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Abstract

Cell tracking is often implemented as cell detection and data association steps.

For a particular detection output it is a challenge to automatically select the best

association algorithm. We approach this challenge by developing novel measures

for ranking the association algorithms according to their performance without

the need for a ground truth. We formulate tracking as a binary classi�cation

task and develop our principal measure (ED-score) based on the de�nitions of

precision and recall. On a range of real cell videos tested, ED-score has a strong

correlation (-0.87) with F-score. However, ED-score does not require a ground

truth for computation.

Keywords: Cell tracking, Data association, Tracking quality, Performance

measures, Tracker selection, Bayes theorem

1. Introduction

Automated cell tracking has become an important tool in a wide range of

biological studies, including anti-cancer drug screening, measuring the prolif-
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eration of immune system cells, and conducting wound healing assays [1, 2].

Systems for tracking cells often comprise two separate steps: cell detection and

association of detected cells across frames [2, 3]. In this paper, we focus on the

association step, and by cell tracker we mean an algorithm for data association.

Many cell trackers have parameters that need to be speci�ed, for example,

the process noise covariance for the Kalman �lter used in the method of Li et

al. [4], and the weights for association costs in the algorithm by Pad�eld et

al. [3]. Given a cell video processed by a cell detector, users naturally want to

select a tracking algorithm with appropriate parameter values that leads to the

most accurate reconstruction of cell tracks. We refer to the accuracy of track

reconstruction as tracking performance.

Existing measures of tracking performance [5, 6, 4] require the availability

of ground truth (GT) information, for example, identities of cells throughout

the video. A common approach is to generate a GT by manually annotating a

subset of video frames. However, the best choice of tracking algorithm and its

associated parameter settings can vary between videos, and it can be very time

consuming to manually annotate every new video. Therefore, an important and

open research problem in automated cell tracking is how to select algorithms

and their associated parameter settings without access to the GT for videos.

To address this problem, our aim is to develop a measure for ranking track-

ers according to their performance without the need for a GT. The challenge in

developing such measures is the absence of labeled training data. We propose

a method for estimating the performance of a tracker based solely on the in-

formation available from the tracking results, such as the lengths of links made

by a tracker. Our method relies on an assumption that the distribution of the

lengths of wrong associations can be estimated from the sample of distances

between locations within frames (Section 4.3.1). Our evaluation on real and
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synthetic videos shows that the assumption holds in practical scenarios. The

main application for our measures is selecting the most accurate tracking algo-

rithm (and its parameters) for a given video and a �xed detection step. This

problem can arise, for example, when cells of the same type are recorded under

di�erent treatments, so that the visual appearance of the cells is the same, but

the motility varies across videos.

Although, in this paper, we consider cell tracking as our main application,

our method is su�ciently general to be applicable to other domains, such as

particle tracking or vehicle tracking. This is due to the fact that we develop

our formulations upon a general points association problem. Furthermore, we

approach the tracking problem from the perspective of pattern recognition by

breaking tracks down into inter-frame links, and categorizing the links into

positive and negative classes. The tracking problem then essentially becomes

recognizing positive links from the set of all possible links on a given detection.

This allows us to apply concepts of precision and recall in our solution.

In summary, the contributions of our paper are as follows: (a) we present

several novel measures for ranking cell trackers according to their performance.

These measures do not require a GT (Section 4); and (b) we evaluate our pro-

posed measures using both real and synthetic videos for di�erent trackers, and

show that our measures correlate with tracking performance in practical cell

tracking scenarios (Section 5).

2. Related Work

Over recent decades, there have been many proposed cell tracking methods

[7, 8]. Each of these methods has a number of parameter values that need to

be speci�ed by the user. Rittscher (2010) remarks: �it is often not clear which

particular ... tracking algorithm is well suited for the given data type. It would
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be helpful if the decision on what type of algorithm should be used, or what

particular parameter setting should be used, could be made automatically� [8].

We address this challenge by developing measures for ranking trackers according

to their performance without the need for a ground truth.

We only consider the data association step, hence our method in its present

form is only useful for cell tracking systems that perform cell detection and

association steps separately. We note that there has been a growing number

of such systems [9, 10, 6, 3], and that such systems tend to be more resilient

to abrupt cell movements [3]. Abrupt movements may arise because it is often

desirable to keep the time between frames large due to the known e�ect of photo-

toxicity [11]. Furthermore, we discuss a way to extend our present method to

ranking arbitrary tracking systems (Section 6).

Object tracking is a fundamental task, which can be divided into two sub-

tasks: segmentation or appearance modeling [12], and tracking locations over

time through matching [13]. The matching problem arises when tracking mul-

tiple targets [14], or even for one target in the presence of noisy measurements

[15]. Often the two sub-tasks can be addressed simultaneously [16].

As object appearance can vary greatly across videos and application do-

mains, in this paper, we consider only the second sub-task to isolate the match-

ing part. Furthermore, we do not develop a tracking algorithm, but instead focus

on estimating tracking performance without manual validation. This problem

has been previously addressed in the context of video surveillance systems (see

the survey of SanMiguel et al. [17] and the references therein). However, this

previous work is not directly applicable in the cell tracking context. In the

surveillance domain, such methods tend to rely on visual keys such as color and

shape, or on directed object movements. In cell videos, motions tend to be more

stochastic, and color and shape tend to have less discriminative power compared
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to objects (e.g., people or cars) in surveillance applications.

Finally, there has been work on automated parameter tuning or quality esti-

mation in other domains. Abdul-Karim et al. [18] suggest to use the minimum

description length principle for an automated selection of optimal parameter

settings for vessel/neurite segmentation algorithms. War�eld et al. [19] use a

modi�cation of the expectation-maximization algorithm in order to automati-

cally estimate a ground truth for medical image segmentation, and simultane-

ously estimate the performance of given segmentation algorithms. These previ-

ous methods focus on image segmentation and cannot be readily applied in the

context of data association.

3. Problem Statement

3.1. Cell Tracking Preliminaries

Consider a video that has been processed by a cell detector (e.g., presented in

[20]). The cell detector identi�es cells in each frame of the video. A location is a

k-dimensional vector ~x = {x1, . . . , xk}, where xi ∈ R, i = 1, . . . , k. For example,

the location can be a vector comprising the centroid position, �uorescence and

size of a cell.1 The output of the cell detector is called a detection. The detection

is a set of discovered cell locations in a video. Note that this set can contain

errors, such as spurious locations and missing true cells.

A link is a tuple {t, ~x, ~y}, such that ~x is a location in frame t and ~y is a

location in frame t + 1. We denote the set of all possible links on detection D

as Lall. If ~x and ~y relate to the same cell then the link {t, ~x, ~y} is called a true

link. If a cell divides, the mother and each of the daughter cells are considered

1Note that individual components of the vector (e.g., centroid, size and �uorescence) are
properties of a region of a frame that presumably corresponds to a cell. That is, the location
is a point in the space of properties, and this point summarizes the region of a frame that
presumably corresponds to a cell.
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Figure 1: An illustration of the concepts of all possible links, true links, and false links. Links
that connect locations of the same cell are called true links (solid black lines). Links that
connect unrelated locations are called false links (dotted red lines).

to be di�erent cells. However, a link between the mother and a daughter cell is

a true link. All links that are not true links are called false links (Figure 1).

Ltrue (respectively Lfalse) denotes the set of all true (respectively false) links

in Lall, so that Ltrue∪Lfalse = Lall and Ltrue∩Lfalse = ∅. For a given detection

D, the ground truth (GT) is a mapping from Lall to {true, false}.

A cell tracker CT is an algorithm that takes a cell detection D as input and

produces a set of links L as output: CT(D) → Ltrk ⊆ Lall. The set of links

Ltrk produced by the tracker is a subset of all possible links Lall on the given

detection D. In other words, detection D implies a set of links Lall and this set

is de�ned regardless of tracking. Cell tracking can be considered as the process

of selecting links from Lall.

By the cell tracker, we mean a tracking method with all its parameters set to

certain values. For example, a nearest neighbor linking tracker with its gating

distance set to 5, and a nearest neighbor linking tracker with its gating distance

set to 7 are considered as two di�erent trackers.

6



3.2. Cell Tracking Performance

In this paper, we consider tracking performance to mean a measure that

re�ects the accuracy of maintaining cell identities across a video. The running

time of the tracker is usually less important, as long as the algorithm terminates

in a reasonable amount of time. In this section, we review several previously

proposed measures for tracking performance. Note that a GT is required in

order to compute these previous measures.

On the level of inter-frame associations, the accuracy of maintaining cell

identities can be measured by precision and recall, commonly used in the �eld

of information retrieval. These measures capture, respectively, the proportion of

spurious links made by the tracker and correct links overlooked by the tracker.

Precision is de�ned as prec = |Ltrue ∩ Ltrk|/|Ltrk|, and recall is de�ned as

recl = |Ltrue ∩ Ltrk|/|Ltrue| (we assume |Ltrk| > 0 and |Ltrue| > 0.). Precision

and recall are combined into a single measure called the F-score (also denoted

as F1 score) and de�ned as F1 = 2 prec·recl
prec+recl .

Given detection D, and a set of feasible trackers, we aim to select a tracker

that maximizes the F-score, without using a GT.

There have been other proposed tracking performance measures, such as the

proportion of swap errors [6], and the proportion of lost tracks [4]. We note

that F-score and the other measures are related2, and it is not surprising that

in our evaluation we �nd correlation between di�erent measures (Section 5).

The derivation of our method is based on the de�nitions of precision and recall,

and therefore is closely related to F-score. For convenience, in this paper, we

mainly use F-score as the measure of tracking performance, although we also

report some of the results with respect to other measures.

2An extended discussion is omitted due to space limitations. The discussion is available in
the extended version of the paper at http://people.eng.unimelb.edu.au/akan/perfrank.html
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4. Measuring Performance without Ground Truth

Our approach for solving the problem stated in the previous section is to

develop a measure that estimates the tracking performance from the information

available as a result of tracking. For example, one can know the number of links

made by the tracker in every frame. Furthermore, one can know the lengths

of the links made by the tracker. Our baseline measure presented in the next

section uses the number of links a tracker makes between consecutive frames.

4.1. Number of Links

Intuitively, a �good� tracker is one that is consistent in making links across

frames. Consider the output Ltrk of a tracker. Let Li ⊆ Ltrk be the subset of

links that end in frame i, that is, Li = {l = {t, ~x, ~y} : l ∈ Ltrk; t+ 1 = i}. Now

ni = |Li| is the number of links that end in frame i according to the cell tracker.

Our naive measure of tracking performance is called VN-score. It is de�ned as

a sample variance V N = V ar ({n2, . . . , nk}), where k is the number of frames

in the video. Note that VN-score does not require a GT.

Surprisingly, such a simple measure is well correlated with F-score in our

real video experiments, but it does not perform well in the synthetic video ex-

periments where tracking conditions are harsher. In fact, VN-score has intrinsic

limitations. For example, swapping tracks is a common tracking error in prac-

tice. However, after a swap, the number of cells or links in a frame as perceived

by the tracker does not change compared to the real number of links. Therefore

a swap error is not captured by the VN-score.

Moreover, if a cell enters or leaves the �eld of view, the number of true links

changes. However this legitimate change will be re�ected in the VN-score as an

error. Therefore, we proceed with developing a more reliable measure.
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4.2. Lengths of Links

Another kind of information that is available without a GT is the lengths

of links made by the tracker. For a given link l = {t, ~x, ~y}, where ~x, ~y ∈ Rk

the length of the link is a function R(l) : Rk × Rk → R. For example, if ~x and

~y are the cell centroids in two consecutive frames, the length of the link can

be the Euclidean distance between ~x and ~y. Essentially, the length of a link

is a distance between two locations. However, in our method, we treat a pair

of locations (i.e., a link) as a single object. From this perspective it is more

convenient to use term �the length of the link� instead of �the distance between

the end points of the link�.

In this paper, we de�ne the link length as the Euclidean distance between

centroid locations R ({t, ~x, ~y}) = ||~x−~y||. Note that, in general, the de�nition of

the �link length� is not limited to the use of centroid locations only. In principle,

the length might be calculated using other available information, such as cell

�uorescence and area. Our evaluation shows that satisfactory results can be

achieved using the centroids alone, but it would be an interesting direction for

future work to consider other types of information.

Note that if the lengths of true and false links come from di�erent distri-

butions, then given a set of links, we can look at their lengths and make some

conclusions about the proportion of true links in the set. We next develop in

three steps a measure that correlates with F-score. We �rst introduce a measure

that correlates with precision (Section 4.3). We then introduce another measure

that correlates with recall (Section 4.4). Finally, we combine these two measures

into one (Section 4.5).

4.3. Mirrored Precision

Consider a cell tracker CT, with input D and output Ltrk. Let Ef (Ltrk)

denote the event �a link l that is randomly chosen from a set Ltrk is a false
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link�. For brevity we denote Ef (Ltrk) as Ef . Our main observation is that the

posterior probability P{Ef |Ltrk} is correlated with the proportion of false links

in Ltrk and hence has negative correlation with the precision prec(Ltrk).3

Based on this observation, we de�ne our �rst measure called the mirrored

precision (also MP-measure or MP-score) as

MP (Ltrk) ≡ P{Ef |Ltrk}
P{false}

=
1

N

N∑
i=1

Pf (Ri)

Pall(Ri)
. (1)

Here the middle and right parts of the equation are related via the Bayes'

theorem. Pall(Ri) (respectively, Pf (Ri) ≡ Pall{Ri|false}) are the probabilities

of observing a link (respectively, false link) with a particular length Ri. That is,

Pall (respectively Pf ) is the PDF of the lengths of all (respectively, false) links.

We assume that Pf 6≡ Pall. P{false} is the a priori probability that a link is a

false link. For a given input D, P{false} is an (unknown) proportion of false

links implied by D, that is, a �xed value.

A useful property of the mirrored precision is that it correlates with precision

as formalized in the proposition below (a proof sketch is given in Appendix A).

This property is essential for our work.

Proposition 1. Let X = MP (Ltrk) and Y = prec(Ltrk) be real-valued random

variables (on the sample space Φ where an outcome is a tracker). Then if

Pf 6≡ Pall, Cov(X,Y ) < 0, where Cov(. . .) denotes the covariance.

4.3.1. Estimation of PDFs of Link Lengths

We estimate the PDFs of the lengths of all links and false links from the

input detection. We estimate Pall from a sample of all links that one can make

3We de�ne the event Ef as �... a link ... being a false link�, not a true link, because it
is more convenient for us to recover the distribution of lengths of false links, as we show in
Section 4.3.1. To re�ect the fact the the correlation is negative we call our measure mirrored
precision.
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in the given detection. That is, we connect each location in a frame with each

location in the subsequent frame. We estimate the PDF from a sample using

the kernel density estimation method from Botev et al. [21].

We also need to estimate Pf . However, without a GT, it is not known which

links are false links. Therefore, we build upon a previous observation that

the distribution of false links can be estimated from the the distances between

locations within a frame [6]. Let Pwithin be the PDF of a random variable

that denotes the Euclidean distance between a random pair of locations within

a single frame in the video. We can estimate Pwithin from a set of pairwise

distances between locations within each frame. We then use the estimated

Pwithin instead of Pf based on the following assumption.

Assumption 1. We assume that Pwithin ≈ Pf .

It is important to note that the assumption was empirically validated on a range

of real and synthetic cell videos (Section 5). Moreover, below we explain why

we expect the assumption to hold in practical tracking scenarios.

Consider two locations chosen at random within a single frame, let one of

the locations be randomly chosen as the origin, and let dxwithin be a random

variable denoting the di�erence between the x coordinates of the locations (the

same argument applies to the y coordinate). For a pair of consecutive frames,

let dxtrue and dxfalse be random variables denoting the di�erences between the

x coordinates of the locations in the two frames. Here dxtrue corresponds to a

true link and dxfalse corresponds to a false link. We can express the di�erences

in coordinates for a false link as dxfalse = dxtrue + dxwithin (Figure 2).

By construction, the mean of dxwithin is 0. We also assume zero means for

dxtrue (otherwise there is a common o�set that can be subtracted). Note that

if V ar(dxtrue) � V ar(dxwithin) then dxfalse ≈ dxwithin and Assumption 1 is

satis�ed. For example, in our real videos, typical variances satisfy V ar(dxtrue) <
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Figure 2: The length of a false link can be expressed with the length of the corresponding
true link and the distance between locations within a frame.

36 pixels and V ar(dxwithin) > 5100 pixels.

Furthermore, as V ar(dxtrue) approaches V ar(dxwithin), cells tend to travel

larger distances between consecutive frames compared to the distances between

di�erent cells. This usually results in a degraded tracking performance. In turn,

if the maximum achievable tracking performance is low, an inaccurate MP-score

is not a critical problem. More generally, in order for cells to be identi�able,

one can expect the existence of a property (or combined property) such that the

variation in the property for the same cell in two consecutive frames is small

compared to the variation across di�erent cells in the same frame. In this case,

the assumption holds with respect to this property.

In summary, in order to estimate the distribution of false links, we collect

the distances between locations within individual frames. We then use kernel

density estimation to obtain the PDF of these within-frame distances, and use

this PDF as an approximation of Pf . From our evaluation, we conclude that

our estimation method is reliable in practical cell tracking scenarios.

4.4. Mirrored Recall

We now have a measure to estimate the precision of tracking, and we need

a measure to estimate the recall. We note that under certain circumstances,

recall is closely related to precision. For example, when the outputs of di�erent

trackers all have the same number of links N , then the precision of such trackers

depends only on the number of true links included in their output (true posi-
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Figure 3: Equalizing the sizes of tracking results. (a) An output of a cell detection algorithm
implies sets of true and false links. (b) Di�erent trackers can produce di�erent results, and
di�erent results can have di�erent recall values. (c) Each tracker's results are appended with
false links randomly drawn from the set of false links in the video. The precision of the padded
results is correlated to the recall of the original results.

tives). At the same time, recall also depends on the number of true positives.

Therefore, if di�erent trackers produce outputs of the same size then precision

is proportional to recall.

In practice, di�erent trackers can produce outputs of di�erent sizes. There-

fore we equalize the sizes of di�erent outputs, in order to express tracking recall

via precision. We append shorter outputs to the size of the largest output Nmax

with dummy links with lengths independently randomly drawn from the PDF of

lengths of false links Pf (Figure 3). In the rest of this section, we summarize the

calculation of mirrored recall using the equalized output sizes. The proposed

dummy link generation process is justi�ed in Appendix B.

We denote the padded output as L′trk = Ltrk ∪ Lpad. Let prec′(CT(D)) =

prec(L′trk) = T
Nmax

, that is, prec′ is the precision of the padded output. Here

T = |Ltrue ∩ Ltrk| is the number of true links in L′trk, which is the same as the

number of true links in Ltrk. Note that recl(CT(D)) = T
T∗ , where T

∗ = |Ltrue|.

For a given input D and set of trackers Φ, both T ∗ and Nmax are �xed. Hence
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we have that prec′(CT(D)) ∝ recl(CT(D)).

We now de�ne the mirrored recall (also MR-measure or MR-score) asMR =

MP (L′trk), where MP is calculated using Equation 1. From Proposition 1 it

follows that MR = MP (L′trk) is correlated with prec′(Ltrk), and hence MR-

score is negatively correlated with the recall recl(Ltrk).

4.5. Combined Performance Measures

In order to produce a ranking of trackers, we need to combine the MP

and MR-scores into a single measure. Our approach is based on representing

each cell tracker as a point in a two-dimensional Euclidean space. Note that

smaller values of MP and MR-scores correspond to higher precision and recall

respectively. Therefore, an ideal tracker is expected to have both MP and MR-

scores equal to zero. We de�ne our second combined measure ED-score as the

Euclidean distance to this ideal point ED =
√
MP 2 +MR2.4

An alternative approach to combine the scores is to use a dimensionality

reduction approach. We apply principal component analysis (PCA) to the MP

and MR-scores, and use the �rst principal component as a combined measure.

We denote this measure as PC-score. Note that PCA does not guarantee opti-

mality in terms of correlation with F-score. For example, MP-score can have a

perfect correlation with F-score and have a small variance, while MR-score can

be uncorrelated with F-score and have a large variance. In this case, PC-score

will be essentially equal to MR-score, which is not the best possible combination.

In our evaluation, we also tested the combination of VN, MP and MR-scores

(i.e., three measures). We denote the respective combined scores as ED3 and

PC3-scores. ED3-score is the quadratic mean of VN, MP, and MR-scores with

4We �nd that using the Euclidean distance is a more reliable method than using the
harmonic mean of MP and MR-scores. An extended discussion is omitted here due to space
limitations, but it is available online at http://people.eng.unimelb.edu.au/akan/perfrank.html
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Table 1: Summary of tracking performance measures that we introduce in this paper. None
of these measures requires GT. Details of our evaluation are given in Section 5.

Meas. De�nition Evaluation

MP Equation 1 Strong negative correlation with prec
MR Equation 1 (padded set) Strong negative correlation with recl
ED

√
MP 2 +MR2 Strong negative correlation with F-score

PC PCA of [MP,MR] Weak negative correlation with F-score
VN Var. of the number of links Unreliable (sometimes performs well)

PC3 PCA of [MP,MR, V N ] Does not perform well
ED3

√
MP 2 +MR2 + V N2 Does not perform well

equal weights, and PC3-score is the �rst principal component after applying

PCA to VN, MP and MR-scores. We summarize all our measures in Table 1.

In the next section, we show how our combined measures can be used in

practical scenarios, and compare the e�ects of using di�erent measures.

5. Evaluation

The aims of our evaluation have been to (i) validate the proposed measures in

practical scenarios, and (ii) study the reliability of the measures under conditions

that are expected to hamper our method. In order to achieve these aims, we

use di�erent cell trackers previously proposed in the literature, and vary the

parameter values used in these trackers. Furthermore, we use a range of real

and synthetic videos as inputs.5

Our experiments are grouped in three classes. The �rst class comprises

experiments on real videos (Section 5.1). These experiments are used to eval-

uate our measures in practical tracking scenarios. Furthermore, we have two

groups of experiments on synthetic videos (Section 5.2). These experiments are

designed to test our measures under more challenging tracking conditions.

In all groups, each experiment has the same structure. We run the trackers

5Selected real videos and cell trackers are available online at
http://people.eng.unimelb.edu.au/akan/perfrank.html
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on the same input. For each tracker, we compute the F-score using the GT, and

we compute the ED-score without the GT. We then select an optimal tracker

based on the computed ED-scores. As our baselines we use the performance

of the tracker selected using the VN-score. Another baseline is the F-score

of a randomly selected tracker. Finally, in each experiment, we also compute

Spearman's correlation between the F-score and the proposed measures.

5.1. Real Cell Videos

In our evaluation, we use �ve real videos. These videos have been previously

published [6], and we only brie�y summarize them here (Table 2). One of the

videos (named ak6) shows neural progenitor cells, and the remaining four videos

show B lymphocyte cells. The videos show cells at di�erent densities and speeds.

The di�culty of tracking cells in a video may depend on a variety of factors,

such as density and relative sizes of cells. However, to our knowledge, there is

no standard way to formalize the �di�culty�. Here, just to give an additional

insight into our videos, we adopt the concept of a normalized cell density βn

[22]. It describes how fast cells move compared to the distance between cells

βn = N · σ2 · π/L2. Here N is the number of cells in a frame, σ2 is the variance

of cell o�sets between consecutive frames, and L is the side of a square frame.

Higher values of βn correspond to faster motions and more di�cult videos. Our

videos contain a few cell divisions and deaths, so the number of cells changes

across frames. We use the average number of cells per frame to estimate βn.

Furthermore, in some of our videos, cells tend to group in clusters in the middle

of the frame, so we estimate L as the side of the smallest square that outlines

all cells in a frame. This square can be smaller than the actual frame.

6This video is an excerpt from supplementary movie 1 for the work of [9].
The supplementary �le is available on-line from the Cell Cycle journal website at
http://www.landesbioscience.com/journals/cc/supplement/alkofahi.zip
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Table 2: Real videos cover a variety of tracking conditions. #cells is the number of distinct
cells. For example, if a mother cell divides into two daughter cells, then there are three distinct
cells. βn is the normalized object density de�ned in the main text. To obtain values of βn,
divide the numbers in the table by 102.

video #frames #cells βn × 102

ak 300 18 0.25
hex.6 100 6 5.94
hex.16 100 16 3.45
hex.22 100 22 3.18
square 50 35 0.14

For each video, we manually produce the GT for cell locations. We then

add random noise to the GT, in order to simulate di�erent levels of detection

quality. We generated detection levels 0, 1, 3, 5, 10 and 20, where level k means

that there are k% of spurious locations (false positives) and k% of missing true

locations (false negatives). Therefore, in total we have 5 real videos each at 6

detection levels, and hence 30 inputs. We denote an input as movie@k. For

example, hex.16@3 denotes the detection for the hex.16 video that contains 3%

of false positives and 3% of false negatives.

5.1.1. Cell Trackers

We use three previously proposed cell tracking methods with di�erent pa-

rameter settings (Table 3). We asked the authors of the corresponding methods

which parameters, in their opinion, are most in�uential for tracking. Based on

their responses we select up to three parameters. The authors of the algorithms

did not suggest any speci�c values for the parameters, but, where appropriate,

pointed out a range of reasonable values for each parameter. We then set arbi-

trary values for the selected parameters such that they fall into the appropriate

ranges. For example, the probability should be in the range [0, 1], and the maxi-

mum allowed spatial distance should be comparable with the frame dimensions.

In total, di�erent combinations of the tracking methods and selected parameter

values give us 5 + 27 + 27 = 59 di�erent trackers (see Table 3).
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Table 3: Real trackers and their parameters. The right column shows the number of trackers.

Method, authors Parameters trackers

NENIA (version
A), Kan et al. [6]

gating distance = {5, 10, 20, 50, 100} 5

LJIPDA, Musicki
and Evans [23];
Chakravorty
[unpublished]

process covariance = {0.1, 1, 10}
detection probability = {0.7, 0.8, 0.9}

termination probability = {0.1, 0.05, 0.01}

3×3×3 =
27

u-track, Jaqaman
et al. [10]

maximum search radius = {5, 20, 100}
time window= {1, 5, 10}

st. dev. multiplication= {2, 3, 4}

3×3×3 =
27

The NENIA (version A) tracker has only one parameter. LJIPDA (hybrid)

and u-track7 have more than three parameters. We set the remaining parameters

to their default values as provided by the authors of the corresponding methods.

LJIPDA requires a supplementary module to resolve cell divisions. We did

not implement this module in our evaluation. As a result, when division occurs

LJIPDA can only follow up to one of the daughter cells, and hence LJIPDA

always misses the link to the second daughter. Consequently LJIPDA tends to

perform slightly worse than the other algorithms. This is not important for our

evaluation, since our aim is to rank di�erent trackers.

Recall that we aim to �nd the best tracker for a given video. Two key

components of this optimization problem are the choice of measure to optimize

and the optimization strategy. In this paper, we focus on the choice of the

performance measure. As we argue in the Introduction, this is not a trivial task

without the ground truth. Consequently, we adhere to a naive grid search based

strategy: (1) collect a pool of available trackers; (2) identify a reasonable range

and steps for the parameters of the given trackers (e.g., from documentation);

and (3) try all combinations of trackers and parameters. In the case where there

7u−track is available online at http://lccb.hms.harvard.edu/software.html. Strictly speak-
ing, this is a multiple particle tracker. However, it is often used and cited in the cell tracking
domain. For convenience of narration we refer to this tracker as a cell tracker in our paper.
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are too many trackers available at step (1), the researcher might like to select

a smaller subset based on practical considerations (e.g., popularity or ease of

use). For some trackers, there might be a more e�cient strategy for searching

the parameter space, but such a method is beyond the scope of this paper.

Finally, we validate our strategy in a practical setup. The most time con-

suming part of our evaluation comprises individual tracker runs. The time for a

single run depends on the tracker, but we only use a short portion of the video in

a run. For example, on our �ve real videos at detection level 3, single run times

in seconds are [2.8; 3.7], [0.6; 0.8], [2.5; 2.9], [3.3; 4.0], [2.1; 2.5] (95% bootstrap

con�dence intervals for the mean of a sample of 59 runs) on a modern PC. In

other words, a grid search for the best tracker among 59 combinations can be

completed within 5 minutes in a sequential execution. This can be considerably

faster than creating a ground truth manually. Moreover, single runs can be

executed in parallel.

5.2. Synthetic Videos

The goal of our synthetic experiments is to cover tracking conditions that

were not covered in our real videos. Such conditions include (i) large numbers of

cells, (ii) abrupt movements and frequent divisions, and (iii) changing density.

We implement two cell density changing models in two groups of synthetic

videos. In the �rst group, the number of cells increases due to divisions, but all

cells are constrained within �xed frame boundaries. In the second group, cells

are not constrained and the number of cells does not change, however, cells have

a directed motion outwards from the middle of the frame. This kind of motion

can be observed in wound healing assays [2]. In a wound healing assay cells

usually move towards the wound (inwards rather than outwards), but this does

not make a di�erence for our evaluation. More details on our synthetic videos

are given in the next section.
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We do not test with videos with high numbers of frames, because in general

a long video can be divided into parts. Some tracking algorithms are global in

the sense that they can achieve higher performance given the whole video at

once. Such trackers can be given the complete video as input. We then can

select a part or a few parts of the video and estimate the performance of the

tracker on each part.

For each synthetic video, we added random noise to the detection, such that

each detection contains 3% of false positives and 3% of false negatives. In total,

we have 20 synthetic inputs: 10 synthetic videos in each of two groups, and one

detection level for all videos.

5.2.1. Group One Synthetic (G1)

We generate two groups of synthetic videos. Each group comprises 10 syn-

thetic videos. Every video has 10 frames, and starts with 100 cells uniformly

placed in the �rst frame.

In the �rst group (G1), we use a Brownian motion model with the same

variance of the o�set σ2 in both spatial directions. The variance takes di�erent

values in di�erent videos in such a way that βn takes values from 0.1 to 1 with

a step of 0.1 (in our real videos, the maximum estimated βn is around 0.06, i.e.,

the motion is much slower). By de�nition βn = N · σ2 · π/L2, where we use the

number of cells N = 100, and the side of the square frame in pixels L = 100.

In our G1 videos, the motion of cells is constrained within the frame bound-

aries. If a generated inter-frame o�set for a cell leads outside the frame, we

move the cell towards the direction of the o�set, but leave it within the frame at

some random distance from the boundary. A visual inspection of the produced

videos shows that this motion amendment does not lead to dramatic skews in

the spatial distribution: the placement of cells remains approximately uniform.

Every odd frame, 20% of the cells divide, and so the second frame has 120
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cells, the fourth frame has 144 cells, and so on. The last 10-th frame contains

200 cells. We do not recalculate the o�set variance σ2. This implies that βn

increases further (i.e., tracking becomes harder) throughout the video.

5.2.2. Group Two Synthetic (G2)

In the second group (G2) of synthetic videos, there are no divisions and the

number of cells is 100 in each frame. After placing the cells in the �rst frame,

we draw an imaginary vertical line that divides the frame into halves. We then

move cells to the left of the line to the left with some constant o�set plus random

noise, while we move cells to the right of the line to the right with the same

constant o�set and noise.

We characterize the constant o�set in relation to the expected distance to

the nearest cell denoted as D. It is not convenient to measure the o�set in

relation to the frame side L because such a measurement does not take into

account the initial density of cells. Di�erent videos in the second group have

di�erent o�sets αD, where α takes values from 0.1 to 0.55 with a step of 0.05.

We estimate D as D = L/
√
π ·N . The intuition is that if D is the distance to

the nearest cell then there is only one cell expected to be in a circle with radius

D. On the other hand, there are N cells in a square frame with side L, and

hence D = L/
√
π ·N . This is only a coarse estimation of D, but it su�ces for

the purposes of our evaluation.

Note that L denotes the side of the �rst frame where we place cells uniformly.

In the subsequent frames, cells move apart and the e�ective frame size grows

(the �eld of view is not restricted). In our simulations, we need a control over

D and hence it is slightly more convenient to move cells outwards.

5.3. Summary of Results

In what follows we report correlations using Spearman's rank correlation

coe�cient r, because (a) we are interested in ranking trackers, and (b) this
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coe�cient operates on ranks rather than absolute values and therefore is more

reliable to outliers than Pearson's coe�cient.

Apart from F-score, in our evaluation we also use proportion of swap errors

# swaps
# locations , and proportion of lost tracks # lost tracks

# all tracks . All these measures require

GT, and all of them are correlated. On average, over all our real and G1

experiments, correlation between the F-score and the proportion of swap errors

(respectively lost tracks) is −0.89 (respectively −0.62). Furthermore, we note

that F-score is the harmonic mean of precision and recall, whereas our ED-score

is the quadratic mean for mirrored precision and recall. We therefore also look

at the correlation between the harmonic and quadratic means for precision and

recall. In every real and synthetic experiment we �nd a strong correlation of

approximately 0.99 between the F-score and the quadratic mean of precision and

recall. Therefore, in what follows we report results with respect to F-score.8

5.3.1. Preliminary Experiments

We �rst verify the validity of Assumption 1 on real videos by comparing

the empirical distributions of false links (obtained using the ground truth) and

the distances measured within the frames. We �nd that in all cases the two

distributions are similar (representative cases are shown in Figure 4). These

results justify Assumption 1 on a range of practical scenarios tested.

We then validate our MR-score, which is based on dummy links generation

(Section 4.4 and Appendix B). In the real and G1 experiments MR-score is well

correlated with recall. The weakest (respectively average) correlation coe�cient

for the real experiments is −0.77 (−0.95), and for the G1 experiments it is

−0.65 (−0.83). MP-score and precision are also well correlated, except for a

few experiments. This correlation is weak only when the variance of precision

8Results with respect to some other measures can be found at
http://people.eng.unimelb.edu.au/akan/perfrank.html
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Figure 4: Empirical CDF of the distances measured within frames (red dashed line) closely
resemble the CDF of the length of false links (blue solid line). The �gure shows real datasets
at detection level 3. The p-value of the Kolmogorov-Smirnov test for each of the plots is > 0.4.

is small. In all experiments, where the correlation coe�cient between mirrored

precision (MP-score) and precision is weaker than −0.3, the standard deviation

of precision is below 0.01. In such experiments, precision does not a�ect the

variation in tracking performance, and therefore the overall correlation between

ED and F-scores is strong, as we quantitatively con�rm in the next section.

Finally, we study the e�ect of di�erent parameters on the tracking per-

formance. Figure 5 shows the F-score against ED-score in a representative

experiment on real videos. This and other experiments (not shown) con�rm

that di�erent parameter settings can lead to signi�cantly di�erent performance.

Furthermore, on di�erent inputs the best performance can be achieved with dif-

ferent trackers. There is not necessarily a �winning� cell tracker. The relation

between ED-score and F-score is explored in the next section.
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Figure 5: Experiment with the real video hex.16 at detection level 3. There are in total 59
points in three plots. Each point is the result of a run of a tracker with its parameters �xed
to certain values.
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5.3.2. Real and G1 Experiments

We present the results of our evaluation in Figure 6. The top row shows

observed correlation r between F-score and ED-score for each input (video @

detection level). This plot also shows bootstrapped con�dence intervals for r.

Bootstrapping is performed by generating 300 samples drawn with replacement

from the set of candidate trackers on a �xed input.

Overall, ED-score is strongly correlated with F-score (|r| > 0.5, note that

the correlation is negative). The correlation is weaker on inputs �ak@10� and

�ak@20�, because in these cases all candidate trackers perform similarly and

there is little variation in measures (F-score remains around 0.95). In our G1

videos, ED-score is also strongly correlated with F-score. The weakest correla-

tion observed across 10 G1 experiments is −0.62, and the mean value for the

correlation coe�cient is −0.79 (data not shown).

The middle row in Figure 6 shows the tracking performance achieved using

random selection, VN-score ED-score, and the ground truth. ED-score outper-

forms random selection (for each real or G1 input p < 0.01, Wilcoxon signed-

rank test applied to a bootstrapped sample as described above). The bottom

row compares the performance achieved using random selection and ED-score

where candidate trackers are grouped by software package. In this evaluation,

for a given input we tested di�erent parameter settings for NENIA, LJIPDA or

u-track. In each group ED-score outperforms random selection (p < 0.01).

On real videos, VN-score performs similarly to ED-score. However, in each

of our G1 videos ED score outperforms VN-score, PC-score, as well as, ED3

and PC3 scores (Table 4). We note that in our real videos trackers tend to

have high precision, and hence the F-score is e�ectively determined by recall

only. In this scenario, the VN-score performs well. In the G1 videos, both

precision and recall vary, and the VN-score does not estimate the performance
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Table 4: The results of the G1 experiments (in rows). Columns show the F-score achieved using
random selection (RND), VN, ED, ED3, PC, and PC3-measures, and a ground truth (MAX).
ED-score outperforms random selection (p < 0.01). However, the performance achieved by
VN, ED3, PC, and PC3-scores is not statistically di�erent from random performance.

βn RND VN ED ED3 PC PC3 MAX

0.1 0.605 0.689 0.715 0.689 0.689 0.689 0.721
0.2 0.651 0.596 0.619 0.596 0.600 0.596 0.654
0.3 0.447 0.498 0.520 0.498 0.492 0.498 0.545
0.4 0.419 0.406 0.434 0.406 0.405 0.406 0.481
0.5 0.382 0.371 0.393 0.371 0.371 0.371 0.438
0.6 0.317 0.338 0.379 0.338 0.320 0.338 0.412
0.7 0.276 0.306 0.368 0.306 0.353 0.306 0.373
0.8 0.298 0.290 0.355 0.290 0.328 0.290 0.355
0.9 0.277 0.280 0.302 0.280 0.302 0.280 0.322
1.0 0.247 0.240 0.313 0.240 0.273 0.240 0.313
min 0.247 0.240 0.302 0.240 0.273 0.240 0.313
max 0.651 0.689 0.715 0.689 0.689 0.689 0.721
mean 0.392 0.401 0.440 0.401 0.413 0.401 0.462
st.dev. 0.141 0.148 0.136 0.148 0.138 0.148 0.140

adequately. The poor performance of the VN-score in the G1 videos contributes

to the poor performance of the combined ED3 and PC3-scores on these videos.

Furthermore, the G1 experiments illustrate that the �rst principal component

is not necessarily strongly correlated with F-score.

5.3.3. Stress Test with G2 Experiments

The ED-score relies on the assumption that the distribution of false links

can be estimated from the distances between locations in individual frames

(Assumption 1). Our evaluation on G1 videos reveals that when cells are uni-

formly distributed within a frame, the assumption holds even when cells move

fast, and when intensive division process is present.

The G2 videos allow us to perform a stress test for another scenario when

groups of cells move apart. The results of the G2 experiments are presented

in Table 5. An increased cell motion a�ects Assumption 1. As a result, the

estimation of the length distribution of false links becomes poorer (as measured
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Table 5: The results of our evaluation on the G2 videos. �alpha� characterizes the relative
magnitudes of the directed motion components of cells, �r� is the correlation between ED and
F-scores, �p-val� is the p-value of the Kolmogorov-Smirnov test for the real and estimated
distributions of false links, and �Max� is the maximum F-score that we observe among our
real trackers.

alpha p-val r Max

0.10 0.990 -0.820 0.915
0.15 0.999 -0.757 0.905
0.20 0.973 -0.719 0.899
0.25 0.946 -0.700 0.900
0.30 0.949 -0.789 0.894
0.35 0.786 -0.772 0.892
0.40 0.536 -0.731 0.883
0.45 0.264 -0.568 0.874
0.50 0.119 -0.422 0.872
0.55 0.033 0.123 0.858

with the p-value of the Kolmogorov-Smirnov test for the real and estimated

distributions). Accordingly, ED-score becomes less correlated with F-score. At

the same time, as the motion becomes faster, the maximum F-score achieved

among our real trackers decreases. In other words, on videos with such fast

motion one is unlikely to achieve reasonable tracking anyway.

6. Discussion

The advent of high content assays in screening applications makes it imprac-

ticable to tune a cell tracker for every new video. Consider a number of videos

produced in a course of a biological experiment. In the experiment, cells of the

same type are recorded under di�erent treatment conditions, and the treatment

is expected to a�ect cell motility or lifetimes. A visual inspection of a few frames

from one of the videos can guide the choice of a cell detection algorithm and its

parameters. The same detection algorithm can then be used for all the videos.

At the same time, as the motility of the cells may vary across videos, one might

like to choose a di�erent tracking algorithm (or di�erent tracking parameters)

for di�erent videos. For a given video, one can run all candidate trackers and
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select the tracker that achieves the lowest ED-score.

ED-score performs reasonably well even in the presence of abrupt movements

and intensive divisions. Furthermore, ED-score performs well in our wound

healing type synthetic videos, when the relative directed speed of cells satis�es

α < 0.4. We obtained three previously reported real videos of wound healing

assays [2]. We do not have the complete GT for these videos, but we estimated

the relative magnitude of the directed speed component. We �nd that, in these

real videos, α ≈ 0.3 which indicates that ED-score can be applicable in real

wound healing assays.

Our evaluation shows that ED-score can be applicable to videos where ob-

jects exhibit di�erent motion styles. Recall that we have evaluated ED-score in

the situation where there is increasing cell density, and in the situation where

two groups of cells move in the opposite directions. Also note that in our real

videos (�rst introduced in [24]) some cells occasionally move notably faster than

others within the same video. Essentially, our real videos show a mixture of dif-

ferent motions. However given practical frame rates, these can be considered as

a single population of moving objects. Note that our method does not make any

direct assumptions on cell motion style. As we discuss in Section 4.3, it is not

the motion style per se that a�ects the validity of Assumption 1, but instead

the amount of variance in inter-frame displacements compared to the distance

between the objects. For example, if di�erent groups of objects move apart this

will increase the variance. However, an increased frame rate would decrease the

variance such that Assumption 1 holds again.

Finally, we comment on the applicability of ED-score in other tracking do-

mains. In this work, we focus on cell tracking and test our measures in the

scenarios speci�c to this domain (e.g., the in presence of divisions and deaths of

cells). However, our de�nitions of the location and the link are general enough
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to be applied to a wide range of domains including tracking people, cells or

particles. According to our de�nition, the location is merely a point in some

space of features that describe an object to be tracked. For a given tracking

problem, one can identify the appropriate features and de�ne the link length

accordingly. The only requirement is that tracked objects satisfy Assumption 1.

As we explain in Section 4.3.1, if the objects are well identi�able by the features

the assumption is likely to be satis�ed.

7. Conclusions

In this paper, we address the problem of ranking cell trackers according to

their performance. By cell tracker we mean a point association algorithm, and by

performance we mean the accuracy of track reconstruction. We have developed

several novel measures for estimating the tracking performance without the need

for the ground truth. Our measures can be used to automatically select the most

appropriate tracker and its parameters for a given set of cell detection results.

One of our measures (VN-score) uses the variance in the estimated number of

links across frames. Other measures (ED and PC-scores) use the lengths of links

in the tracker's output. In our evaluation, we �nd that ED-score correlates with

previously proposed measures for tracking performance, and is the most reliable

proxy for the performance among the proposed measures.

Acknowledgments

We would like to thank Dr Khuloud Jaqaman (Harvard Medical School)

for the advice regarding u-track; Dr Zhaozheng Yin (Carnegie Mellon Univer-

sity) for sharing the videos of wound healing assays; and Dr Daniel Day (Swin-

burne University of Technology) for supplying the 125µmmicrogrids. This work

is partially supported by National ICT Australia (NICTA). NICTA is funded

29



by the Australian Government's Backing Australia's Ability initiative, in part

through the Australian Research Council.

Appendix A. Proof Sketch for Proposition 1

Let Si be the set of all possible trackers that yield outputs with Ni links

and that all have Ti true links in their output. We choose arbitrarily two such

sets and without loss of generality index them with i = 1, 2. Now let EPi =

E [MP (Li)] be the expected value for the MP-score, where the expectation is

taken over all possible outputs Li from trackers in Si. From equation 1 (main

text) we have that

EPi =
1

Ni

∑
t∈Ti

E[ζ(Rt)] +
∑
f∈Fi

E[ζ(Rf )]

 . (A.1)

Here ζ(Rj) =
Pf (Rj)
Pall(Rj)

is a summation term from equation 1; t and f enumerate

individual links in Li, and Ti and Fi are the sets of indices for true and false

links respectively. The expectations are taken over all possible outputs Li from

trackers in Si. For example, E[ζ(R1)] is the expected value of ζ(R1) where R1

is the random variable denoting the length of the �rst link in the outputs from

trackers in Si.

Given a tracker s ∈ Si there exists another tracker s∗ ∈ Si that takes the

result of s and permutes it. Consequently, for any two indices k, l ∈ Ti, we have

that E[ζ(Rk)]=E[ζ(Rl)]. The same reasoning applies to indices from Fi. We

can now let ET i = E[ζ(Rt)], t ∈ Ti and EF i = E[ζ(Rf )], f ∈ Fi, and simplify

equation A.1 to

EPi = (Ti · ET i + (Ni − Ti) · EF i) /Ni (A.2)

Note that ET i =
∞́

0

P (Rt = r)ζ(r) dr, t ∈ Ti. Further, assuming that the

trackers in Si are equally likely (according to the principle of indi�erence), we
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have that P (Rt = r) = Pt. We can then put ET = ET 1 = ET 2. The same

reasoning apply to false links, and so we can put EF = EF1 = EF2.

Proposition 1 states a negative correlation between the MP-score and the

precision Ti/Ni. Alternatively this can be formulated as a condition EP1 >

EP2 ⇐⇒ T1/N1 < T2/N2.

From equation A.2, we have the di�erence

EP1 − EP2 = (ET − EF) · (T1N2 − T2N1)/(N1N2). (A.3)

For Proposition 1 to hold, we require EF > ET , which can be expanded as

EF − ET =
∞́

0

ζ(r) · (Pf (r)− Pt(r)) dr > 0.

The left part of the inequality can be written as
∞́

0

Pf (Rj)·(Pf (r)−Pt(r))
α·Pf (r)+(1−α)·Pt(r)

·

dr, 1 > α > 0. Here we assume Pt(r) 6≡ Pf (r). We �rst de�ne S0 ≡
∞́

0

Pf (Rj)·(Pf (r)−Pt(r))
1·Pf (r)+0·Pt(r)

· dr =
∞́

0

(Pf (r)− Pt(r)) dr = 0. We now express α as α =

1−γ, 1 > γ > 0, and rewrite the inequality as S ≡
∞́

0

Pf (Rj)·(Pf (r)−Pt(r))
1·Pf (r)+0·Pt(r)+γ·(Pt(r)−Pf (r))

.

In S, the integrand is positive when (Pf (r) > Pt(r)), which corresponds to

γ · (Pt(r) − Pf (r)) ≤ 0. Therefore, on the intervals where the integrand of

S is positive, it is greater than or equal to the value of the integrand of S0

on the corresponding points. Similarly it can be shown that, on the intervals

where the integrand of S is negative, its absolute value is smaller than or equal

to the value of the integrand of S0 on the corresponding points. Given that

Pt(r) 6≡ Pf (r), we have that S > S0 = 0 and hence EF − ET > 0. Therefore

EP1 > EP2 ⇐⇒ T1/N1 < T2/N2 is satis�ed and Proposition 1 holds. �

Appendix B. Lengths of Dummy Links

In this section, we justify the proposed selection of lengths for dummy

(padding) links introduced in Section 4.3. Let Si, i = 1, 2, be the set of all
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possible trackers that yield output with Ni links and that all have Ti true links

in their output. Padding involves adding δNi links to the outputs of trackers

from Si. Note that (N1 + δN1) =(N2 + δN2).

Now let ERi = E [MR(Li)] be the expected value for the MR-score, where

the expectation is taken over all possible outputs Li from trackers in Si. From

the de�nition of MR-score (equation 1 on padded set), we have that

ERi =

∑
t∈Ti

E[ζ(Rt)] +
∑
f∈Fi

E[ζ(Rf )] +
∑
d∈Di

E[ζ(Rd)]

 /(Ni + δNi). (B.1)

Here ζ(Rj) =
Pf (Rj)
Pall(Rj)

is a summation term from equation 1; t, f , and d enu-

merate individual links in Li, and Ti, Fi, and Di are the sets of indices for true,

false and dummy links respectively. The expectation is taken over all possible

outputs Li from trackers in Si. For example, E[ζ(R1)] is the expected value of

ζ(R1) where R1 is the random variable denoting the length of the �rst link in

the outputs from the trackers in Si.

Following the reasoning in Appendix A, we can have ET = ET 1 = E[ζ(Rk)] ≈

ET 2 = E[ζ(Rl)], k ∈ T1,l ∈ T2. The same applies to EF , and we simplify

ERi = (Ti · ET + (Ni − Ti) · EF + δNi · EDi) /(Ni + δNi) (B.2)

We want the MR-score to have a negative correlation with the number of

true links (denoted as Ti) in the trackers' outputs, thus we want to satisfy

ER1 > ER2 ⇐⇒ T1 < T2. We now need to select the lengths of dummy links

such that with the corresponding EDi in equation B.2, the condition is satis�ed.

Consider a strategy when the dummy links are drawn from the same distribu-

tion for i = 1, 2. In this case, ED = ED1 = ED2. Let (N1+δN1)·(ER1−ER2) =

K. Note that if we set ED = EF then we have K = (T1−T2) · (ET −EF). From

Appendix A, we have that ET − EF < 0, and hence having ED = EF satis�es
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ER1 > ER2 ⇐⇒ T1 < T2. We therefore suggest to generate the dummy links

by drawing their lengths from the PDF of false links Pf , so that the expected

value of ζ(R) for dummy links satis�es ED = EF .
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