A Query Based Approach for Mining Evolving Graphs

Andrey Kan ! Jeffrey Chan 2

James Bailey !

Christopher Leckie !

L NICTA Victoria Research Laboratory
Department of Computer Science and Software Engineering
University of Melbourne, Australia
Email: {akan, jkcchan, jbailey, caleckie}@csse.unimelb.edu.au

2 Digital Enterprise Research Institute
National University of Ireland, Galway
Ireland
Email: jkc.chan@deri.org

Abstract

An evolving graph is a graph that can change
over time. Such graphs can be applied in
modelling a wide range of real-world phenomena,
like computer networks, social networks and protein
interaction networks. This paper addresses the
novel problem of querying evolving graphs using
spatio-temporal patterns. In particular, we focus
on answering selection queries, which can discover
evolving subgraphs that satisfy both a temporal and
a spatial predicate. = We investigate the efficient
implementation of such queries and experimentally
evaluate our techniques using real-world evolving
graph datasets — Internet connectivity logs and the
Enron email corpus. We show that is possible to
use queries to discover meaningful events hidden in
this data and demonstrate that our implementation
is scalable for very large evolving graphs.

Keywords: spatio-temporal data mining, evolving
graphs, dynamic graph analysis, spatio-temporal
analysis, spatio-temporal query, querying evolving
graphs, event discovery

1 Introduction

An evolving graph represents a graph that changes
over time, which can be characterised by a series
of temporal snapshots. Figure 1 shows an example
evolving graph over three snapshots (time points).
Evolving graphs are very useful for modelling real
world phenomena, such as communication networks,
social networks, protein interactions and businesses
collaboration. Some specific examples are:

e In the analysis of computer networks, the
changing topology of a network can be naturally
modelled as an evolving graph. A vertex may
represent a workstation and an edge may indicate
the existence of a communication path at a given
time point. The following questions may then
arise: “is there any spatially adjacent group
of connections that fail synchronously?”, “which
groups of connection paths are not persistent
over the specified period?”. Answering such
questions can facilitate fault localisation and the
identification of unstable network regions.

Copyright ©2009, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian Data Mining
Conference (AusDM 2009), Melbourne, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 101, Paul J. Kennedy, Kok-Leong Ong and Peter Christen,
Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

e A corpus recording the email activity over
a period of time for an organization can be
analysed as an evolving graph. Vertices may
represent employees and an edge indicates that
an email was sent between employees during a
certain time period. Questions that may arise
might be “are there groups of people having their
communication intensified over some window of
time?”, “are there people having collaboration
that lasted for approximately a month?”.

e An evolving graph approach may be used for
criminal investigations (Krebs 2002, Xu and
Chen 2004). Vertices represent individuals
and an edge corresponds to suspected relations
between two individuals. Such relationships may
be inferred from different sources: phone calls,
bank transfers or people being seen together. In
this scenario, a criminal investigator may wish
to explore the following query “what relations
appear or disappear synchronously between
certain groups of people and when does it
happen?”.

These examples all share a common feature: there is
interest in discovering matches for a specific spatio-
temporal pattern. This motivates us to investigate a
query based approach to mining evolving graphs.

time snapshots
t t t,

1 2

@

temporal behaviour (waveforms)

Figure 1: Sample evolving graph consisting of three
snapshots. The set of vertices remains unchanged,
whereas the set of edges evolves over time. Temporal
behaviour of each edge can be represented by a string
(waveform), where each symbol encodes the presence
(“1”) or absence (“0”) of the edge at a particular time
point.

To the best of our knowledge, we are the first to
investigate the querying of evolving graphs by spatio-
temporal patterns.

In contrast to standard database querying,
querying for evolving graphs is more exploratory in
nature. When undertaking analysis of an evolving
graph, the user may have only a general idea of what
patterns to search for. So a typical search strategy
is likely to begin with the user posing an initial set
of queries. The user will then iteratively analyse the
obtained results and refine the queries. Since evolving
graphs may be very large, it is very important that
such queries can be evaluated efficiently.

There are several existing works on mining
evolving graphs. Work by Chan et al. (2008)
defines regions of correlated spatio-temporal changes
within an evolving graph and presents an algorithm
for finding all such regions. Work in Jin et al.
(2007) considers a graph in which vertex labels are
changing over time and presents an approach to
finding frequent trend motifs, i.e., frequent subgraphs
sharing the same trends in label changes. Work in
Borgwardt et al. (2006) presents a method for mining
frequent dynamic subgraphs, which are subgraphs
that are connected, share temporal behaviour and
occur at least a predefined number of times. Work in
Lahiri and Berger-Wolf (2008) studies the detection
of periodic behaviour in subgraphs.

These works each enumerate all occurrences
(patterns) of some specified kind: inter-correlated
regions, trends, frequent subgraphs or periodic
behaviour. In contrast, a query based approach allows
the user to specify the desired result in a specific and
flexible way. For example, one might be interested
only in inter-correlated regions with a particular
temporal behaviour or only in frequent subgraphs
that disappear at a certain time point. Since it is
more specific, another advantage of a query based
approach is that it is significantly faster compared
to enumeration style methods.

In summary, the main contributions of our work
are as follows:

e We propose a model for querying evolving graphs
by spatio-temporal patterns (Section 2).

e We present two algorithms for implementing
select style queries (Sections 3.1 and 3.2). We
analyse the correctness, completeness, worst-
case complexity and relative advantages of each
algorithm.

e We run experiments on two real-world datasets
(Sections 4.1 and 4.2). Experiments show that
using our query model, it is possible to find
subgraphs that relate to real-world events.

e We evaluate our implementations on synthetic
evolving graphs (Section 4.3). Evaluation shows
that querying can be implemented in an efficient
and scalable manner. We found that our query
implementation requires less than half a second
for a graph with 10,000 changing edges.

2 Problem Statement

In this section, we formally define the problem in
terms of the evolving graphs (input), the correlated
subgraphs (output), and the query model that
specifies the type of correlated subgraphs in which we
are interested. We begin in Section 2.1 by defining
the concept of an evolving graph. In Section 2.2,
we define the concept of a correlated evolving graph
with particular focus on how its temporal and spatial
behaviour can be specified in a query. Finally, in
Section 2.3 we define our query formulation and the
corresponding query satisfaction problem.

2.1 Evolving Graphs

One of the main inputs for a query is an evolving
graph. We begin by defining an evolving graph as
well as the related concept of an evolving subgraph,
based on the formulations presented by Borgwardt
et al. (2006).

Definition 1. (Evolving Graph) An evolving
graph is a sequence of consecutive graph snapshots
Gis...Ge that have the same set of vertices V, but
possibly different sets of edges E;, where t = ts, ..., te.

Let £ = Uzits E; be a union of edges of all graphs
in the sequence. We denote an evolving graph as
eg = (V,E,ts,te,£).

E is a set of strings specifying the temporal behaviour
of edges. For each edge e in E, there is a string £(e)
with symbols numbered from ts to te. If an edge e
is included in snapshot Gy, then the corresponding
symbol E(e)[t] =“17, otherwise (edge e is deleted from

G) E(e)[t] =40,

In the scope of the present work we consider only
undirected, unweighted graphs and discrete time
points, i.e., a sequence of graph snapshots. We focus
on edge changes, assuming the set, of vertices remains
the same. Note that a changing set of vertices V;,t =
ts, ..., te, can be replaced by a union set V = UL, V;.

Definition 2. (Evolving Subgraph) Given two
evolving graphs eg1 = (V1, Eq,ts1,te1,&1) and egy =
(Va, Eq, tso, tea, £2), eg1 is an evolving subgraph of
€g2 Zf Vl Q VQ, E1 Q EQ, [tsl,tel] g [tSQ,tBQ] and
&1 contains substrings from &, taken in the interval
[ts1,te1] for all e in Ey. Saying that eg; is an evolving
subgraph of ego is equivalent to saying that egy is
included in egs. This inclusion relation is denoted
as egy C egs.

In the substring definition above, a substring must
match a consecutive subsequence of characters, i.e.,
no gaps are allowed. For example, given the string
“abcde”, “abc” and “cd” are its substrings, whereas
“ace” and “cba” are not substrings.

An evolving subgraph can be considered as a
spatial subgraph of the evolving graph, extracted over
some sub-period of time (see Figure 2). Note that an
evolving subgraph is an evolving graph itself.

2.2 Correlated Evolving Graphs

We now consider the specific type of evolving
subgraph that we seek in our query satisfaction
problem, i.e., correlated evolving graphs that satisfy
certain temporal and spatial characteristics. OQur aim
is to find evolving subgraphs whose edges exhibit a
common temporal behaviour (in terms of insertion
and deletion), as well as sharing specific spatial
properties, such as their topological proximity.

Work by Chan et al. (2008) defined this task
as an unsupervised learning problem, where the
aim is to find all correlated subgraphs in a given
evolving graph. In contrast, our aim is to formulate
the search for correlated subgraphs as a query
answering problem, where we search for correlated
subgraphs that match a given query, which specifies
the temporal evolution of interest.

The temporal behaviour of a changing edge can be
represented by the following strings (as proposed by
Chan et al. 2008). A waveform (denoted as W) is a
string consisting of “1” and “0” symbols, reflecting the
insertion or deletion of an edge from the snapshots
of a graph. Symbols in the waveform are numbered
starting from 1.

Another string, called the transition sequence,
represents the overall shape of the corresponding

b) the same evolving graph and another sample evolving subgraph

Figure 2: The figure illustrates the concept of
evolving subgraph. Two sample subgraphs extracted
from the same evolving graph are shown. The dotted
line highlights the particular subgraph extracted.

waveform. Each occurrence of the “10” pattern in the
waveform (i.e., deletion) is represented by the “—”
symbol in the transition sequence, and an occurrence
of the “01” pattern (i.e., addition) is represented by
the “+4” symbol. All other parts of the waveform are
ignored. See Figure 3 for an example. We denote the
transition sequence for a waveform W as tran(W).

waveform 000111 110011 1011001
graphical representation I~ - uUr
transition sequence + — 4 e —

Figure 3: Sample waveforms and their transition
sequences. The symbols of a waveform encode the
presence (“1”) or absence (“0”) of an edge in an
evolving graph at a particular time point. The
symbols of a transition sequence encode a changing
state of the edge: appearance (“+”) or disappearance

(L [7) A

In our model, the result of a query is a set of
subgraphs in which all edges follow the waveform
provided in the query. However, the edges in the
resulting subgraphs do not need to have exactly the
same waveform as in the query. It is sufficient to
have similar waveforms with respect to some distance
metric. We call this metric temporal distance.
Chan et al. (2008) introduce a distance measure
called “modified Euclidean distance” and argued
that this measure fits well in the context of their
problem statement. Since we use the same definition
of waveform, we adopt the “modified Euclidean
distance” in our work. Given two waveforms W7y, Ws,

where length(W1) = length(Ws) = L

1, if trans(Wh) # trans(Ws);

dn_eue(W1, W2) {; SSL_ Wilk] @ Walk], otherwise.
Here, the operator z1 @ x4 represents an exclusive OR:

it equals 0 if the symbols x1,zo are the same, and is

1 otherwise.

This distance lies in the range [0, 1], with smaller
values corresponding to a better match between
the waveforms. If the transition sequences differ,
the highest value (complete mismatch) is returned.
Otherwise the number of mismatched symbols is
taken into account.

Note that strings specifying the temporal
behaviour of edges in an evolving graph are
essentially waveforms. The difference is that the
symbols in £(e) are numbered starting from ts.
For any edge we can obtain it’s waveform W, by
re-numbering the symbols in the string £(e).

Definition 3. (Correlated Edge) Consider an edge
e of an evolving graph and the waveform W, of the
edge. Given an arbitrary waveform W and a user-
defined threshold 0, the edge is correlated with W
if the lengths of W and W, are the same and these
waveforms are sufficiently similar: d(W,W.) < 6.

Now we extend the concept of correlation to an
evolving graph.

Definition 4. (Correlated Evolving Graph) An
evolving graph eg = (V, E,ts, te,E) is correlated with
a waveform W if all of its edges are correlated with
W and the graph G(V, E) is connected. We denote
the correlation to a waveform as e ~ W for edges and
eg ~ W for evolving graphs.

Note the spatial constraint in the definition
above: we require connectedness. This requirement
reflects the localization property of real-world events.
Another way to impose a spatial constraint is a
predicate. In the context of our query model, we
define the predicate as follows.

A predicate on an evolving graph P(eg) =
{true|false} is a function that takes an evolving
graph as input and produces a Boolean value (true
or false) as output. Our only requirement for a
valid predicate is that it must be implementable in
linear time complexity with respect to the number of
vertices and edges in the input graph. We require
this constraint to guarantee the efficiency of our
querying algorithm (complexity analysis is presented
in Section 3.3).

Predicates can be used to impose both spatial
and temporal constraints. Consider an evolving
graph eg = (V, E,ts,te,£). We denote the number
of vertices and edges in the graph as n, and n.
respectively. The following are examples of possible
predicates.

“Timing predicate” returns true if the evolving
graph satisfy certain timing constraints:

Piime(eg) = (ts > 3and (te — ts) > 5).

“Size predicate” returns true if the evolving graph
has more than N edges:

Psize(eg) = (ne > N)
“Clique predicate” (assuming a simple undirected

graph) returns true if a graph G(V, E) is a clique (each
vertex is connected to all other vertices):

Pclique(e.g) = (ne == Ny * (nv - 1)/2)'

Note that a finite Boolean formula over the
predicates is a predicate itself. For example in
P = ((Pyand Py) or Ps), all of Py, P>, P; and P are
predicates.

We are now ready to define our main operator for
performing queries.

2.3 Query Model

In our query model, the data is represented
by evolving graphs, the required spatio-temporal
properties are specified by waveforms and predicates,
and the queries are implemented in the form of a
selection operator.

Our model should be considered as a stepping
stone towards a general evolving graph query
language with a more sophisticated algebra. By
analogy with the relational algebra, the model might
be extended with operators like join and aggregation.

At present, selection is the only operator in our
model. This operator is essential and our experiments
show that it is sufficiently powerful to produce
practically useful results.

Definition 5. (Query) A (spatio-temporal) query Q
is a pair {W, P}, where W is a waveform and P is a
predicate.

Definition 6. (Selection Operator) A selection
operator takes as input an evolving graph eg, and a
query Q = {W, P}. The output is a set of evolving
subgraphs correlated with W, which satisfy P:

o(eg,Q) = {sg C eg: sg ~ W, P(sg) = true}

We require the evolving subgraphs in the output to
be maximal, i.e., there is no evolving subgraph that is
included in another evolving subgraph from the same
output set.

Figure 4 illustrates sample queries and their
results. Recall that for a correlated evolving subgraph
we require the corresponding graph G(V,E) to be
connected. Here V is the set of vertices, which is
the same for all snapshots of an evolving subgraph,
E = UE, is the union of edges in all snapshots.

The problem that we address in this paper is how
to design an algorithm that can answer queries in a
scalable manner on large evolving graphs. In the next
section, we present our algorithms for implementing
the queries.

3 Algorithms for Query Satisfaction

In this section, we present an efficient algorithm to
implement our query selection operator. We call the
algorithm “Select Basic” and describe it, along with a
correctness and completeness analysis, in Section 3.1.
We then present a modified version of the algorithm,
which runs faster, but requires extra memory and
prior indexing of an evolving graph. We call the
modified version “Select Indexed” and describe it in
Section 3.2. Finally we analyse the worst-case time
complexity for both algorithms in Section 3.3.

A naive approach to implement a query
o(eg,W,P) is to find all evolving subgraphs
correlated with W, filter out those subgraphs that
do not satisfy P, and finally select the maximal
evolving subgraphs. The drawback of this approach
is the computational cost of checking the inclusion
relation for all pairs of evolving subgraphs in the
intermediate set of results. Instead we propose the
following algorithm.

evolving graph being analysed

query by “01” t, t, :

returns two subgraphs: ! :

appeared connected @ @ a 9 :

components :

query by “10” @ 0 H

feturns two subgraphs: T
disappeared connected ' t t

components

query by “0111”
returns one subgraph:
connected component
that appeared and
persisted during three snapshots

Y t, t, o
DO POPOH
o ¢ ¢ &

Figure 4: Results produced by selection operator

3.1 Select Basic

To implement a query we propose an algorithm called
“Select Basic”. Inputs to this algorithm are an
evolving graph eg, a waveform pattern W (with the
length ly) and a predicate P. The output is the
result of selection o(eg, W, P).

The key principle of this algorithm is to select
evolving subgraphs at each time point ¢t € [ts,te]
independently of all other time points. The algorithm
iterates over each time point and finds sg; C eg, an
evolving subgraph, defined on [t,t + Iy — 1]. sg:
includes all edges that are correlated with W over
[t,t+ 1w — 1], and sg; includes only such edges. After
being found, sg; is then partitioned into evolving
subgraphs, such that each subgraph is correlated with
W (and connected). Finally, any partitions of sg; that
do not satisfy P are filtered out.

In the “Select Basic” algorithm, a function
SubgraphWithCorrEdges() is implemented in a
direct way: it starts with empty sg;, iterates over
all edges e in F and calculates the correlation with
waveform W over [t,t + ly — 1]. If the correlation is
sufficiently strong, e is added to sg;.

Lemma 7. Algorithm “Select Basic” is a correct and
complete implementation of the selection operator
(see proof in Appendix A.1).

Considering the exploratory nature of querying, a
common scenario consists of running a large number
of queries over the same evolving graph. We
found that it is possible to optimize this common
scenario. We present a modified version of the query
implementation in the following section.

3.2 Select Indexed

While algorithm “Select Basic” is computationally
efficient (as shown in the next section), there are

Algorithm 1 Select Basic
Input: evolving graph eg =
waveform W predicate P
Output: set of matching evolving subgraphs R =
o(eg, W, P)

1: R=10

2: foreach ¢ in [ts, te]
// get subgraph containing all edges
// correlated to W during period [t, t+ Iy — 1]
sgr «— SubgraphWithCorrEdges(eg,t, W)
// P is a set of connected subgraphs

(V7 E? ts? te? 5);

P, — Partition(sg;)

foreach sg in P,
if(P(s9))

10: add sg to R

11: endfor

12: endfor

© o N O Ut R W

specific application scenarios where greater efficiency
can be achieved. We propose a modification of “Select
Basic”, which is more efficient when multiple queries
are made from the same evolving graph. The modified
algorithm is called “Select Indexed”, because it uses
indexing, as we discuss in detail in this section.

We found that the implementation of function
SubgraphWithCorrEdges() is a main contributor
to running time of a query. Thus we focused
on optimizing this function and algorithm
“Select Indexed” is a modification of “Select
Basic”, using an alternative implementation of
SubgraphWithCorrEdges().

There are two ideas behind the optimisation. The
first idea is to prune away edges that do not change
over the entire evolving graph. We need to store a
list of such edges, but we do not need to store and
analyse their waveforms.

The second idea is to index all possible evolving
subgraphs in eg in advance, and then use this
precomputed data when satisfying queries. Such
an indexing procedure requires additional execution
time, but indexing is needed only once. Furthermore,
it can be performed as a background process without
requiring users to wait.

While indexing can be applied to make querying
faster, the storage for indexing results requires
additional memory. The amount of memory overhead
is estimated in the next section.

Indexing results are stored in two hash tables
called “Inner” and “Outer”. The “Inner” table is a
hash table, with a waveform W as a key and the
set of edges, having exactly this waveform over some
period [t,t + Iy — 1], as a value. The “Outer”
table has a tuple {¢,lw;tran(W)} as a key and a
pointer to an “Inner” hash table as a value. A key
{t,lw;tran(W)} points to the “Inner” table in which
all keys are waveforms starting from ¢t with length Iy
and transition sequences tran(W).

Consider algorithms “Prune” and “Indexing”. At
first, all edges that do not change across the entire
evolving graph eg are saved in a separate list and
pruned from eg. Subsequent indexing is performed
only on changing edges.

3.3 Complexity Analysis

The inputs to the “Select” algorithms are an evolving
graph eg, a waveform W and a predicate P. The

Algorithm 2 Function SubgraphWithCorrEdges()
in “Select Indexed”

Input: evolving graph without constant edges eg’;
list of constant edges FE¢; current time point t;
waveform W; hash tables Inner, Outer
Output: sg; C eg is an evolving subgraph,
containing all edges correlated with W over [t,t +
Iw — 1], and containing only such edges

// set an empty evolving graph
// which is defined over [t,t + Iy — 1]
sgr — (0,0,t,t+1lw —1,E=10)
if (all symbols in W equal to 1)
add E¢ to edges set of sg;
endif
trSeq < transition sequence of W
keyOuter — {t,ly,trSeq}
Inner « Find(Outer, keyOuter)
if (Inner table found)
foreach {key;value} in Inner
W, «— key // a waveform
eSet «— value // a set of edges
if (W and W, are correlated enough)
add eSet to the edges set of sg,
16: endif
17: endfor
18: endif

e e e
A T

evolving graph consists of T' = te — ts + 1 snapshots.
We focus on changing edges and ignore vertices that
have no adjacent edges, thus we can put n = |V| =
|E| (here, E = |J;°,, E; is a union of edges in all
snapshots). A waveform has length Iy, A predicate
runs in linear time with respect to the number of
vertices and edges in the input graph, as we required
in Section 2.2.

We now consider the worst-case complexity of the
“Select Basic” algorithm. The algorithm consists of
T iterations. At each iteration we apply the function
sgr = SubgraphWithCorrEdges(), partitioning and
filtering. sg is an evolving subgraph of eg, thus
the subgraph sg can have at most n vertices and
n edges. Partitioning is essentially splitting into
connected components and can be performed in O(n+

n) steps. Since we required that the predicate can
be implemented in linear time (Section 2. 2) each
where

call of predicate P(sg) runs in O(nsy + ngg),
Ngg is the number of edges in 5. Af%er partltlomng
the sum of vertices and edges in all partitions is at
most (n 4+ n). Therefore all calls of P(sg) in one
iteration run in O(n + n) and overall complexity
for “Select Basic” can be written as O(T x (n +
O(SubgraphWithCorrEdges))).

In “Select Basic” SubgraphWithCorrEdges()
iterates over all edges in E and calculate the
correlation with waveform . Recall that we use
a linear metric “modified Euclidean distance” for
correlation. Thus the complexity of this function is

The total worst-case time complexity for algorithm
“Select Basic” is O(T x n X ly), i.e., a query can be
implemented in linear time with respect to its inputs,
namely the parameters of the evolving graph being
queried and the length of the required waveform.

“Select Indexed” differs from “Select Basic” only in
the implementation of SubgraphWithCorrEdges().

Algorithm 3 Prune (Constant Edges)

Input: evolving graph eg = (V, E, ts, te, £t)
Output: eg’ = eg without constant edges; set of
constant edges F¢

1: eg’ = eg
2: Eo =]
3: foreach e in I/

4: if (E(e)[t] = “1” for each ¢ in [ts, te])
5: // edge is “constant”

6: add e to E¢

7: remove e from eg’

8: endif

9: endfor

Algorithm 4 Indexing

Input: eg’ = eg without constant edges

Output: outer and inner hash tables Outer, Inner
1: Outer = ()
2: foreach e in E’
3: foreach [in [1,T]

4 foreach t; in [ts, te]

5 to —t1+1—-1

6: trSeq « tran. sequence of e over [t1,ts]
7 keyOuter — {t,l,trSeq}

8 Inner «— FindOrCreate(Outer, keyOuter)
9: W, «— waveform of e over [t1, 3]
10: keyInner — {W.}
11: // set of edges that have
12: // the same waveform over [t1, to]
13: eSet «— FindOrCreate(Inner, keyInner)
14: add e to eSet
15: endfor
16: endfor
17: endfor

In the optimised implementation of this function in
“Select Indexed” the time complexity is determined
by the number of insertions of edges into sg; (lines 5
and 15) and the number of correlation computations
(line 14). In the worst case, the evolving subgraph sg;
can have as many edges as eg and correlations may
need to be calculated for every single edge. In this
case, function SubgraphWithCorrEdges() has time
complexity O(n x ly/) and algorithm “Select Indexed”
has the same time complexity O(T x n X ly) as the
“Select Basic”.

However, in practice the number of edges in sg;
tends to be much less than n, because we expect
different groups of edges to follow different behaviours
at some time point. Furthermore, the computation
of correlation occurs only once per group of edges
that have the same transition sequence. Therefore
we expected that the complexity of the optimised
SubgraphWithCorrEdges() function would be on
average O(k X ly), where k < n is some constant.
Under this assumption, the complexity of “Select
Indexed” is O(T x k x ly).

“Select Indexed” requires prior preprocessing
(“Prune” and “Indexing”) of an evolving graph. The
worst-case time complexity of the algorithm “Prune”

is O(T x n).

Now consider one iteration of the inner loop in
the algorithm “Indexing”. Computing a transition
sequence can be performed incrementally as time
progresses. Searching a hash table is considered as
a pseudo-constant operation. Therefore the overall
worst-case time complexity of algorithm “Indexing” is
O(T x T x n).

Storing the indexing data (hash tables) requires
additional space. For each waveform W that occurred
at a certain time point and has a certain length, there
can be no more than n’ matching edges, where n’ is
the number of edges that experienced at least one
change in the evolving graph eg. The total number of
these unique waveforms is (7' x T), i.e., a waveform
can occur at any time point in ¢ € [ts,te] and have
a length [€ [1,T]. Therefore the overall memory
complexity is O(T x T x n').

In the next section, we compare the relative
advantages of each of our two algorithms in terms
of their execution time on various types of datasets.

4 Experimental Evaluation

In this section we evaluate the effectiveness and
efficiency of our proposed algorithms on a range of
real-world and synthetic datasets. The aims of our
experiments have been: i) to evaluate the practical
feasibility of querying evolving graphs and gauge the
interestingness of the results, and ii) to measure
the computational scalability of our algorithms for
querying large graphs.

To evaluate the practical feasibility of querying,
we have analysed evolving graphs built from two
real-world datasets (Sections 4.1 and 4.2). The
first dataset consists of snapshots of the routing
topology of the backbone of the Internet. This
dataset was collected by Chan et al. (2008). The
second dataset is the Enron email corpus as presented
by Klimt and Yang (2004). These datasets are
particularly interesting because there are known real-
world events that we expect to be reflected in the
data. Furthermore, there have been other studies
that have analyzed the same datasets from different
perspectives. Thus we can compare and contrast our
findings with these related works.

To measure the computational scalability, we have
evaluated our algorithms on synthetic evolving graphs
(Section 4.3). We generated random evolving graphs
with different sizes and measured the running times
required for querying each graph.

We also compare our results with findings on the
same datasets from related works (Section 4.4).

4.1 Evaluation on Internet BGP Routing
Topology Graph

Our first experiment was the analysis of a part of the
Internet backbone routing topology. At the backbone
level, the Internet comprises a set of Autonomous
Systems (ASs), each of which is a network under a
single controlling authority. The Border Gateway
Protocol (BGP) is responsible for establishing routes
between these ASs. From a high level perspective,
an AS can be considered as a node in the Internet
connectivity graph, where each AS has a unique
number. Therefore the Internet can be represented
as an evolving graph, where a vertex corresponds to
an AS and is labeled by its AS number. An edge
in such a graph corresponds to an existing routing
path (connectivity) between two ASs. The topology
of the Internet may change over time, thus the graph
is evolving.

Chan et al. (2008) have constructed an evolving
graph from the AS connectivity logs. In their work
they present the details of building the graph and
argue for the difficulty and importance of analysing
changing edges of the graph. We have used a copy of
their graph in our experiment.

The evolving graph represents only the US part of
the Internet, i.e., each vertex corresponds to an AS
registered in the USA. The graph consists of around
10,000 vertices and 18,000 edges. Only about 700
edges are changing, while others persist in the graph
during the whole time period. The graph spans over
the 41 time snapshots, which we number starting from
one. Snapshots are taken in two hour intervals. The
first snapshot is taken on the 28 August 2005 at 1 pm
and the last on the 31 August 2005 at 10 pm (times
are in UTC format).

In August 2005 there were Hurricane Katrina
landfalls in some southern US states. Hurricane
Katrina was a major event, which is known to severely
affect the Internet infrastructure in the region of the
landfalls (Cowie et al. 2005). The second landfall of
Katrina occurred in Louisiana approximately between
snapshots 12 and 13 (August 29, between 10 and 11
am UTC).

We were interested in the major effects of Katrina
landfalls, thus we filtered out small results using
the predicate of our query. For all queries we used
a predicate that returns true for evolving graphs
containing more than 3 edges.

Two hour snapshots provide quite a fine temporal
granularity. Therefore the consequences of the same
event may appear in neighbouring snapshots. To
address this, for all queries we set the correlation
threshold as 0.2. This means, we allowed 80% to 100%
correlation between found subgraphs and a waveform
in a query, rather than requiring exact match.

We used three different temporal patterns. The
first pattern is “111000”. It was designed to discover
failure regions, more specifically, connections that
were stable for several snapshots and then disappear
for an extended period. We did not use the
“10” pattern, because this query might result in
additional subgraphs corresponding to random short
term network failures. (Of course one can use “10”
or any other pattern, depending on the graph being
analysed and the particular purpose of the analysis.
For example, we later use the “01” pattern in our
experiment on the Enron dataset.)

The second pattern is “000111”. Subgraphs
with such temporal behaviour can be considered as
recovery regions.

The last pattern is “110011” and it corresponds to
a failure, followed by a prompt recovery. For each
query we obtained a set of subgraphs and manually
reviewed the largest subgraphs in each set.

Recall that each vertex represents an AS with a
unique numerical identifier. Chan et al. (2008) show
that by using the AS number it is possible to retrieve
two types of information: the US state where the
AS is registered (and most likely physically located),
and the organization to whom the AS belongs. We
used this information when presenting our results in
Figure 5. For selected vertices either the US state or
organizational affiliation is shown. Waveforms in the
figure show the temporal behaviour of the majority
of the edges in the corresponding subgraph.

Evolving graph A most likely corresponds to a
network failure due to the second landfall of Hurricane
Katrina: all edges of the graph are connected to ASs
in Louisiana and the timing of failure matches the
timing of the landfall. Cowie et al. (2005) reported
that a large percentage of destroyed networks around
2 pm UTC (snapshot 13) were in Louisiana.

Louisiana

MCI Communications
N

XO Communications

Georgia Florida

to different states

Alabama
C. D
14 18 20 20 23 24 26

Quest

Air Force Electronic .
Communications

Systems Centre

DoD Network
Information Centre

,
/' US Army Information

N N k
avy Networ ! Systems Command

Information Centre Level 3

Communications

Figure 5: Some of the results from querying the AS
connectivity graph. The results are interpretable,
i.e., each found subgraph can be related to a real
world event. For selected vertices either the US state
or organizational affiliation is shown. Waveforms
represent the behaviour of the majority of the edges
in a subgraph. Time stamps are snapshot numbers.

Evolving graph B represents a recovery region.
There was an earlier landfall of Katrina in Florida.
Although the timing of this landfall is outside of
the period we analyse, we note the connections with
Florida and suggest that graph B represents the
recovery of major communication networks from this
earlier strike.

Other interesting events are represented by
evolving graphs C and D. Evolving graph C represents
a failure of a segment of a military network: all its
ASs are registered within the Department of Defence,
Navy and Air Forces. Graph D corresponds to a
failure and a quick recovery of two major Internet
Service Providers.

We can clearly associate four distinct events to
each of the graphs A — D. Note that graphs A and
B were not merged together, despite being spatially
adjacent and graphs A and C were not merged,
despite having similar temporal behaviour. This
demonstrates the importance of both spatial and
temporal components of queries in order to separate
the events properly.

In this section, we have described experiments
on the AS connectivity evolving graph. Our work
shows that using several queries, we are able to find
subgraphs that can be related to known real-world
events. In the next section we describe an experiment
on another real-world dataset.

4.2 Evaluation on Enron Email Corpus

The Enron email corpus is a large set of emails
collected from the Enron corporation over 3.5 years
(Klimt and Yang 2004). The dataset was used
in a number of studies and has been analysed
from different perspectives (Diesner and Carley 2005,

Berry and Browne 2005, Rowe et al. 2007, Borgwardt
et al. 2006). We built an evolving graph from the
Enron corpus and used querying to analyse this
dataset.

Each email in the dataset contains sender and
recipients addresses and a time stamp. Borgwardt
et al. (2006) turned the Enron dataset into an
evolving graph. They divided the total period in
which emails were collected into a number of intervals.
They represented employees as vertices and put an
edge in a particular snapshot if there was an email
between the corresponding employees in this time
interval.

The graph of Borgwardt et al. contains only 15
snapshots, which results in a large time interval per
snapshot. We were not satisfied with this granularity
and we built an evolving graph that is different in
several ways.

First, snapshots in our graphs are taken in one
week intervals.

Second, we decided to restrict the analysis to the
year 2001. Shetty and Adibi (2004) reported that the
number of emails is not equally distributed over time,
and there is a much larger number of emails in 2001
compared to other years. In addition, it is known
that this year was particularly rich in events for the
Enron organization. Examples of the events are the
California power crisis and the bankruptcy of Enron.

Third, we used a threshold for the number of
emails. We expected an event in an organization
to be reflected by a “higher than usual” email traffic
between employees related to the event. Therefore we
calculated the average number of emails sent within
one week between two employees and set a threshold
above this number. In the i*" snapshot of our evolving
graph we put an edge if there were more than 3 emails
sent between the corresponding employees within the
it" week.

Since there are duplicate emails in the dataset, we
first pruned any duplicates. The evolving graph we
built consists of 140 vertices and 244 edges. All edges
are changing, i.e., there is no edge that exists in all
snapshots. The graph has in total 52 snapshots (52
weeks of the year 2001).

In order to demonstrate our flexibility in
constructing queries, we used three temporal patterns
that were not used for the AS connectivity graph. We
filtered out small results with a predicate returning
true, if a graph contains more than 3 edges. We
expected email discussions of the same event to
have mostly synchronous starting times, i.e., within
the same week. Thus we required results to be
100% synchronised within a pattern, by setting the
correlation threshold to zero.

The result of each query is a set of evolving
subgraphs. We manually reviewed the largest
subgraphs. Each evolving subgraph may be related
to event(s) in the organization, and vertices represent
employees related to the event(s). Each edge
corresponds to a number of emails. We analysed
the contents of these emails in order to understand
what event(s) they might correspond to. We present
the evolving subgraphs found by different temporal
patterns in Table 1.The first pattern we used is “01”.
It can be interpreted as an “event occurrence”. One of
the evolving subgraphs found corresponds to emails
sent within week 4 (late January 2001). There was
an electricity crisis in California in 2000 — 2001.
In mid January 2001 a blackout affected hundreds
of thousands of citizens. This blackout was followed
by a declaration of a state of emergency by Governor
Davis. Enron was one of the largest energy companies
in the USA at that time. Therefore it is not surprising
to find this event in the emails communication of

Enron employees. Subjects or bodies of almost all
emails of the evolving subgraph are related to the
political and other consequences of the electricity
crisis in California.

Another waveform we used for querying is “0110”.
This kind of behaviour can be interpreted as short
term cooperation: average email traffic, followed
by intensification for two weeks and decreasing
afterwards. One of the graphs found indicates that
such a pattern occurred in mid August 2001. A review
of the emails corresponding to the subgraph showed
that there were two main discussion topics. The first
topic relates to a conference call with Portland. This
can be concluded from some email subjects and the
following text found within the emails: “... conference
call with Portland”, “I have organized ... groups to
attend Portland for one week ...”. The second relates
to some activities related to “Cash/Prompt”. Several
emails have “Cash/Prompt” keyword and one of the
emails says: “I have decided to move Frank Ermis
from his role as Prompt/Season ...“.

Lastly, in a “mid term cooperation” query
(“011110”), one of the found evolving subgraphs
is related to the daily “TRV” reports which were
distributed during several weeks.

Note the variety of temporal behaviours for which
we can search. We can encode different situations of
interest (e.g., “short term cooperation”) with different
waveforms. Note also the comprehensiveness of the
discovered information: for each subgraph we can
infer the main discussion topics (event), the time of
pattern occurrence and the list of participants in the
discussion.

In summary, our experiment on the Enron corpus
shows that, as in the case with the AS connectivity
graph, we are able to find evolving subgraphs that can
be related to known real-world events. The following
section presents our evaluations of running time for
querying synthetic graphs.

4.3 Evaluation on Synthetic Graphs

The purpose of our evaluation on synthetic graphs has
been to analyse how the query execution time varies
under different conditions.

There are a number of factors that can affect the
execution time for a query. In Section 3 we introduced
two algorithms for implementing a query. We report
the results of experiments on synthetic graphs for
both algorithms, where appropriate.

Another factor affecting the execution time is the
size of the evolving graph being analyzed. The size
can be expressed as the number of vertices, edges
and time snapshots. In Section 3.3 we showed that
the number of snapshots and the number of edges
contribute to the time complexity in a similar manner,
and the number of vertices is bounded by the number
of edges. Therefore in synthetic graphs, we vary only
the number of edges.

The last factor that we considered is the length of a
waveform in a query. The worst-case time complexity
for the algorithms is O(T xn xlg), thus we expected a
linear increase in execution time for longer waveforms.
In our evaluation we used several waveforms with
lengths varying from 2 to 32.

We generated random evolving graphs with the
number of edges varying from 50 to 100,000. All edges
are changing. Each graph has T = 100 snapshots.
After generating the graphs we modified some edges
in order to guarantee that for the queries that we try,
the result is non-empty.

We implemented both algorithms in C++ and ran
our queries on a PC with Intel(R) Core(TM)2 Duo
E8400 @ 3GHz CPU and 3GB RAM. We repeated

Table 1: Some of the results from querying the evolving email graph. The results can be related to real world

events.
Query
pattern and Found evolving subgraphs Selected subjects of emails, corresponding to
A Related event(s)
its interpre- (week numbers shown) the edges
tation
late January
, kay.mann
) b
3 4 iie;UiZYdZ(l)g%Zy Cheney: White House Mtg Mon On Calif. Pwr Prob...;
01 — elizabeth.sager Edison’s Filing in District Court in L.A.; Californi
) alifornia power
“event james.steffes john.lavorato Governor Davis; crisis pow
i risi
occurrence” Eillzg.g(r)ilgs;by Governor Davis names advisors;
phillib.allen New Bill Introduced in CA Legislature.
richard.sanders
jeff.dasovich
mid August
“West P 5
,— West Power ...; efs ower 1l with
conference call wi
0110 — FW: West Power Rotation; Portland
ortland;
“short term s 31 32 33 FW: Western Strategy Briefing;
cooperation” Lra”r':-ﬁ”lms Frank Ermis and Matt Lenhart; tiviti ithi
f : eith.holst activities within
mike.grigsby < jason.wolfe Cash/Prompt and Prompt/ Season Traders. “Prompt/Season”
matt.smith
late September
— October
TRV Notification: (NG - PROPT P/L - 09/28/2001);
011110 — I | TRV Notification: (NG - PROPT P/L - 10/01/2001);
"mid term 38 39 42 43 TRV Notification: (NG - PROPT P/L - 10/03/2001); daily “TRV” reports
cooperation” | TRV Notification: (NG - PROPT P/L - 10/04/2001);
arry.may . . | .
. TRV Notification: (NG - PROPT P/L - 10/11/2001).
errol melaughiin < dutch.quigley (/ /11/2001)
mike.maggi
john.arnold

each execution time measurement several times and
report averaged values.

Recall that the “Select Indexed” requires prior
indexing of an evolving graph. Therefore, at
first, we analysed the execution times and memory
consumption required for indexing evolving graphs of
different sizes. Results are presented in Table 2.

The results show that there is a roughly linear
dependency of both execution time and memory
consumption on the number of edges. Execution time
values remain within reasonable limits. Furthermore
the indexing can be performed as a background
process and thus does not require an operator to wait.

In contrast, memory consumption is a critical
issue. We found that when an evolving graph has
more than 5,000 changing edges, indexing information
requires more than 1GB of storage. We did not
apply the “Select Indexed” for larger graphs, because
it required more memory than the maximum file size
allowed in our operating system.

Note that in the “Indexing” algorithm, only the
number of changing edges contribute to the running
time and memory consumption, because constant
edges are pruned away before indexing. In our
synthetic evaluation all edges are changing, i.e., we
found that the memory consumption is an issue for
graphs with more than 5,000 changing edges. This
is quite a large number. For reference, the AS
connectivity graph that we analysed contains 700
changing edges. The evolving graph we built from the
Enron corpus has 244 changing edges. Furthermore,
for larger graphs we still can use the “Select Basic”,
which does not require indexing.

The next experiment aimed to analyse the
dependency of query execution time on the size of the
evolving graph. Results are presented in Figure 6. We
measured execution times for both algorithms on the
synthetic graphs with 50 — 5,000 edges (Figure 6.a)

Table 2: Execution times and memory consumption
for indexing evolving graphs with different sizes
(algorithm “Indexing”). For each graph T' = 100

Number Time Memory
of edges (sec) (MB)
50 4 11
100 7 22
500 37 111
1,000 70 220
5,000 360 1,125

and for the “Select Basic” only on graphs with 10,000
— 100,000 edges (Figure 6.b). In all queries we used
the same waveform “01010101”.

The results show that “Select Indexed”, when
applicable, significantly outperforms “Select Basic”.
Another conclusion that can be drawn is that both
algorithms demonstrate good scalability: roughly
linear dependency of the running time on the number
of edges (note the quasi-logarithmic scale of x axes).

In the last experiment we evaluated the running
times for different query waveforms on the same
evolving graph. We used a synthetic graph with
|E| = 1,000 edges and T' = 100 snapshots. Waveform
lengths vary from 2 to 32. The tesults are presented
in Figure 7.

According to the worst-case time complexity
analysis in Section 3.3, running times should be
longer for longer waveform lengths. In contrast,
experimental results show that measured running
times decrease for both algorithms. We explain this
phenomenon as follows. In practice the running time
is less than it would be in the worst case. This time
depends on the number of the results found by the
query. On average, for longer patterns there are fewer
results. Therefore for longer waveforms we observe

a) 200 b) 5
O Select-Basic
4
150 | Select-Indexed
w
e}
¢ S 3
Q o
£ 100 3
5 [
£ E>
50
1
S [L .

50 100 500 1000 5000 10,000 50,000 100,000
number of edges number of edges

Figure 6: Execution times for querying graphs with
different numbers of edges and the same number
of snapshots 77 = 100. In all cases the same
waveform “01010101” was used for querying. In a) two
algorithms are compared. In b) only “Select Basic” is
used. Note the quasi-logarithmic scale of the x axes.

80

[] Select-Basic
Select-Indexed
60 u
(o]
(0]
(2]
£
g %
£
20
0
2 (282) 4(17) 8 (13) 16 (9) 32(1)
waveform length
(and a number of subgraphs found)
Figure 7: Execution times for different query
waveforms. Two algorithms are tested. Queries

are performed from the same evolving graphs with
|E| = 1,000 edges and T' = 100 snapshots. Note the
logarithmic scale of the x axis.

decreased running times.

In summary, our evaluation on synthetic graphs
demonstrates several properties of our algorithms.
First, “Select Indexed” can significantly outperform
“Select Basic”. On graphs with more than 5,000
changing edges, memory consumption is a critical
issue for indexing. For such graphs “Select Basic” can
still be used.

Second, both algorithms demonstrate good
scalability: the execution time increases roughly
linearly with the size of the graph.

Last, in contrast with the theoretical worst-case
analysis, longer waveforms in queries result in faster
query execution. This happens because for longer
patterns there are fewer matching results and, in
practice, running time depends more on the number
of results found by a query, then on the waveform
length.

The following section presents comparing and
contrasting our findings on two real-world datasets
with the results of previous studies.

4.4 Results Discussion

Some of the related studies report evaluation results
on the same real-world datasets as we used in our
experiments. This allows us to compare and contrast
our findings with the work of others.

Our first experiment was performed using the
Internet AS connectivity evolving graph. Chan et al.
(2008) report their findings on this evolving graph.
Comparing our findings, we note that by using three
queries we are able to find subgraphs corresponding
to the all the regions that they reported.

Consider also the performance evaluation on
synthetic datasets in the work of Chan et al. (2008)
and in our work. A query can be executed ten
thousand times faster than enumerating all inter-
correlated regions from the same graph. This is
because finding inter-correlated regions essentially
results in a large set of all possible query results.
If we are interested in regions with a particular
temporal behaviour, we need to search this set itself.
In contrast, we can directly search for a required
waveform by using querying.

The second dataset that we used is the Enron
email corpus. There have been many works that
analysed this dataset. Borgwardt et al. (2006)
constructed an evolving graph from the dataset. They
searched for frequent dynamic subgraphs. However
they report only quantitative results, without relating
the found subgraphs to events or persons.

The results of Diesner and Carley (2005) provide
a deeper insight into the organizational structure of
the Enron corporation. In particular they report
the list of “key players” in the organization. In
our results “key players” can be inferred from the
subgraph topology (see Table 1). For example, from
our results, we note that James Steffes and Mike
Grigsby can be considered as key persons. Diesner
et al. also included these employees in their list of
“key players”. Note that in our study we are also
able to elaborate in what particular situations these
people played an important role. Diesner et al. do not
present such an analysis. They also do not provide
references to concrete events or discussion topics.

Berry and Browne (2005) analysed the contents of
emails using non-negative matrix factorization. They
report several discovered topics of discussion. Some
of the topics match our findings (e.g., the California
power crisis), while others differ. This can happen
due to the following reasons. First, the Enron corpus
consists of emails systematically collected for a subset
of employees. A number of emails were sent to or
received from people outside of this subset. Our
purpose has been a demonstration of the capabilities
of querying, rather than thorough investigation of the
Enron case. Thus, in our analysis, we omitted emails
that have either the sender or the recipient outside
of the set of employees, for which the dataset was
collected.

Second, we were searching for topics developing
according to a temporal pattern. In contrast, the
method of Berry et al. returns all topics, from which
they reviewed the largest. For example, one of the
topics we have found is the “TRV” reports. Berry et
al. do not report this topic, apparently because it
was not large enough. However “TRV” reports might
be of particular interest as an example of mid-term
cooperation patterns in Enron.

Regarding the computational efficiency, note that
Berry et al. presented a method in which the input
length is determined by the number of symbols in all
emails. In contrast, the input length for querying is
bounded by the number of emails.

In summary, our experiments on real-world and
synthetic datasets demonstrate that:

e querying evolving graphs can discover real-world
events, reflected in the datasets;

e querying can be performed within a reasonable
amount of time even on large graphs (hundreds
of milliseconds for a graph with 10,000 edges);

o performance degrades roughly linearly as the size
of the evolving graph grows;

e a single query runs roughly ten thousand times
faster than an approach that enumerates all
inter-correlated regions (which was the approach
used by Chan et al. 2008);

e querying is capable of identifying discussion
topics, without the need for analysis of the
contents of all emails in the Enron corpus.

5 Related Work

We categorize related work by the field of study. Our
work focuses on mining evolving graphs by querying
them with spatio-temporal patterns. Therefore, the
main fields related to our study are: “mining evolving
graphs”, “spatio-temporal patterns” and “querying”.

Mining evolving graphs by different spatio-
temporal patterns has been addressed by a number
of works. The pattern proposed by Chan et al.
(2008) is a region of correlated spatio-temporal
changes. This region is an evolving subgraph
in which all edges experience similar temporal
behaviour. Lahiri and Berger-Wolf (2008) “propose
a new mining problem of finding periodic or near
periodic subgraphs in dynamic social networks”. Jin
et al. (2007) focus on evolving graphs with changing
weights. They propose a pattern called “trend
motif occurrence”. This is essentially a connected
subgraph, in which all vertices have decreasing or
increasing weights. Borgwardt et al. (2006) aim to
search for frequent dynamic subgraphs, i.e., multiple
occurrences of identical topological subgraphs with
the same temporal behaviour.

Spatio-temporal patterns are used not only for
mining evolving graphs, but also for other datasets.
For example, Celik et al. (2006) introduce a new co-
occurrence pattern as frequent spatio-temporal co-
location of objects with different types. They propose
a method for finding such patterns in a general spatio-
temporal dataset. This method does not address
graphs specifically. Hadjieleftheriou et al. (2005)
propose a more flexible pattern: an ordered list of
spatial predicates. The order (exact or relative) in
the list is a temporal predicate. They describe a
framework for querying such patterns from a set of
trajectories. They do not consider particular issues
of querying evolving graphs.

An evolving graph can be thought of as a database
of strings of “0” and “1”. Querying substrings over a
string database is a much studied field. Many in-
memory and disk based algorithms were proposed
(e.g., Kahveci and Singh, 2001, Meek et al., 2003).
Usually a string edit distance and its variations are
used to measure similarity between strings. However
in the context of spatio-temporal queries, similarity
is measured by temporal distance, using waveforms
and transition sequences of compared strings. Thus
it is not a trivial task to apply algorithms based on
the string edit distance to querying evolving graphs.
Furthermore, the spatial dimension (graph topology)
is not considered in these algorithms.

Querying static graphs has been studied by a
number of researchers. Zhang et al. (2009) focus
on efficient searching of required topological pattern
occurrences in very large graphs. He and Singh

(2008) propose a formal language for querying and
manipulating graphs. They presented a graph algebra
as an extension of relational algebra. They also
address some challenges of pattern matching. Trissl
and Leser (2006) introduce an index structure to
facilitate reachability and distance queries in a graph.

The studies that address querying graphs
disregard the fact that graphs may change over time.
In other words, these studies do not consider evolving
graphs.

The works related to mining evolving graphs do
directly address the challenges and opportunities
provided by temporal change. These works aim to
search for different spatio-temporal patterns: inter-
correlated region, periodic behaviour, trend motif
occurrence, and frequent dynamic subgraphs. Each
of these patterns has potentially useful practical
applications. However, given the large variety of
application domains and research questions one might
have when mining evolving graphs, a more flexible
way of defining patterns is of great interest. Therefore
we introduced a framework that allows a user to define
a spatio-temporal constraint according to the needs of
a particular analysis.

6 Conclusions and Future Work

We have presented a novel approach for mining
evolving graphs: queries for user-defined spatio-
temporal patterns. Users can specify the required
temporal and spatial constraints and search for
matching evolving subgraphs. We formally posed
the problem of querying by spatio-temporal patterns.
This problem was addressed by two algorithms
that implement the query: the first one is a
straightforward implementation and the second uses
indexing. Using indexing allows us to execute queries
faster, but this optimization is achieved with the cost
of increased memory consumption.

We evaluated our approach on two real-world
datasets: the Internet AS connectivity graph and the
Enron email corpus. We also ran experiments on
synthetic evolving graphs. We discussed the obtained
results and related them to other studies that used
the same datasets.

We summarize the importance of our findings
as follows:

o we evaluated querying on the datasets that relate
to very common real life phenomena: Internet
topology and emails in an organization;

e the datasets studied are large (up to 700
changing edges), which makes manual analysis
of changes infeasible; thus there is a need for
automated analysis tools;

e we are able to discover real-world events,
reflected in the data, using querying;

o our implementation is fast and scalable: a query
runs for hundreds of milliseconds for a graph
with 10,000 edges and the running time increases
roughly linearly as the size of a graph grows.

These promising results inspire us to continue our
work on querying along the following directions for
future work:

o counsider operators for manipulating query results
and extend our query model to a richer query
language for evolving graphs;

e consider evolving graphs with weighted and
directed edges; for example, for the email corpus,
it would be possible to use directed edges
and weight them according to the email traffic
volume.

Acknowledgement

This work is partially supported by National ICT
Australia and Science Foundation Ireland (SFI)
under CLIQUE Strategic Cluster, grant number
08/SRC/I1407. National ICT Australia is founded
by the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian
Research Council.

References

Berry, M. and Browne, M. (2005), ‘Email surveillance
using non-negative matrix factorization’,
Computational & Mathematical Organization
Theory 11(3), 249-264.

Borgwardt, K., Kriegel, H., Wackersreuther, P. and
Munich, G. (2006), Pattern mining in frequent
dynamic subgraphs, in ‘Proceedings of the 6th
International Conference on Data Mining’, pp. 818—
822.

Celik, M., Shekhar, S., Rogers, J., Shine, J. and
Yoo, J. (2006), Mixed-Drove Spatio-Temporal Co-
occurence Pattern Mining: A Summary of Results,
in ‘Proceedings of the 6th International Conference
on Data Mining’, pp. 119-128.

Chan, J., Bailey, J. and Leckie, C. (2008),
‘Discovering correlated spatio-temporal changes
in evolving graphs’, Knowledge and Information
Systems 16(1), 53-96.

Cowie, J., Popescu, A. and Underwood, T. (2005),

Impact of Hurricane Katrina on Internet
Infrastructure, Technical report, Renesys
Corporation.

Diesner, J. and Carley, K. (2005), Exploration of
communication networks from the enron email
corpus, in ‘Proceedings of Workshop on Link
Analysis, Counterterrorism and Security, SIAM
International Conference on Data Mining’, pp. 21—
23.

Hadjieleftheriou, M., Kollios, G., Bakalov, P. and
Tsotras, V. (2005), Complex spatio-temporal
pattern queries, in ‘Proceedings of the 31st
International Conference on Very Large Data
Bases’, VLDB Endowment, pp. 877-888.

He, H. and Singh, A. (2008), Graphs-at-a-time: query
language and access methods for graph databases,
in ‘Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data’,
ACM New York, NY, USA, pp. 405-418.

Jin, R., McCallen, S. and Almaas, E. (2007), Trend
motif: A graph mining approach for analysis of
dynamic complex networks, in ‘Proceedings of
the 7th IEEE International Conference on Data
Mining’, IEEE Computer Society Washington, DC,
USA, pp. 541-546.

Kahveci, T. and Singh, A. (2001), An efficient index
structure for string databases, in ‘Proceedings of
the International Conference on Very Large Data
Bases’, Citeseer, pp. 351-360.

Klimt, B. and Yang, Y. (2004), ‘The enron corpus:
A new dataset for email classification research’,
Lecture Notes in Computer Science 3201, 217-226.

Krebs, V. (2002), ‘Mapping networks of terrorist
cells’, Connections 24(3), 43-52.

Lahiri, M. and Berger-Wolf, T. (2008), Mining
Periodic Behavior in Dynamic Social Networks,
in ‘Proceedings of the 8th IEEE International
Conference on Data Mining’, IEEE Computer
Society Washington, DC, USA, pp. 373-382.

Meek, C., Patel, J. and Kasetty, S. (2003), Oasis: An
online and accurate technique for local-alignment
searches on biological sequences, in ‘Proceedings
of the 29th international conference on Very
large data bases-Volume 29’, VLDB Endowment,
pp. 910-921.

Rowe, R., Creamer, G., Hershkop, S. and Stolfo,
S. (2007), Automated social hierarchy detection
through email network analysis, in ‘Proceedings
of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web Mining and Social Network
Analysis’, ACM New York, NY, USA, pp. 109-117.

Shetty, J. and Adibi, J. (2004), The Enron email
dataset database schema and brief statistical
report, Technical report, University of Southern
California.

Trissl, S. and Leser, U. (2006), GRIPP Indexing
and Querying Graphs Based on Pre-and Postorder
Numbering, Technical Report 207, Humboldt-
Universitaet zu Berlin.

Xu, J. and Chen, H. (2004), ‘Fighting organized
crimes: using shortest-path algorithms to identify
associations in criminal networks’, Decision
Support Systems 38(3), 473—-487.

Zhang, S., Li, S. and Yang, J. (2009), GADDLI:
distance index based subgraph matching in
biological networks, in ‘Proceedings of the 12th
International Conference on Extending Database
Technology: Advances in Database Technology’,
ACM New York, NY, USA, pp. 192-203.

Appendix A
A.1 Proof of Lemma: Correctness and
Completeness of Algorithm “Select Basic”

Consider two time points i, i # j and two
evolving subgraphs sg; and sg;, containing all edges
correlated with W over [i,i + ly — 1] and [j,7 +
Ilw — 1] respectively, and containing only such
edges. None of the evolving subgraphs of sg; is
included in any of the evolving subgraphs of sg;,
because their temporal intervals are not included
in one another. Furthermore, partitioning (which
is essentially splitting into connected components)
produces a set of non-overlapping and connected
evolving graphs. Therefore, the evolving graphs in
the output are maximal. The partitioning does not
affect the temporal characteristics, thus the result
of partitioning is a set of evolving subgraphs that
are correlated with W. After the filtering step,
the evolving subgraphs in the results set satisfy P.
Therefore all evolving subgraphs in R satisfy the
selection constraints and algorithm “Select Basic” is
correct.

We refer to an evolving subgraph sg C eg, that is
correlated with W over [t,t + Iy — 1] and satisfies
P as an eligible subgraph. Consider an eligible
subgraph sg, which is not included in any other
eligible subgraph. In algorithm “Select Basic” sg is
included in sg; (line 5). Then, after partitioning sg,
(line 7), the evolving subgraph sg becomes one of the
partitions and this partition is not filtered out (line 9).
Therefore all maximal eligible evolving subgraphs are
included in the set of results and algorithm “Select
Basic” is complete. O

