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Abstract. The k-nearest neighbour (k-NN) technique, due to its inter-
pretable nature, is a simple and very intuitively appealing method to ad-
dress classification problems. However, choosing an appropriate distance
function for k-NN can be challenging and an inferior choice can make the
classifier highly vulnerable to noise in the data. In this paper, we propose
a new method for determining a good distance function for k-NN. Our
method is based on consideration of the area under the Receiver Operating
Characteristics (ROC) curve, which is a well known method tomeasure the
quality of binary classifiers. It computes weights for the distance function,
based on ROC properties within an appropriate neighbourhood for the
instances whose distance is being computed. We experimentally compare
the effect of our scheme with a number of other well-known k-NN distance
metrics, as well as with a range of different classifiers. Experiments show
that our method can substantially boost the classification performance of
the k-NN algorithm. Furthermore, in a number of cases our technique is
even able to deliver better accuracy than state-of-the-art non k-NN clas-
sifiers, such as support vector machines.

Keywords: Receiver Operating Characteristics (ROC), k-Nearest Neigh-
bour, Feature Weighting, Classification, Gene Expression.

1 Introduction

The k-nearest neighbour (k-NN) technique is a classic, simple and appealing
method to address classification problems. It has a very intuitive interpretation
and its predictions are easily explained to domain experts. Although k-NN has
been applied for classification in many domains, it tends to suffer from poor
classification accuracy when i) there are very many features, ii) when there are
very few instances, or iii) the data is very noisy. These weaknesses make it
difficult to use k-NN for datasets such as gene expression data, which are very
noisy and typically have thousands of features, but only tens or at most hundreds
of instances. Indeed in the gene expression domain, k-NN has been adopted by
very few researchers (e.g. [1, 2]), due to its generally inferior performance.
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Example 1. In the ALL-AML leukaemia gene expression dataset, k-NN has an
average accuracy of only 83.33±3.49% using 10×10-fold cross validation, whereas
Support Vector Machines (SVM) yield an average accuracy of 98.61±1.26%. This
lower accuracy of the k-NN classifier can discourage biologists to use it.

A wide range of proposals have been made to improve k-NN. These principally
propose alternative ways of computing the distance function, since using different
distance functions can yield vastly different classification performance. Indeed
ideally, the distance function used for k-NN should be adapted to the particular
problem being solved [3].

Our aim in the paper is to improve the classification performance of k-NN us-
ing a new type of distance function. It is based on a feature weighting scheme that
considers receiver operating characteristics that are appropriate to the points
whose distance is being computed.

In a nutshell, we present a method to derive a distance function for k-NN based
on feature weighting. The weight for each feature is calculated by considering
the area under the Receiver Operating Characteristics (ROC) curve [4]. This
value is equivalent to the Mann-Whitney U statistic normalized by the number
of possible pairings of positive and negative values, also known as the two sample
Wilcoxon rank-sum statistic [5]. The area under the ROC curve (AUC) actually
represents the probability that a randomly chosen positive example is correctly
ranked with greater suspicion than a randomly chosen negative example. More-
over, this probability of correct ranking is the same quantity estimated by the
non-parametric Wilcoxon statistic [6].

The intuitive outline of the technique is as follows:

For a given dataset D of n instances comprising m features: x1, x2, x3, . . . , xm,
each feature xi (where 1 � i � m) has some discriminative power, i.e., the
influence of each feature on the classification accuracy can be measured. The
ROC curve is plotted for a series of pairs which are each formed by a threshold
value for the “classifier” feature xi and the corresponding class label Yi. Then,
when calculating the distance of a new test instance from a training example, the
distance measure is modified using the AUC score as weight for that feature.

A crucial question faced by the technique is which values of a feature should
be used to help derive the ROC curve whose area corresponds to each weight.
We shall show that, surprisingly, using all values of a feature is not the best
strategy. Instead, considerably better performance can be obtained by selecting
from an appropriate neighborhood for each feature, specific to the instances
whose distance is being calculated.

Related Work. Since there exist many works related to k-NN, we can only
briefly cover a representative selection. Early works addressing the improvement
of k-NN include Kira and Rendell [7] and Salzberg [8], whose approaches rely on
an interactive system architecture in which users are asked to rate a given sim-
ilarity prediction, and then use reinforcement learning to enhance the distance
function based on the user feedback. Kononenko [9] proposed an extension to
this for updating feature weights based on intracluster weights.
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Klein et al. [10] proposed a shortest path algorithm to modify a Euclidean
distance function based on prior knowledge. Stein and Niggemann [11] used a
neural network approach to learn weights of distance functions based on training
examples.

Other approaches rely on an underlying class structure to evaluate distance
functions. Han et al. [12] employed a randomized hill-climbing approach to learn
weights of distance functions for classification tasks. In their approach, k-NN
queries were used to evaluate distance functions; the k-neighbourhood of each
object is analysed to determine to which extent the class labels agree with the
class label of each object. Zhang [13] suggested the use of kernel functions and
multidimensional scaling to learn Euclidean metrics. Hastie and Tibshirani [3]
proposed algorithms that learn adaptive rectangular neighborhoods (rather than
distance functions) to enhance nearest-neighbour classifiers.

Other types of approaches includes work by Hastie and Tibshirani [14] and
Domeniconi et al. [15], who considered schemes for locally adaptive distance
functions that vary throughout the input space. In particular, Domeniconi et
al. [15] suggested using the decision boundaries of SVMs to induce a locally
adaptive distance function for k-NN.

Driessens et al. [16] presented a two-stage classifier, YATSI, that improves
its predictive accuracy by making use of the available unlabeled data. It used a
weighted nearest neighbor classification algorithm using the combined example-
sets as a knowledge base.

Feature weighting schemes for k-NN have also been proposed. Im and Park [17]
proposed a hybrid expert system of case-based reasoning and neural network,
which uses a value difference metric as the distance function for symbolic fea-
tures. In another study, Vivencio et al. [18] proposed a feature weighting method
based on the χ-squared test for k-NN.

Receiver operating characteristics have previously been used to improve classi-
fiers. These include algorithms such as ROC-tree [19] and work by Ferri et al. [20],
which both propose using ROC information to build decision trees. A justifica-
tion for using ROC for feature evaluation, is given in Deng et al. [21], who
demonstrate that in the context of gene expression data, ROC is a superior
method to the t-test.

Contributions. Our main contributions in this paper are as follows:

– Development of a new feature weighting technique to derive a distance func-
tion for k-NN. This technique employs a range-wise feature weighting scheme
based on ROC, that can dynamically determine which weights are most ap-
propriate for the points whose distance is being measured.

– An experimental investigation which demonstrates that our new algorithm
(known as ROC-kNN) performs strongly compared to and often outper-
forms well-known techniques like C4.5 [22], Random Forest, Vivencio et
al.’s [18] χ2-FW weighted k-NN, YATSI [16], Ferri et al.’s [20] AUCsplit,
ROC-tree [19], and SVMs in terms of accuracy as well as overall AUC value.
Surprisingly, the predictive power of ROC-kNN is comparable to the “black
box” SVM approach, making it a very attractive tool for domain experts.
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Fig. 1. A typical ROC curve

2 The Receiver Operating Characteristic Curve (ROC):
Preliminaries

ROC curves were first used in signal detection theory [4]. In machine learning,
the ROC curve is used to evaluate the discriminative performance of binary
classifiers. This is obtained by plotting the curve of the true positive rate (Sen-
sitivity) versus the false positive rate (1 – Specificity) for a binary classifier by
varying the discrimination threshold. Figure 1 shows a typical ROC curve.

All the calculations of true positive rate and false positive rate are attained
when using a particular classifier threshold. By varying the threshold, a set of
values for these measurements is obtained. This set of values is plotted in a
two-dimensional Cartesian graph to yield the ROC curve. The ROC curve takes
into account all the possible solutions by varying the discriminative threshold.
The best performance would be produced, if the ROC curve matches with the
upper left corner of the ROC space (which yields 100% sensitivity and 100%
specificity). The closer the ROC curve is to the upper part of the ROC space,
the better the performance of the classifier.

An ROC curve is a two dimensional illustration of classifier performance.
Reducing ROC performance to a single scalar value to represent expected per-
formance helps compare classifiers. A popular method is to calculate the area
under the ROC curve (AUC) [5].

The AUC, being a part of the area of the unit square, has a value between
0 and 1. Since random guessing could produce the diagonal line between (0, 0)
and (1, 1) with an area of 0.5, a classifier with an AUC less than 0.5 is unde-
sirable [23]. An AUC value close to 1 indicates better performance for a binary
classifier. [24].
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3 ROC-kNN: A k-NN Algorithm Using ROC Information

We now describe the steps in our algorithm, which we call ROC-kNN.

3.1 ROC for Feature Weighting

Previous work [25, 19, 20] has established the use of an ROC curve for feature
ranking and selection, to identify the discriminative features in the context of
gene expression microarray data. First, the ROC curve is plotted for each of the
pairs formed by each of the features and the class label. This means treating
a single feature as a classifier and calculating the classification in terms of the
sensitivity and specificity by varying the operating point. We shall build on this
kind of idea to derive a feature weighting method to use in distance functions.
For each feature, the AUC is calculated.

Example 2. Let us consider a dataset D of N instances, where each instance
comprises m features: x1, x2, x3, . . . , xm. Each of the m features has a differing
discriminative power reflected by its respective AUC. To calculate the discrimi-
native power that is expressed in terms of AUC, we plot the ROC curve for each
feature paired with the class label, (i.e., {xi, Yi}, where 1 � i � m and Y is the
vector of class labels) and calculate the AUC of this ROC curve.

As alluded to earlier, there is a strong mathematical justification for using the
ROC to measure discriminative power. It is equivalent to the Mann-Whitney U
Test (also known as Wilcoxon Rank sum), a non-parametric statistical test. Not
employing any distributional assumptions makes it especially useful for small
sample size, noisy datasets [21], such as gene expression microarrays.

3.2 Weighted Distance Metrics

For calculating the distance of a new test instance from a training instance,
we modify the standard distance measure using the AUC score as a weight.
Example 3 describes how we employ the weight in Minkowski distance of order
p (�p-norm distance). Recall that Euclidean distance is �2 distance, rectilinear,
Manhattan or Hamming distances are �1 distance, and Chebyshev distance is
�∞ distance.

Example 3. Consider a training instance and a test instance each with m fea-
ture values: x1, x2, x3, . . . , xm and y1, y2, y3, . . . , ym, respectively. Then the

Minkowski distance between the instances is δ =

(
m∑

i=1

|xi − yi|p
) 1

p

. We can as-

sociate a weight for each feature based on its AUC score. The weighted distance

function is Δ =

(
m∑

i=1

(Ai · |xi − yi|)p

) 1
p

, where each Ai is the AUC value for

the i-th feature.
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Fig. 2. Widening [gα, gβ] so that it covers ε × N values of feature xi

3.3 Considering a Smaller Range of Feature Values to Calculate
AUC

Using all values of a feature to derive the ROC curve whose area will be cal-
culated, may not be the best way to measure the weight or “importance” of a
feature. Consider the following (somewhat artificial) example.

Example 4. Consider the power of the feature voice pitch for predicting the
class label sex (male/female). Suppose the voice pitch feature values for the
population range between 50Hz (low pitch) to 350Hz (high pitch). In general,
voice pitch is likely to be a good feature for discriminating between males and fe-
males. However, if we are only dealing with a sub-population of young children,
then voice pitch is likely to be a far less useful feature, since there is much less
variation for values of this feature across young children.

Thus, the power of a feature may need to be evaluated within some context
or sub-population. A natural way to form such a context or range for the ROC
calculation, is to consider the two points between which the distance is being
computed. Suppose we are computing the distance between two instances P1
and P2 with respect to feature xi an P1[xi] = gα and P2[xi] = gβ

1. Rather than
using all values that occur for feature xi in ROC calculation, we just use the
values that lie in the interval [gα, gβ ]. This range of values [gα, gβ] corresponds
to a sub-population that is more appropriate for computing the ROC of feature
xi, in the context of P1 and P2.

Now, it could be the case that the range [gα, gβ] is very small. This could
then to lead to low confidence in the resulting AUC calculation and estimate
of feature significance, since the sample size would be too small to be statisti-
cally significant. We, therefore, generalise this idea by employing a parameter,
ε, which can be thought of as a “coverage factor”. The interval [gα, gβ] covers
some number of values (say n) of the total number of values (say N) that in-
stances can have for feature xi

2. Thus, the number of values not covered by
[gα, gβ] on xi is N − n. Now, ε varies between 0% and 100% and it is a lower
bound on how much coverage we require for our interval. For example, suppose
ε = 50%, then we require at least half the values in xi to be covered by the
1 Where Pi[xi] denotes the value for the instance Pi on feature xi.
2 Of course different instances can share the same value on xi. Any such value will be

counted more than once when calculating n or N .
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Algorithm 1. CalculateROC

Input(s): C: A two column matrix of training examples with the first column being
the values for feature xi and the last column being values for the class label, ε: The
percentage of instance values to be covered, gα: Value of the training instance on xi,
gβ: Value of the test sample on xi

Output: A: The AUC of the attribute xi

1: Sort C in descending order of xi

2: if gα � gβ then
3: startPoint ← gα

4: endPoint ← gβ

5: else
6: startPoint ← gβ

7: endPoint ← gα

8: end if
9: N ← The number of instances

10: SamplesToUse ← ε × N
11: SamplesInRange ← The collection of all values for xi which are between

[startPoint, endPoint]
12: SizeSIR ← Calculate the size of SamplesInRange
13: while SizeSIR < SamplesToUse do
14: SamplesInRange ← SamplesInRange union one instance value that is

adjacent to it
15: Update startPoint and endPoint accordingly
16: if No more samples can be added to either startPoint or endPoint then
17: startPoint ← The last available sample’s on that side
18: endPoint ← The last available sample on that side
19: end if
20: SizeSIR ← Calculate the size of SamplesInRange
21: end while
22: RC ← The samples between the range [startPoint, endPoint]
23: A ← AuROC(RC)
24: return A
25: end

interval [gα, gβ]. Now, if [gα, gβ ] doesn’t cover 50% of N , then our strategy is to
widen it (symmetrically) just enough until it does achieve this level of coverage.
If ε = 0, then the interval [gα, gβ ] will never widened. If ε = 100%, then [gα, gβ ]
will always be widened to encompass the entire range of values for feature xi.
Figure 2 illustrates the general idea.

Intuitively, range adjustment using ε allows the interval to be widened suffi-
ciently so that enough feature values are available to ensure statistical signifi-
cance of the ROC calculation. However, we do not want to widen the interval
too much (by always choosing a high ε), since the resulting measure of feature
discriminative power may not be focused on an appropriate population for the
chosen instances P1 and P2 (recall Example 4). Hence, choosing a good ε is
important. In practice, this can be done by empirically comparing classification
performance for different choices of ε.
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Algorithm 2. ROC-kNN

Input(s): D = {(x1, Y1), . . . , (xn, Yn)}: The matrix of n training examples with the
last column being the class, τ = (τ1, . . . , τn): The test sample, k: The number of
neighbours, p: The order for Minkowski distance function, ε: The percentage of
training instances to be covered when weighting each feature
Output: C: The class label for the test sample τ

1: for each labelled instance (xi, Yi), (i = 1, . . . , n) do
2: for each feature aj , 1 < j < Number of features, m do
3: Aj = CalculateROC({xj , Y }, ε,xi, τ ) /* A is a vector of AUC scores for

all features */
4: end for

5: Calculate Δ(xi, τ ) =

�
m�

j=1

(Aj · |xi[aj ] − τ [aj ]|)p

� 1
p

6: end for
7: Sort Δ(xi, τ ) in ascending order
8: Dk

τ =k nearest instances to τ
9: C ← most frequent class in Dk

τ

10: return C
11: end

Example 5. Suppose the 15 instances of the training dataset have values {1, 2, 2,
3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12} for feature xi and P1[xi] = 8, P2[xi] = 9 and
ε = 40%. Then the interval [8, 9] must be widened so that it includes 0.4×15 = 6
of the values that occur for xi in training instances. This can be accomplished
by (symmetrically) widening it to be [6, 11]. So the discriminative power of xi in
this situation will be measured by the AUC of the ROC curve derived from when
xi takes values {6, 7, 8, 9, 10, 11}.
Definition 1. Given instances P1 and P2 from a dataset with m features x1,
. . . , xm and values for parameters ε and p. The weighted distance between P1
and P2 using range adjusted ROC is calculated as

(
m∑

i=1

(Ai · |P1[xi] − P2[xi]|)p

) 1
p

,

where each Ai measures the discriminative power using ROC of feature xi in the
interval r = [P1[xi] − α1, P2[xi] + α2] for some α1, α2. The interval r covers at
least ε% of the values taken by feature xi for instances in the training dataset.

Thus, the weighting of each feature xi is specific to the points whose
distance is being computed. Carrying out the weight calculation can be done
at either runtime (k-NN classification time) or during training. If the latter,
then one must assume test instances do not contain any feature values that are
not present in the training data. In that situation, one precomputes the ROC
for every contiguous interval of values for each feature xi and then selects the
appropriate ROC weight value at runtime, according to the values on xi of the
instances which are being compared.
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Table 1. Properties of the datasets used in this study

Dataset No. of No. of Collected from First used by
Attributes Instances

GE1 24,481 97 Integrated Tumor van ’t Veer et al. [26]
Transcriptome Array

and Clinical data
Analysis database [27]

GE2 3,226 22 National Human Genome Hedenfalk et al. [28]
Research Institute

GE3 12,533 181 Division of Thoracic Gordon et al. [29]
and Surgery [30],
Brigham Women’s
Hospital, Boston

GE4 12,600 21 Cancer Program [31], Singh et al. [32]
Broad Institute of MIT

and Harvard
GE5 12,600 136 Cancer Program [31], Singh et al. [32]

Broad Institute of MIT
and Harvard

GE6 7,129 72 Cancer Program [33], Golub et al. [34]
Broad Institute of MIT

and Harvard
Hepatitis 19 155 UCI ML Repository [35] –
Ionosphere 34 351 UCI ML Repository [35] –
Pima 8 768 UCI ML Repository [35] –
WBC 9 699 UCI ML Repository [35] –
WDBC 30 569 UCI ML Repository [35] –
WPBC 33 198 UCI ML Repository [35] –

Algorithm 1 presents the pseudocode for calculating the AUC for a specified
feature xi. It relies the existence on the function AuROC function provided
in [19]. The overall procedure is described in Algorithm 2 (which assumes weight
computation is done at runtime).

4 Experimental Design

k-NN is actually a family of techniques, according to k value and distance func-
tion used. In our evaluation, we tested using different values of k (1, 3 and 5)
and different choices of p for the Minkowswki �p-norm distance (1, 2 and ∞).
For our algorithm, ROC-kNN, we also needed to test using different values for
the parameter ε (100%, 95%, 90%, . . ., 0%).

Based on this testing, for k-NN and ROC-kNN on each dataset, we identified
the values of p, k and ε that produced the best classification performance and
this is what is reported in the result tables.

In addition to comparing against traditional k-NN, we compared ROC-kNN
against thirteen other techniques. These are: Vivencio et al.’s [18] χ2-FW weighted
k-NN, YATSI [16], ROC-tree [19], C5.0, its predecessor C4.5 [22], Random Forest,
Ferri et al.’s [20] AUCsplit technique for decision trees, Näıve Bayes and SVMs
using two different kernels: polynomial and radial basis function (RBF). Where
applicable, each of these classifiers was run multiple times on each dataset by vary-
ing its parameters. We report the best result of each such classifier on each dataset
across the variation of its parameters. Since the χ-squared test can only handle
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Table 2. Comparison of accuracy results from 10×10-fold cross validation on six gene
expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6
ROC-kNN 63.29 ± 3.13 71.07 ± 4.22 98.66 ± 0.39 61.49 ± 2.12 84.65 ± 1.22 90.33 ± 0.89
k-NN 58.45 ± 2.88 61.82 ± 6.14 94.64 ± 0.27 57.14 ± 3.89 82.35 ± 1.80 88.89 ± 0.93
χ2-FW 49.90 ± 3.64 50.00 ± 10.05 90.77 ± 0.45 58.57 ± 5.96 80.81 ± 1.78 89.72 ± 1.63
YATSI 56.70 ± 3.21 45.45 ± 4.19 93.92 ± 1.09 57.14 ± 1.93 72.06 ± 1.99 84.72 ± 1.57
ROC-tree 72.16± 4.32 77.27± 2.45 98.34 ± 0.89 38.10 ± 5.95 88.24 ± 2.33 94.44 ± 2.96
AUCsplit 63.58 ± 4.59 74.39 ± 1.63 96.14 ± 1.36 34.01 ± 2.87 82.47 ± 3.96 81.61 ± 3.28
C5.0 64.95 ± 6.21 59.09 ± 4.52 92.82 ± 1.21 23.81 ± 4.65 81.62 ± 4.12 80.55 ± 3.74
C4.5 62.89 ± 3.11 72.73 ± 1.36 95.03 ± 1.05 33.33 ± 4.59 79.42 ± 5.45 79.17 ± 4.87
ADTree 61.86 ± 4.28 68.18 ± 5.68 92.82 ± 2.19 32.86 ± 3.44 86.76 ± 2.63 86.11 ± 3.77
REPTree 52.18 ± 5.45 59.09 ± 3.92 95.03 ± 1.28 32.86 ± 3.46 80.88 ± 3.33 81.94 ± 4.26
Random Tree 55.67 ± 3.54 63.64 ± 2.58 79.56 ± 2.69 32.86 ± 3.12 62.50 ± 5.23 75.00 ± 3.90
Random Forest 62.89 ± 6.43 50.00 ± 5.33 93.92 ± 1.22 38.10 ± 5.27 80.88 ± 2.56 79.17 ± 2.36
Näıve Bayes 54.64 ± 3.38 59.09 ± 4.58 98.34 ± 0.03 33.33 ± 0.78 55.88 ± 4.76 98.61 ± 1.03
SVM (poly) 68.04 ± 2.14 59.09 ± 2.98 99.45± 0.11 47.62 ± 5.63 91.18± 3.12 98.61± 1.26
SVM (RBF) 67.01 ± 2.36 63.64 ± 0.94 98.34 ± 1.41 61.90± 1.39 69.12 ± 5.31 80.56 ± 2.18

discrete data, we used entropy-based discretization [36] to discretize the datasets
before applying χ2-FW.

Each of the classifiers was applied on 12 datasets, of which 6 were gene ex-
pression datasets and 6 are non-gene expression datasets having rather different
characteristics. The properties of the datasets are illustrated in Table 1. Recall
that gene expression datasets represent one of the most challenging scenarios for
k-NN algorithms. For each classifier and dataset, a 10-fold cross validation (CV)
scheme was used 10 times.

Using a fixed 10-fold cross validation scheme, we also conducted a win-draw-loss
analysis based on a paired t-test with 5% significance level, for six of the classifiers.

5 Results and Discussion

The classification results for all 14 techniques on the considered datasets are
presented in Table 2 and 3. The best performances among that of the reported
classifiers are marked in bold. Since for the non-gene expression datasets, dif-
ferent ε values yielded best classification accuracy on different datasets, we also
include a separate entry for ROC-kNN with ε = 100%. For the gene expression
datasets, ε = 100% always yielded the best result. We show the chosen ε values
for ROC-kNN in Table 4. We also show in that table the chosen values for k and
and p for both ROC-kNN and k-NN.

ROC-kNN versus k-NN Techniques. Looking at Table. 2 and 3, the clas-
sification performance of ROC-kNN shows considerable improvement over the
traditional k-NN technique. For all datasets and different k values, ROC-kNN
has improved accuracy over k-NN.

Results of statistical significance tests we conducted (Bonferroni-corrected t-
tests [37]) confirm that the improvement in accuracy is statistically significant.
For example, when comparing the best results of the ROC-kNN with that of the
k-NN, on 5 of the 6 non-gene expression datasets (hepatitis, ionosphere, WBC,
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Table 3. Comparison of accuracy results from 10 × 10-fold cross validation on six
non-gene expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima
ROC-kNN 85.59± 0.55 90.56 ± 0.22 98.26± 0.23 98.49± 0.21 79.26 ± 0.51 88.51± 0.96
ROC-kNN 82.98 ± 0.87 88.60 ± 0.12 97.07 ± 0.14 97.47 ± 0.24 77.02 ± 0.68 86.60 ± 1.09
(ε = 100%)
k-NN 82.58 ± 0.80 87.35 ± 0.59 96.88 ± 0.39 97.24 ± 0.29 76.21 ± 1.31 85.28 ± 1.87
χ2-FW 78.84 ± 1.60 53.05 ± 13.27 95.55 ± 0.28 95.87 ± 0.59 70.76 ± 1.36 70.83 ± 0.61
YATSI 80.00 ± 2.12 83.48 ± 2.39 96.28 ± 1.01 94.73 ± 1.48 71.21 ± 2.76 73.70 ± 1.98
ROC-tree 78.71 ± 7.65 84.05 ± 9.87 92.56 ± 5.43 90.69 ± 6.78 69.67 ± 8.33 63.54 ± 8.65
AUCsplit 82.10 ± 3.43 86.00 ± 7.31 95.88 ± 1.94 93.75 ± 3.39 70.53 ± 9.67 73.82 ± 5.35
C5.0 76.13 ± 2.35 89.46 ± 1.23 93.64 ± 1.65 93.29 ± 2.23 70.70 ± 4.12 73.94 ± 2.76
C4.5 80.00 ± 4.45 91.45 ± 3.36 93.84 ± 2.63 93.15 ± 1.26 75.25 ± 3.32 73.83 ± 2.89
ADTree 76.13 ± 2.96 93.16± 1.65 95.14 ± 1.77 94.02 ± 1.06 77.78 ± 5.42 72.92 ± 3.23
REPTree 78.71 ± 4.23 89.46 ± 1.46 93.99 ± 2.14 92.44 ± 2.33 73.74 ± 4.85 75.39 ± 4.55
Random Tree 72.91 ± 9.21 87.75 ± 3.64 94.13 ± 2.85 89.46 ± 3.67 68.18 ± 5.45 67.97 ± 6.49
Random Forest 81.94 ± 1.26 92.59 ± 3.26 95.99 ± 1.45 95.25 ± 1.37 78.28 ± 3.47 73.70 ± 4.98
Näıve Bayes 83.87 ± 1.71 82.62 ± 3.48 95.99 ± 0.74 92.97 ± 2.58 67.68 ± 5.08 76.30 ± 3.49
SVM (poly) 76.77 ± 4.23 88.60 ± 2.43 96.85 ± 1.07 97.72 ± 1.04 76.26 ± 4.78 77.34 ± 5.01
SVM (RBF) 84.52 ± 4.02 91.74 ± 5.15 96.85 ± 1.29 96.07 ± 3.12 81.31± 2.36 77.47 ± 3.73

Table 4. The parameters of k-NN and ROC-kNN

Dataset
k-NN ROC-kNN
k p k p ε ε × N

GE1 3 ∞ 1 ∞ 100% 88 ± 0.0
GE2 1 2 1 2 100% 20 ± 0.0
GE3 1 2 3 ∞ 100% 163 ± 0.0
GE4 5 2 1 2 100% 19 ± 0.0
GE5 3 1 1 1 100% 123 ± 0.0
GE6 1 1 1 1 100% 65 ± 0.0
Hepatitis 3 2 5 2 65% 91 ± 1.8
Ionosphere 1 ∞ 5 ∞ 70% 221 ± 2.3
WBC 5 2 5 2 60% 378 ± 1.5
WDBC 3 1 3 1 75% 384 ± 2.75
WPBC 3 1 3 1 85% 152 ± 2.15
Pima Indians 3 2 3 2 55% 380 ± 2.6

WDBC and Pima Indians) the p-value is less than 0.05 (0.041533, 0.011329,
0.029657, 0.046574 and 0.034136, respectively). WPBC showed milder improve-
ment (p-value is 0.1056256). For gene expression data, Bonferroni-corrected t-
tests confirmed significant improvement of ROC-kNN over k-NN (p-values are
0.04123, 0.01298, 0.03192, 0.04871, 0.03907 and 0.04516 for GE1 to GE6 datasets,
respectively).

The results for the χ2-FW weighted k-NN technique show it mostly failed to
improve classification accuracy over k-NN. This is interesting, since both ROC-
kNN and χ2-FW use feature weighting to extend k-NN, yet each uses a rather
different method. The poor performance of the χ2-FW technique may be because
it is intended more for discrete data, rather than the continuous datasets used
in our evaluation (and thus it required an extra discretisation step).

ROC-kNN versus non k-NN Classifiers. Surprisingly and pleasingly, the
classification performance of ROC-kNN on the UCI ML repository datasets is
extremely strong. It outperforms all the other non k-NN classifiers, except on
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Fig. 3. The effect of ε on classification accuracy for GE1 dataset
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Fig. 4. The effect of ε on classification accuracy for the hepatitis dataset

Table 5. Comparison of AUC value from 10 × 10-fold cross validation on six gene
expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6
ROC-kNN 0.5992 ± 0.02 0.6721± 0.11 0.9665 ± 0.02 0.4812 ± 0.12 0.8386± 0.02 0.8743 ± 0.03
k-NN 0.5793 ± 0.04 0.5064 ± 0.14 0.8463 ± 0.04 0.4378 ± 0.13 0.8213 ± 0.02 0.8585 ± 0.03
χ2-FW 0.4986 ± 0.08 0.4958 ± 0.12 0.7418 ± 0.05 0.5174± 0.11 0.8015 ± 0.03 0.8682 ± 0.04
YATSI 0.6230± 0.00 0.4150 ± 0.02 0.9820± 0.00 0.4760 ± 0.01 0.8050 ± 0.00 0.905± 0.00

ionosphere and WPBC. This provides some evidence that ROC-kNN is a classi-
fier which is able to compete with and even surpass mainstream state-of-the-art
techniques in these circumstances. On the gene expression datasets, ROC-kNN
performs quite strongly compared to the non-k-NN classifiers, but it is not the
standout performer. This could be because for these datasets, the number of in-
stances is very small and thus the ROC measure of feature discriminative power
is less reliable.

Influence of the ε parameter: Figure 3 and 4 show the effect on classification
performance for varying ε on both the GE1 dataset and the hepatitis dataset
along with the improvement over k-NN, which is represented by a dotted line in
the figures. Table 4 also shows the best ε values for each dataset. Though the
effect of ε is not entirely the same on every dataset, there are some clear trends.
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Table 6. Comparison of AUC value from 10× 10-fold cross validation on six non-gene
expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima
ROC-kNN 0.7491 ± 0.02 0.8790 ± 0.02 0.9816 ± 0.01 0.9799 ± 0.00 0.7815± 0.04 0.8728± 0.01
k-NN 0.7306 ± 0.03 0.8322 ± 0.02 0.9675 ± 0.00 0.9694 ± 0.01 0.6278 ± 0.03 0.7894 ± 0.03
χ2-FW 0.5928 ± 0.04 0.5139 ± 0.03 0.9530 ± 0.01 0.9499 ± 0.01 0.5228 ± 0.04 0.6508 ± 0.01
YATSI 0.7820± 0.00 0.9200± 0.00 0.9890± 0.00 0.9830± 0.00 0.575 ± 0.01 0.7600 ± 0.01

Table 7. Win-Draw-Loss results for the top six top classifiers using t-test on 72 test
combinations for each classifier

Method Win Draw Loss
ROC-kNN 46 20 6
k-NN 29 26 17
χ2-FW 8 20 44
YATSI 11 24 37
ROC-tree 22 28 22
SVM (poly) 19 38 15
SVM (RBF) 18 42 12

For gene expression data, ε = 100% is (unsurprisingly) always the best choice,
due to the small number of instances in this type of data and classification ac-
curacy falls monotonically with decreasing ε. However, in non-gene expression
data, the trend is quite different. Classification accuracy can increase and de-
crease according to varying ε and the best accuracy is achieved with different ε
values for each dataset. It is worth noting that for all datasets, the performance
of the classifier becomes constant once ε drops below a certain value (see Fig. 3
and 4). This is because, after a point, the ε constraint becomes too loose and
never forces any widening of a feature interval.

Comparison of AUC Values: We also computed the overall AUC value of
selected k-NN style classifiers, shown in Table 5 and 6, resulting from the 10×10
cross validation over the gene expression and UCI ML repository datasets. The
AUC values of the four considered k-NN classifiers: ROC-kNN, k-NN, χ2-FW
weighted k-NN and YATSI reflect the much the same behaviour as seen for
classification accuracy, except for the YATSI classifier. Though its classification
accuracy is not as good as ROC-kNN or even traditional k-NN, YATSI performed
slightly better than ROC-kNN for 3 out of 6 gene expression datasets and 4 out
of 6 non-gene expression data in terms of AUC. ROC-kNN has improved AUC
compared to k-NN in both the gene expression and non-gene expression data.

Statistical significance tests: We also carried out win-draw-loss analysis
based on paired t-test with 5% significance level for the seven most promis-
ing classifiers (see Tab. 7). In this analysis, ROC-kNN arguably outperforms all
the other techniques, as it has a significant number of wins and only a few losses,
compared to the other classifiers. A more detailed look at ROC-kNN’s perfor-
mance against the other classifiers (see Tab. 8), also reveals that it has significant
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Table 8. Win-Draw-Loss result for ROC-kNN versus the top five classifiers using t-test

Method GE1 GE2 GE3 GE4 GE5 GE6 Hepatitis Ionosphere WBC WDBC WPBC Pima
k-NN Win Win Win Win Win Win Win Win Win Win Win Win
χ2-FW Win Win Win Win Win Win Win Win Win Win Win Win
YATSI Win Win Draw Win Win Win Win Win Draw Win Win Win
ROC-tree Loss Draw Draw Loss Draw Draw Win Win Win Win Win Win
SVM (poly) Draw Win Draw Win Loss Loss Win Draw Draw Draw Draw Win
SVM (RBF) Loss Draw Draw Loss Draw Draw Win Draw Draw Draw Draw Win

improvements over all other considered k-NN techniques. Against ROC-tree,
ROC-kNN significantly improves for the non-gene expression datasets, but per-
forms mostly the same on gene expression data. Against the two SVM classifiers,
ROC-kNN no worse and indeed actually improves for two of the six considered
non-gene expression datasets. However, on gene expression data, the improve-
ment is more marginal.

6 Conclusion

This paper has presented a new k-NN style algorithm for classification, based on
a new method for defining a weighted distance function. Our method is based
on considering the ROC characteristics of each feature, within a neighbourhood
appropriate to the instances whose distance is being computed.

Experimental analysis shows our technique, ROC-kNN, is able to substantially
improve over basic k-NN. Furthermore, it performs very strongly compared to
other state-of-the-art classifiers and is even able to deliver improved accuracy in
many cases.

For future work, we would like to consider extending our approach i) to incor-
porate pruning of irrelevant features and ii) to situations where there are three
or more classes in the data, a well known challenge for ROC computation.
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