
extends plan revision rules to support atomic logging
actions and representation of goal instances in support
of robustness.

The approach we describe is a default method that
may be overridden by domain-specific ‘plan patching’
knowledge if available. Its use of compensation allows
it to treat repair for both failure and cancellation in a
unified way, and allows higher-level compensations to
leverage lower-level ones. Using compensation, many
run-time problems can be stabilised without explicit
(inter-)action models or identification of the specific
cause of a problem.
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Our approach, with its restriction on modular spec-
ification of problem-handling information, can always
be applied in an open agent system without mak-
ing assumptions about visibility of information across
agents. While not discussed here, problem-handling
interaction protocols are additionally required to re-
alise the method in a distributed multi-agent scenario
[20]. Future work includes the integration of protocols
for multi-agent support with our 3APL-based imple-
mentation. Other plans include incorporation of under-
lying transactional support for the logging mechanisms
(via Jess’ interface with a RDBMS); development of
a simulation testbed for comparisons in further appli-
cation domains; integration of semantic compensation
with the use of task rollbacks when possible; and fur-
ther development of a model which integrates run-time
and crash recovery.
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