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Automated cell segmentation and tracking can significantly increase the pro-
ductivity of research in biology. In order to tune a tracking system for a partic-
ular video, researchers usually have to manually annotate a part of the video,
and tune the algorithm with respect to this ground truth. However, large vari-
ability in cell video characteristics leads to different trackers and parameters
being optimal for different videos. Therefore for any new video, manual an-
notation and tuning has to be performed again. Alternatively, suboptimal pa-
rameters have to be used which may result in a significant amount of manual
post-correction being required. The challenge that we address in this paper is
automated selection and tuning of cell tracking systems without the need for
manual annotation. Given an estimate of the cell size only, our method is capa-
ble of ranking the trackers according to their performance on the given video
without the need for ground truth. Our evaluation using real videos and real
tracking systems indicates that our method is capable of selecting the best or
nearly best tracker and its parameters in practical scenarios.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades single cell tracking results combined
with mathematical modeling are having an increasing impact
on cell biology (Bakstad et al., 2012; Hawkins et al., 2009).
Automated cell segmentation and tracking can significantly in-
crease the productivity of biological research. A major chal-
lenge in developing such a system is the large diversity of cell
morphology and motility as well as variations in recording con-
ditions (Figure 1). This diversity has resulted in a large num-
ber of proposed cell tracking systems, where each system has
parameters that need to be specified (Meijering et al., 2012).
By a cell tracking system (CTS) we mean a combination of al-
gorithms that is capable of both locating cells in video frames
(cell segmentation) and maintaining cell identities throughout
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Fig. 1. Examples of a diversity in cell morphology and recording condi-
tions. The images show neural progenitor cells (left, with permission from
Al-Kofahi et al., 2006) and B-lymphocytes in micro-grids (middle, right).

the video (data association). These two tasks can be approached
separately (Padfield et al., 2011) or within a single algorithm
(Delgado-Gonzalo et al., 2011). Furthermore, by a CTS we
mean a combination of such algorithms with their parameters
fixed to specific values. For example, we treat the same soft-
ware with different parameters as two different CTSs. Occa-
sionally by “CTS for the given video” we also mean “results of
the CTS given the video as input”.

Due to the variability in experimental conditions, optimal
combinations of algorithms and parameters can vary for dif-
ferent videos, even for the same cell type (Kan et al., 2013). In
order to find the best CTS for a given video, a practical solu-
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Fig. 2. Where segmentation and tracking steps are separated, the previous
method is capable of choosing the best tracker, given a fixed segmentation
(Kan et al., 2013). In this work, we address a more general problem of
choosing among a number of CTS, where a CTS can have a combined
segmentation and tracking steps. Both methods operate in the absence
of the ground truth.

tion is to annotate a part of a video and use the resulting ground
truth to evaluate the performance of different CTSs. However,
if a video from another experiment needs to be processed, the
previously best found CTS may not be the best anymore, and
ideally, a part of the new video needs to be manually annotated.
Even within a single long video, a CTS tuned on one part of
it may not be the best for another part. Manual annotation for
each new video or different parts of the same video can severely
compromise the effectiveness of an automated CTS.

Consider the following real example from an Australian med-
ical research institution. A lab recorded a set of novel cell
videos. The analysis of results required cell tracking, and mul-
tiple software packages appeared suitable for this task (e.g.,
Chakravorty et al., 2014; de Chaumont et al., 2012). Initial
ground truth could have been created totally manually, but it
was found beneficial to use a CTS with imperfectly guessed pa-
rameter values and then correct the automated results. It then
took a researcher-biologist a few hours to choose and guess pa-
rameters and a few more hours to manually correct results in
order to produce the ground truth (cell outlines and identities
over 200 frames) for only 3 cells. This is a large amount of
manual time, given that more cells are required for a represen-
tative ground truth and that the lab usually produces a few novel
videos each year.

Here we address this challenge with a system for ranking
CTSs without the need for ground truth. To the best of our
knowledge, this is the only system of its kind in cell tracking
literature. Given a video (or a fragment) and a range of candi-
date CTSs, the user is only asked to provide an estimate of the
cell size. Our system then ranks the CTSs according to their
performance on the given video.

The problem of automated performance estimation has been
previously addressed for medical image segmentation and
tracking for surveillance cameras (SanMiguel et al., 2010;
Warfield et al., 2004). The previous methods rely on knowledge
specific to their respective domains and are not directly appli-
cable to CTSs. In the context of cell tracking, given a video and
a fixed segmentation step, a previous method (Kan et al., 2013)
is capable of comparing data association algorithms (Figure 2).
A more general problem of choosing among a number of CTS,
where both segmentation and tracking steps can differ, remains
an open research challenge that we address in this work.

Here we propose a novel method for ranking CTSs without
the need for ground truth and using minimum user input. We
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Fig. 3. A CTS produces a detection (set of circles) and a set of links, where
each link can denote a tentative cell division or motion. After a manual
validation, each link can be classified into correct (bold green, connects two
correct measurements), wrong (thin red, wrong association or incorrect
measurements), and missed (dashed blue, absent in the output of the CTS).

design a scheme of pairwise comparisons (Section 2.2), and
employ a special case of an optimal assignment problem to
match detections (Section 2.3). Finally, we develop a general
face validity test for a CTS (Section 2.4). We find that together
these components based on minimum prior information can be
effective in practical scenarios (Section 3).

2. Methods

2.1. Cell Tracking Preliminaries

A CTS is a function that takes a video as input and produces
a detection and a set of links as output. A detection is a set of
measurements, and a measurement is a vector that comprises a
numerical description of each located object (tentative cell). A
CTS can produce different numbers of measurements for differ-
ent frames. Each measurement can contain information such as
the cell centroid location, mean brightness, size, etc. While dif-
ferent CTSs may differ in the type of information they produce,
we assume that cell centroid location is always present, and in
this paper, we usually treat measurements as cell centroid lo-
cations. Finally, a link is a pair {~mi, j, ~mi+1,k} of measurements
from consecutive frames i and i + 1 ( j, k index measurements).
Links represent tentative moves or division events (Figure 3).

Performance of a CTS is a measure of accuracy of detec-
tions and links. Given a video, a resulting detection and a set
of links, performance is measured with respect to some man-
ual annotation (ground truth). Based on the manual annota-
tion, each measurement from the detection can be classified as
either correct or spurious (Figure 3), where the spurious mea-
surement is a measurement that does not originate from any
cell. Additionally there can be missed measurements when a
cell is not represented with any matching measurement. Fur-
thermore, each link can be classified as either correct, wrong,
or missing (Figure 3). The CTS performance is then computed
as F = Ncorr/(Ncorr + Nwrong + Nmiss). This equation defines an
F-score, and it has been shown that such a performance mea-
sure adequately represents tracking accuracy (Kan et al., 2013).
Importantly, the above performance measure is defined with re-
spect to a fixed input video. For example, one CTS can be better
for one video, and another for a different video.
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Algorithm 1 A method for ranking CTSs
Input: S = {CTS 1, . . . ,CTS K}; par ={3 parameters, see text};
Output: S, ordered according to the performance from high to
low;

1: for each CTS i ∈ S
2: if not FaceValidity(CTS i, par)
3: S = S\CTS i;
4: end
5: end
6: {#winsi} = PairwiseComparisons(S, par);
7: S =order according to decreasing {#winsi};
8: return S

Finally, CTSs can be implemented as two sequential steps:
cell segmentation that produces a detection, and data associ-
ation that creates links over the detection (Kan et al., 2011;
Kanade et al., 2011). Here, a cell segmentation algorithm can
produce a detection first, and then different tracking algorithms
can produce different versions of the links for the same detec-
tion. Given a fixed detection, each version of the links can be
characterized by a quantity called the ED-score (see the Ap-
pendix). It has been shown that the ED-score correlates with
the F-score in practical situations (Kan et al., 2013). Note that
ED-score does not require ground truth to be computed. In con-
trast, the computation of the F-score is based on manual anno-
tation. Our CTS ranking system employs the ED-score in pair-
wise comparisons. Among other additions, we supplement the
ED-score with a new method of detection matching presented
below.

2.2. Method Overview

The overall aim of this study is a system capable of com-
paring relative the performance of CTSs while requiring min-
imal input from the user. While employing a previously pro-
posed ED-score for this task, the three major challenges are (1)
matching detections from different CTSs; (2) using minimum
prior knowledge; and (3) turn pairwise comparisons into a rank-
ing. We address the first challenge in Section 2.3. Furthermore,
where possible we use rather general assumptions. Finally, the
ranking challenge is addressed using cross-comparison based
rankings with the exclusion of infeasible solutions.

A high level overview of our solution is presented in Algo-
rithm 1. Given a set of results from candidate CTSs for the
given video sequence, we first eliminate infeasible CTSs using
the FaceValidity test (Section 2.4). We then perform pairwise
comparisons of the remaining CTSs, and for each CTS compute
the total number of wins across all comparisons. At the core of
our method is a single comparison of two CTSs, in which one
of the the CTS results is estimated to be better than another
(“win”). We start a detailed presentation of our method with a
description of a single pairwise comparison in the next section.

Given a video sequence, and the results of two CTSs for this
sequence, the aim of the comparison is to estimate which set
of results is better without the need for ground truth. Recall
that the results of a CTS can be represented as a detection and

Fig. 4. An outline of the pairwise comparison procedure. Cells are rep-
resented with circles for convenience only. Cells need not to be round in
videos.

a set of links constructed over this detection. In practice, dif-
ferent CTSs tend to produce different detections for the same
video. For example, by making different mistakes with spuri-
ous objects. Therefore, the main idea behind our comparison is
to align the two detections, and produce a synthetic detection as
a new basis for the two sets of links (Figure 4). We then use the
synthetic detection and the links for computing ED-scores, and
choose the CTS with the lowest ED-score as the winner. It has
been shown that in this setup a lower ED-score indicates more
accurate tracking (Kan et al., 2013).

Note that in any given detection, some measurements corre-
spond to real cells and some measurements are spurious. In two
different detections D1 and D2, some measurements may cor-
respond to the same cell, despite having different values. We
therefore start with an assignment procedure that determines
which of the measurements from D1 and D2 are likely to origi-
nate from same cells. Such measurements are then merged (av-
eraged) in the synthetic detection. The ED scores and the deci-
sion are ultimately based on a synthetic detection and links that
are adjusted accordingly. However, as we show below, the syn-
thetic detection is constructed in a way that does not severely
distort original detections. Therefore, the decision based on the
ED scores reflects the original results from CTSs (Section 3).

2.3. Detection Matching Scheme

The synthetic detection is generated via matching detections
from two CTSs. Our matching is based on a linear assignment
formulation. Linear assignment has been previously explored
in the context of cell tracking (Jaqaman et al., 2008; Kirubara-
jan et al., 2001). However, one important difference is that
previous methods assign measurements across frames, where
the measurements are produced by a single CTS, whereas we
assign measurements from two different CTSs produced for
the same frame. This means that in our case, a measurement
from one frame cannot be assigned to a measurement from an-
other frame. In general, the probability of assignment within
one frame depends on the assignment in the previous frame via
tracking links. However, a priori we do not know how good the
tracking is (which motivates the present work), and therefore
we perform the assignment independently for different frames.

For a given frame, let U = {~ui, i = 1, . . . , n} and V = {~υ j, j =

1, . . . ,m} be two sets of measurements produced by the two
CTSs (n = |U |, m = |V | and in general n , m). A measure-
ment from U can have a corresponding measurement from V
which would mean that the two measurements correspond to



4

u1 

un 

vm v1 

R1 R2 

R3 R4 

off diagonal 
elements = 0 

vm+n 

un+m 

matched 
ui and vj 

Fig. 5. Assignment and scoring matrices are divided into 4 regions, where
R1 corresponds to matched measurements, R2 and R3 correspond to unas-
signed measurements, and R4 is a technical region. Our convention is that
in an assignment, off diagonal elements in R2 and R3 are zero and R4 is a
transpose of R1.

the same cell. Alternatively, any measurement from U or V can
remain unassigned. The latter implies that the measurement is
either spurious or valid, but with a lost (not detected) matching
measurement from the other CTS.

An assignment is a square binary matrix where each row
and each column has exactly one non-zero element. In appli-
cation to our case an assignment is a matrix A with n + m rows
and columns. The first n rows (respectively, m columns) cor-
respond to measurements from U (respectively, V). The last
m rows and n columns artificially added to allow unassigned
measurements. Matrix A can be divided into four rectangles R1
to R4 (Figure 5). Here A(i, j) = 1 in R1 denotes a matching
between ~ui and ~υ j: these measurements are assumed to orig-
inate from the same cell. Furthermore, A(i, j) = 1 in R2 or
R3 denotes a non-matched ~ui or ~υ j. Finally, R4 does not have
a problem-specific interpretation and is only maintained to en-
sure that each row and column in the assignment has exactly
one non-zero element.

We now define a scoring matrix W of the same size as an
assignment matrix. For a given assignment A, elements of W
reflect the probability of the assignment. The total score is then
defined as Ptot(A) =

∏
A(i, j)=1

W(i, j), and the optimal assignment

is the one that maximizes the total score A∗ = arg maxA Ptot(A).
Note that our definition of the assignment is compatible with
the general combinatorial optimization problem, and the op-
timal assignment can be found using the Hungarian method
(Munkres, 1957). The problem that we address next is how
to define W.

2.3.1. Scoring Matrix
Recall that we have introduced dummy rows and columns in

order to allow disconnected ~ui and ~υ j, while maintaining A as
an assignment. By our convention, a non-zero diagonal element
in R2 (A(i, j) = 1, i ≤ n, j = m + i ) is a unique way to denote
disconnected ~ui, which implies a restriction that A(i, j) = 0 for
i ≤ n, j , m + i (similarly for R3). Moreover, having all ~ui con-
nected implies all zeroes inside R2 while an assignment requires
having non-zero elements in leftmost columns. Therefore we
use compensating region R4: missing non-zero elements can be
added here. In order to have a unique way of compensation, we
restrict R4 to be a transposed image of R1: A(n+ j,m+i) = A(i, j)
for (i, j) ∈ R1. Importantly, we introduce the above restrictions

by means of scoring. This way, we can use a general purpose
optimal assignment method without modifications.

Lemma: Let scores W(i, j) > 0 and W(n + j,m + i) = W(i, j)
for (i, j) ∈ R1 and let off diagonal scores in R2 and R3 be zero
and diagonal scores in these regions be positive. There exists an
optimal assignment that satisfies the restrictions from the above
paragraph.

Proof: There exists a trivial assignment with all diagonal el-
ements of R2 and R3 set to ones and zeros elsewhere, and a
positive total score. On the other hand, any assignment that
involves non-zero off diagonal elements in R2 and R3 has the
total score of 0. Therefore, any optimal assignment does not
have non-zero off diagonal elements in R2 and R3. Further-
more, consider an assignment with 0 off-diagonal elements and
some non-zero diagonal elements in R2 and R3. These non-zero
elements restrict the use of certain rows and columns in R1 and
corresponding columns and rows in R4, which means that it is
possible to have R4 as a transposition of R1. Finally, consider
an assignment where R1 is not a transposition of R4. If prod-
ucts of scores from R1 and scores from R4 differ, we can choose
the region with the highest score and make the other region as
a transposition. This will produce a valid assignment with a
higher total score. �

After adopting the scoring scheme described in the lemma,
we still need to choose weights for elements in R1 and diagonal
elements in R2 and R3. The problem with choosing such scores
is the lack of detailed information about CTSs and the video
(e.g., rate of spurious measurements). Therefore, we observe
that A(i, j) = 1, (i, j) ∈ R1 implies A(i,m+ i) = 0, A(n+ j, j) = 0
and vice versa. Here A(i, j) = 1 is the hypothesis H1 ={~ui and ~υ j

originate from the same cell}, and A(i, j) = 0 is the hypothesis
H0 ={~ui and ~υ j originate from different cells OR both are spu-
rious measurements OR one originates from a cell and another
one is spurious}. Therefore, finding an optimal assignment is
related to a binary classification problem: given ~ui and ~υ j we
need to decide which hypothesis is more plausible. We can use
the Euclidean distance di j = ||~ui −~υ j|| as a classification feature,
and then we have P(Hs|di j) = P(Hs) · P(di j|Hs)/P(di j), where
s = 0, 1. In order to choose the hypothesis we only need to
compare numerators.

Let d99 be the 99th percentile of the cell diameter (provided
by a user). We have that if di j > d99, then P(di j|H1) is small. In
this case, it is relatively safe to choose H0, since H1 is highly
unlikely regardless of the prior P(H1). Now consider P(di j|H0).
We assume that the locations of both real cells and spurious
measurements follow a uniform distribution within a circle with
diameter L (a dimension of a video frame). The cumulative
distribution of distances between two random points within the
circle (Hammersley, 1950) is then

F2(x) = (2x/L)2 I1−( x
L )2 (1.5, 0.5) + I( x

L )2 (1.5, 1.5) , (1)

where Ia(b, c) is the incomplete beta function. Note that L char-
acterizes dimensions of a video frame and it is reasonable to as-
sume d99 � L. For example, if di j ≤ d99 and d99 ≤ 0.1 · L, then
F2(di j) ≤ 0.04. We conclude that if di j ≤ d99 then P(di j|H0)
becomes unlikely, and as an approximation in this case we can
choose H1.
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Returning to the assignment scoring problem, we define an
allowed set R∗1 ⊆ R1 as a set of index positions (i, j) ∈ R1,
where di j ≤ d99. For elements from R1\R∗1 (not allowed),
we set W(i, j) = 0, which essentially prohibits matching if
the assignment hypothesis H1 is unlikely. On the other hand,
we set diagonal elements in R2 and R3 to some ε such that
min

(i, j)∈R∗1
W(i, j) > ε > 0. This penalizes leaving the measure-

ments unassigned when hypothesis H0 is unlikely. We do not
completely prohibit unassigned measurements where di j > d99,
because if n , m then it is impossible to assign all measure-
ments to each other.

Furthermore, scores W(i, j), (i, j) ∈ R∗1 reflect conditional
probabilities P(~ui, ~υ j|~ui, ~υ j originated from ~x), where ~x is an un-
known true measurement. Here we make another assumption,
that given cell ~x, then ~ui and ~υ j are independent and identically
distributed according to a multivariate normal distribution with
mean ~x and some unknown positive definite covariance matrix
S . Without the loss of generality, components of ~ui can be
rescaled (change of units), and it is feasible to assume indepen-
dence of variations, so that S is diagonal and S (i, i) = σ (con-
sider for example, a distribution of measured 2-dimensional cell
centroid locations: it is reasonable to expect a symmetric distri-
bution). A maximum likelihood estimate of ~x is then (~ui +~υ j)/2,
and we have

P(~ui|~ui, ~υ j from ~x) = (2π)−
k
2 · |S |−

k
2×

× exp
{
−

(
~ui − ~υ j/2

)T
S −1

(
~ui − ~υ j/2

)
/4

}
. (2)

Note that with our scoring matrix the set R∗1 is fixed (from the
data), and the choice of optimal assignment depends only on the
relative scores within R∗1. We therefore can ignore terms related
to S , and note that log P(~ui, ~υ j|~ui, ~υ j from ~x) ∝ −||~ui − ~υ j||

2.

Finally, we apply a log transformation to the total score
(equation 2.3), negate, and define the total cost function that we
seek to minimize: C =

∑
i, j≤n+m

A(i, j) ·W(i, j). We use a special

value MAX1 for cases that involve log 0, and then the scores for
allowed assignments (i, j) ∈ R∗1 are W(i, j) = ||~ui−~υ j||

2; for pro-
hibited assignments (i, j) ∈ R1\R∗1 are W(i, j) = MAX1; for re-
gion R4 (transposed scores from R1) are W(n+ j,m+i) = W(i, j),
(i, j) ∈ R; the scores for off-diagonal elements in R2 and R3 are
set to MAX1; and the scores for diagonal elements in R2 and R3
are set to MAX2. Here MAX1 > MAX2 > max

(i, j)∈R∗1
W(i, j).

Using the above scoring scheme, we prohibit making assign-
ments for measurements that are too far apart (di j > d99). The
remaining measurements are assigned in a way that minimizes
the sum of Euclidean distances between the assigned measure-
ments. After the optimal assignment is found, matched mea-
surements are replaced with their means in the synthetic de-
tection D′. Unmatched measurements from either U or V are
copied to synthetic detection without modifications. As a re-
sult, we have two sets of links L1 and L2 that are defined on
the common detection D′ (Figure 4). We can now calculate
the ED-score for each set, and the CTS that results in a smaller
ED-score wins.

2.4. Face Validity Test

The previous section focused on matching detections from
different CTSs. In this final part of our methodology we fo-
cus on results from a single CTS. The aim here is to perform
an initial screening and make a decision whether a particular
CTS appears to be feasible (FaceValidity(CTS i) in algorithm
1). Recall, that for a given detection a link is a pair of measure-
ments. Let a length of the link be r = ||mi, j − mk,l||, where i, k
are frame numbers and j, l index measurements within a frame.
(Note that the two measurements are now taken from the same
detection, not from different detections as in the previous sec-
tion.) We can then define three probability density functions
(PDFs). First, Pall is the distribution of lengths of all possible
links in a detection. For example, if frame 1 has two measure-
ments and frame 2 has three, then there are 6 possible links.
Second, Pwrong is the PDF of lengths of wrong links as deter-
mined by the ground truth. Third, Pwithin is the PDF of links
that connect all possible measurement pairs within frames. For
example, if frame i has three measurements, there are three pos-
sible within-links. Note that Pall, Pwrong and Pwithin are defined
over the entire input video sequence.

Importantly, Pall and Pwithin can be computed without the
ground truth. Furthermore, it was shown theoretically and ex-
perimentally that in videos that can be tracked it is safe to as-
sume Pwithin ≈ Pwrong (Kan et al., 2013). Therefore, we com-
pare Pwithin and Pall using the Kolmogorov-Smirnov test (KST).
Failing to reject the null hypothesis that Pwithin ≈ Pwrong = Pall

at significance level α, indicates that there are no correct links
that can be made in Di (note that Pall is a convex combination of
the PDFs of correct and wrong links). In this case, CTS i fails
our face validity check.

Moreover, we note that the results of certain CTSs are poor
due to a large number of spurious locations. In this case, the
density of such locations can be abnormally high. Therefore,
in each frame, for each location we find its nearest neighbor
and compare the distance to the nearest neighbor dNN with our
estimate of the cell size d99. Relation (dNN < d99) indicates that
the CTS reports two distinct cell locations that are suspiciously
close to each other. We then look at the proportion of such
suspicious locations among all locations in Di. If the proportion
β is high, then CTS i fails our face validity check.

In total, our method has 3 parameters (d99, α, β). Here, d99
is an estimate of the largest cell size in the video, α is the sig-
nificance level for the KST, and β is the proportion of the sus-
picious locations that we can tolerate. Note that α and β are
independent of the video. We set α = 0.1 and β = 0.5. In
our evaluation, we find that our results are not very sensitive to
variations of α and β.

3. Evaluation Results

We validate the utility of our method by considering the fol-
lowing practical situation. A number of experiments resulted
in 5 cell videos. One of the videos (ak) shows the devel-
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Table 1. Eleven CTSs used in our evaluation. The CTSs are constructed from previously reported algorithms: Sobel edge detection, Hough transform,
Otsu thresholding, Gaussian filtering, cell tracker nenia (Kan et al., 2011), particle tracker u-track (Jaqaman et al., 2008).

CTS name Description
hough − 15 − nenia − 20,
hough − 20 − nenia − 50

Sobel edge detection; Hough transform with the accumulator array threshold set
to 15 and 20; nenia tracker with the gating distance set to 20 and 50

otsu − nenia − 20,
otsu − nenia − 50

Otsu thresholding; nenia tracker with the gating distance set to 20 and 50

gauss − 0.22 − nenia − 20,
gauss − 0.22 − nenia − 50,
gauss − 0.25 − nenia − 20,
gauss − 0.25 − nenia − 50

Gaussian filtering; locating local maxima with the fluorescence threshold set to
0.22 and 0.25; nenia tracker with the gating distance set to 20 and 50

gauss − 0.5 − utrack − 2,
gauss − 0.5 − utrack − 10

Gaussian filtering; locating local maxima with the fluorescence threshold set to
0.5; u-track tracker with default parameters, except for the standard deviation

multiplication factor which is set to 2 and 10
rand − 30 − nenia − 200 30 random uniformly distributed locations; nenia with the gating distance of 200

opment of neural progenitor cells1 plated into poly-L-lysine
coated Terasaki plate micro-wells and imaged using an inverted
Olympus microscope (Al-Kofahi et al., 2006). The other videos
show proliferation of naive B cells stimulated with CpG DNA
through Toll-Like Receptor 9 as described previously (Hawkins
et al., 2009). The stimulated cells were placed in either 250 µm
hexagonal wells (hex.∗) or 125 µm micro-grids (square) and
imaged every 2 minutes using an Axiovert 200m microscope
(Figure 1). On the other hand, we have a number of CTSs
constructed from previously reported algorithms (Table 1). We
set most of the algorithm parameters to their default values,
set some parameters arbitrarily, and some parameters based on
our knowledge of video frame sizes. We construct 10 fully
parametrized CTSs and in addition we use a random CTS that
produces results irrelevant to the input video (Table 1).

We note that different CTSs can have different performance
on different videos (Kan et al., 2013). Therefore, the task is to
find the best CTS for each of the given videos. The task can
be approached by manually annotating a part from each video
and maximize F-scores with respect to these annotations (Sec-
tion 2.1). However, such an approach tends to be tedious and
subjective, and instead we ask whether it is possible to achieve
a similar result but without the manual annotation. Further-
more, different parts of the same video can present different
cell dynamics (e.g., changing from a low to a high cell density).
Therefore, we elaborate our question: whether it is possible to
find the best CTS for different short fragments of each video
without manual annotation. To this end, we define several video
sequences (Table 2) such that the sequences include a variety of
conditions (e.g., cell divisions, leaving the field of view, high
cell density, and abrupt movements). Cell sizes (parameter d99)
are estimated manually by considering about ten cells in each
sequence. We then use our system (algorithm 1) to rank CTSs
for each sequence, and verify the correlation between our re-
sults to the results obtained using manual annotation. See Table
2 for results, and note that this table has been produced using
11 fully parameterized CTSs mentioned above and summarized

1Available online from the Cell Cycle journal website at
http://www.landesbioscience.com/journals/cc/supplement/alkofahi.zip

in Table 1.
With each video sequence as input, we run our 11 CTSs, and

rank the CTSs using our method. For the purposes of evalua-
tion, we also record the F-scores for each CTS using a ground
truth. It is perhaps not surprising that for every input there is
a large variation in the F-score, which means that choosing a
good CTS (e.g., proper parameter settings) is necessary for ef-
fective tracking. Importantly, in every case one of our top 3 re-
sults achieves the maximum or near maximum F-score, which
indicates that our method can eliminate the need for ground
truth collection in practical cases.

Furthermore, we used two alternative methods for selecting
the best CTS without manual annotation. The first is the random
choice, and the second is based on the variance in the number
of links. The intuition here is that a good CTS is expected to
exhibit consistency in the linking, and one can select the CTS
with the minimum variance in the number of links (which can
be computed without manual annotation). Our method clearly
outperforms both baselines (Table 3). Moreover, we note that
the poor performance of the variance based method is often due
to the inability of this approach to identify the random CTS. We
therefore tested a hybrid method that first uses our face validity
test to exclude CTSs that appear to be inappropriate, and then
selected the CTS with the minimum variance. Our selection
method outperforms this hybrid method as well (Table 3). We
conclude that our results validate the utility of our method.

4. Discussion and Conclusion

In this work, we address the problem of ranking CTSs for a
given video. It is assumed that we are given a set of pre-selected
CTSs, where each CTS includes some fixed parameter setting.
The pre-selection itself is outside of the scope of this study.
Importantly, this is not a disadvantage specific to our method,
because even with manual annotation, a researcher still needs
to identify a set of CTSs to try. A practical approach can be
to choose a small set of well-established methods for which a
reliable implementation is available, set parameters to recom-
mended default values where possible, use common sense for
other parameters, and, finally, for the remaining parameters try
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Table 2. We ran each of the 11 CTSs on each of the 10 sequences (extracted from 5 real cell videos). For each sequence, we then ranked the 11 CTSs
according to the tracking quality as perceived by our method (but without ground truth). Subscript of the sequence indicates the number of frames.
“Valid” is the number of CTSs that pass our validity test (out of 11). “Mean±SD” and “Max” show the mean, standard deviation, and maximum of the
F-scores among 11 CTSs for each sequence. The columns on the right show the F-scores of the top 3 CTSs selected using our method. The maximum score
is underlined (if achieved).

Sequence Cells/Frame Valid Mean±SD Max 1st 2nd 3rd
ak10 7 ∼ 9 3 0.16 ± 0.20 0.76 0.76 0.04 0.23
ak15 5 ∼ 7 2 0.18 ± 0.24 0.83 0.83 0.40 0.06

hex.610 2 ∼ 3 10 0.80 ± 0.32 1.00 0.89 1.00 1.00
hex.615 3 ∼ 4 9 0.69 ± 0.35 0.96 0.96 0.95 0.95

hex.1610 16 9 0.68 ± 0.33 0.94 0.94 0.94 0.94
hex.1615 16 9 0.69 ± 0.34 0.98 0.97 0.98 0.96
hex.2210 18 ∼ 20 10 0.62 ± 0.33 0.94 0.92 0.92 0.94
hex.2215 20 ∼ 21 9 0.66 ± 0.34 0.98 0.97 0.97 0.98
square10 32 ∼ 33 8 0.51 ± 0.45 0.97 0.97 0.97 0.97
square15 32 ∼ 33 9 0.53 ± 0.46 0.98 0.98 0.98 0.98

Table 3. Performance comparison between our method, random selection,
variance based selection (VB), and the hybrid method. For each sequence,
the best CTS is selected without ground truth, and the resulting F-score is
noted. In addition, we report the mean of each column.

Sequence Our method Rand. VB Hybrid
ak10 0.76 0.06 0.02 0.23
ak15 0.83 0.08 0.02 0.40

hex.610 0.89 0.89 0 0.89
hex.615 0.96 0.95 0 0.95
hex.1610 0.94 0.31 0 0.94
hex.1615 0.98 0.98 0.01 0.98
hex.2210 0.92 0.92 0.01 0.59
hex.2215 0.97 0.71 0.01 0.98
square10 0.97 0.97 0.01 0.01
square15 0.98 0.79 0.98 0.98

mean 0.92 0.67 0.11 0.69

different random values within reasonable bounds. Of note, our
method can be trivially parallelized, e.g., by running different
comparisons on different cores.

Recall that we focus on the F-score (Section 2.1) as a mea-
sure of tracking performance. In fact, there are three aspects
of the CTS performance: accuracy of outlining cells in frames,
detection errors (missed cells, spurious detections), and track-
ing errors (swapping tracks, losing tracks). As was explained
earlier (Kan et al., 2013) the F-score definition of performance,
while targeting the links, indirectly addresses the accuracy of
outlines and detections. Indeed, a missing detection implies a
missing link accounted for in the F-score. Moreover, the accu-
racy of cell boundaries is categorized by a user into “accepted”
leading to a correct detection and “not accepted” leading to a
missing detection. Finally, the F-score correlates with some
other common performance measures (Kan et al., 2013).

In summary, we propose a novel method for ranking cell
tracking systems with minimum input (estimate of the cell size)
required for each new video. Our method identifies CTSs that
are likely to perform well, and runs pairwise comparisons of
such CTSs. A pairwise comparison is implemented using an
optimal assignment-based augmenting and a previous approach

for ranking data association algorithms. Our results indicate
that the new method can effectively assist in CTS selection and
tuning in practical scenarios. Furthermore, our method is suf-
ficiently general for potential application to tracking systems,
e.g., for multiple particle tracking.
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Appendix

Full details of ED-score computation can be found in (Kan
et al., 2013), and here we only briefly outline the computa-
tion steps. Consider a tracker (data association algorithm) that
takes a detection as input and produces a set of links as output.
Within the detection, let S all be the set of all possible inter-
frame links (pairwise connections across subsequent frames),
and S wn be the set of all within-frame links (pairwise con-
nections within each frame). Then PDFs of link lengths in
these sets can be empirically estimated and denoted accord-
ingly Pall and Pwn. Let the output of the tracker comprise N
links with lengths Ri. Now the mirrored precision is defined as

MP = (1/N)
N∑

i=1
Pwn(Ri)/Pall(Ri).

Furthermore, recall that ED-score is used to estimate rela-
tive performance within a group of trackers, where each tracker
produces a set of links. Let N∗ be the size of the largest set,
whereas the tracker for which ED-score is currently computed
produces N links. The mirrored recall is then defined as

MP =
1

N∗

 N∑
i=1

Pwn(Ri)
Pall(Ri)

+

δ∑
j=1

Pwn(R∗j)

Pall(R∗j)

 , (.1)

where R∗j is δ = (N∗−N) random dummy lengths sampled from

distribution Pw. Finally, we define ED =
√

MP2 + MR2.
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Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner,
Y., et al., 2012. Icy: an open bioimage informatics platform for extended
reproducible research. Nature methods 9, 690–696.

Delgado-Gonzalo, R., Chenouard, N., Unser, M., 2011. A New Hybrid
Bayesian-Variational Particle Filter With Application To Mitotic Cell Track-
ing, in: 8th IEEE International Symposium on Biomedical Imaging,
Chicago, Illinois, USA. pp. 1917–1920.

Hammersley, J., 1950. The distribution of distance in a hypersphere. The
Annals of Mathematical Statistics 21, 447–452.

Hawkins, E.D., Markham, J.F., McGuinness, L.P., Hodgkin, P.D., 2009. A
single-cell pedigree analysis of alternative stochastic lymphocyte fates. Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica 106, 13457–13462.

Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L.,
Danuser, G., 2008. Robust single-particle tracking in live-cell time-lapse
sequences. Nature Methods 5, 695–702.

Kan, A., Bailey, J., Leckie, C., Markham, J., Dowling, M.R., Chakravorty, R.,
2011. Automated and semi-automated cell tracking: Addressing portability
challenges. Journal of Microscopy 244-2, 194–213.

Kan, A., Leckie, C., Bailey, J., Markham, J., Chakravorty, R., 2013. Measures
for Ranking Cell Trackers without Manual Validation. Pattern Recognition
46, 2849–2859.

Kanade, T., Yin, Z., Bise, R., Huh, S., Eom, S., Sandbothe, M., Chen, M.,
2011. Cell image analysis: Algorithms, system and applications, in: IEEE
Workshop on Applications of Computer Vision, Kona, Hawaii, USA. pp.
374–381.

Kirubarajan, T., Bar-Shalom, Y., Pattipati, K., 2001. Multiassignment for track-
ing a large number of overlapping objects. IEEE Transactions on Aerospace
and Electronic Systems 37, 2–21.

Meijering, E., Dzyubachyk, O., Smal, I., 2012. Methods for cell and particle
tracking. Methods in enzymology 504, 183–200.

Munkres, J., 1957. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics 5, 32–38.

Padfield, D., Rittscher, J., Roysam, B., 2011. Coupled minimum-cost flow cell
tracking for high-throughput quantitative analysis. Medical Image Analysis
15, 650–668.

SanMiguel, J.C., Cavallaro, A., Martinez, J.M., 2010. Evaluation Of On-Line
Quality Estimators For Object Tracking, in: 17th IEEE International Con-
ference on Image Processing, Hong Kong, China. pp. 825–828.

Warfield, S.K., Zou, K.H., Wells, W.M., 2004. Simultaneous truth and perfor-
mance level estimation (STAPLE): An algorithm for the validation of image
segmentation. IEEE Transactions on Medical Imaging 23, 903–921.


