
An Efficient Adversarial Learning Strategy for
Constructing Robust Classification Boundaries∗

Wei Liu†§, Sanjay Chawla‡, James Bailey§, Christopher Leckie§, and Kotagiri
Ramamohanarao§

§ Dept of Computing and Information Systems, The University of Melbourne
‡ School of Information Technologies, The University of Sydney

Abstract. Traditional classification methods assume that the training
and the test data arise from the same underlying distribution. However
in some adversarial settings, the test set can be deliberately constructed
in order to increase the error rates of a classifier. A prominent example
is email spam where words are transformed to avoid word-based features
embedded in a spam filter. Recent research has modeled interactions be-
tween a data miner and an adversary as a sequential Stackelberg game,
and solved its Nash equilibrium to build classifiers that are more robust
to subsequent manipulations on training data sets. However in this pa-
per we argue that the iterative algorithm used in the Stackelberg game,
which solves an optimization problem at each step of play, is sufficient
but not necessary for achieving Nash equilibria in classification prob-
lems. Instead, we propose a method that transforms singular vectors of
a training data matrix to simulate manipulations by an adversary, and
from that perspective a Nash equilibrium can be obtained by solving a
novel optimization problem only once. We show that compared with the
iterative algorithm used in recent literature, our one-step game signif-
icantly reduces computing time while still being able to produce good
Nash equilibria results.

1 Introduction

Conventional supervised learning algorithms build classification models by learn-
ing relationships between independent variables (features) and dependent vari-
ables (classes) from given input data. Typically, the often unstated underlying
assumption is that the relationship between the features and the class remain
unchanged over time. However in many real world applications, such as email
spam detection systems, there often exist adversaries who are continuously mod-
ifying the underlying relationships in order to avoid detection by the classifier.
Therefore, in order to minimize the effects of the adversaries, data miners should
not only learn from data in the past, but also from potential data manipulations

∗ This research was partially funded by Australia Research Council Discovery Grants
(DP110102621 and DP0881537).

† Correspondence goes to wei.liu@unimelb.edu.au

2 W. Liu et al.

that adversaries are likely to make in future. As a result, the problem of “ad-
versarial learning” has attracted significant interest in the machine learning and
data mining community [1–7].

Dalvi et al. [1] modeled adversarial scenarios under the assumption that both
the adversary and the data miner have perfect information of each other. In their
formulation, the adversary is fully aware of the parameter settings of the classi-
fier, and uses the classifier’s decision boundary to undermine the classifier. In [2]
the perfect knowledge assumption is relaxed by assuming that the adversary has
the ability to issue a polynomial number of membership queries to the classifier
in the form of data instances which in turn will report their labels. Globerson
et al. [3] use deletions of features at test time to approximate the strategies of
adversaries. However, a disadvantage of this feature deletion algorithm is that
it fails to simulate scenarios where the adversary is more interested in adding
features, or more generally applying a linear transformation of the features.

In addition, Kantarcioglu et al. [5] and Liu et al. [6] have proposed approaches
that model the competing behavior between the adversary and the data miner
as a sequential Stackelberg game. They use simulated annealing and genetic
algorithms respectively to search for a Nash equilibrium as the final state of
play. While [5] assumes the two players know each other’s payoff function, [6]
relaxes this assumption and only the adversary’s payoff is required in achieving
the equilibrium. But a common problem for [5] and [6] is that the strategies of the
adversary are stochastically sampled (e.g., Monte Carlo integration in [5]) and
then among the samples the best fit is selected (e.g., genetic algorithm in [6]).
This stochastic optimization process is not realistic for rational adversaries in
practice, since rational adversaries rarely make “random” moves, but instead
always try to optimize their payoff at each step of play.

More recently, Liu et al. [7] formulate the adversarial learning problem into a
maxmin problem where they relaxed the assumption of a normal distribution and
forced adversarial transformations to be rational. Similarly, Bruckner et al. [8]
formulate the maxmin problem by a different ordering of the players’ movements.
However, to solve these maximin problems the authors have to use an iterative
algorithm that solves a convex optimization problem in every iteration of their
algorithms, which is computationally very expensive. We refer to these existing
maxmin optimization based methods (i.e., [7]) the “iterative methods”.

In this study, we assert that simulations of adversarial transformations and
solutions of Nash equilibria do not have to be modeled as an expensive iterative
optimization process, and it is possible to discover the equilibrium state signifi-
cantly quicker and cheaper by solving one optimization problem only. In contrast
to the existing “iterative method”, we call the method proposed in this paper
the “one-step method”. More specifically, the innovations and contributions we
make in this paper are as follows:

1. We model malicious manipulations of an adversary as transformations on
singular vectors of the training data matrix, and these transformed singular
vectors determine distributions of subsequent malicious training samples.

An Efficient Adversarial Learning Strategy 3

2. We propose a novel payoff function for the adversary, which leads to an
optimization problem whose solution achieves the final game state of Nash
equilibrium.

3. We perform comprehensive empirical evaluations on spam email and hand-
written digit data sets, and demonstrate that our method is able to produce
comparative Nash equilibrium results while using significantly less compu-
tation time compared to the previous iterative maxmin approach.

2 Game Theory and Nash Equilibrium

In this paper we model the interactions between data miners and adversaries
in Stackelberg games. In a Stackelberg game, two players are distinguished as
a leader (L) and a follower (F), and it is the leader who makes the first move.
In our case the adversary is the leader and the data miner is the follower, since
it is always the adversary who proactively attacks her1 opponent. We call an
“attack” from the adversary and “defence” from the data miner as plays/moves
of the game.

Each player is associated with a set of strategies, U and V for L and F
respectively, where a strategy means a choice of moves available to each player.
In this paper, strategy spaces U and V are finite dimensional vector spaces. The
outcome from a certain combination of strategies of a player is determined by
that player’s payoff function, JL and JF . Rational players aim to maximize their
corresponding payoff functions using their strategy sets. So given an observation
v the best strategy of L is

u∗ = arg max
u∈U

JL(u, v) (1)

Similarly, if L’s previous move is u, the reaction of F is

v∗ = arg max
v∈V

JF (u, v) (2)

As each player seeks to achieve as high a payoff as possible in each of their
moves, they will arrive in a state of Nash equilibrium when their rational strate-
gies interact: the state of Nash equilibrium means that simultaneously each
player is using the strategy that is the best response to the strategies of the
other player, so that no player can benefit from changing his/her strategy uni-
laterally [9]. Thus the problem reduces to efficiently determining the state of the
Nash equilibrium.

2.1 The Maxmin Problem

In the formulation of the sequential Stackelberg game proposed in [7], a Nash
equilibrium is the strategy pair (u∗, v∗) that simultaneously solves the optimiza-

1 For ease of interpretation, in this paper we call the data miner a male (i.e. “he/his”)
player, and the adversary a female (i.e. “she/her”) player.

4 W. Liu et al.

tion problems in Eq. 1 and 2. Because this Stackelberg game is also a “constant-
sum” game, we have JF = ϕ – JL, where ϕ is a constant number standing for
the total profit in the game. Then Eq. 2 can be rewritten as:

v∗ = arg max
v∈V

ϕ− JL(u, v) = arg max
v∈V

− JL(u, v)

= arg min
v∈V

JL(u, v)
(3)

where the constant number ϕ is ignored, and the equation is transformed into
a minimization problem which removes the negative sign. By combining Eq. 3
with Eq. 1, the following maxmin problem is obtained:

Maxmin: (u∗, v∗) = arg max
u∈U

JL(u, arg min
v∈V

JL(u, v)) (4)

The solution to the maxmin problem maximizes the leader’s profit under the
worst possible move of her opponent. To solve this maxmin optimization prob-
lem, the authors in [7] simulate two players of the data miner and the adversary
iteratively, and solve one optimization problem (either the “minimization” or
the “maximization”) at a time. They discover Nash equilibrium when the adver-
sary’s payoff stops increasing through the iterating process. Since this iterative
algorithm has to solve an optimization problem at every play of the game, it can
be computationally expensive to find the final state of Nash equilibrium (which
we show in the experiment section).

3 One-step Method for Finding the Nash Equilibrium

We derive our efficient one-step equilibrium searching method by utilizing sin-
gular value decomposition (SVD) on the training data. Among many kinds of
matrix factorization methods, SVD has the property that it gives bases for both
the row and the column space of a matrix simultaneously. It also “orders” the
information contained in a matrix so that it is possible to spot the “principle
components” of that matrix. Given a m× n matrix A, it can be factorized such
that

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices whose columns are
(left and right) singular vectors of A, and Σ ∈ Rm×n is an diagonal matrix whose
diagonal entries Σi,i specify singular values of A.

In binary-class classification problems, given training data of positive in-
stances X+ ∈ Rm+×n and negative instances X− ∈ Rm−×n, where m+, m− are
the numbers of positive and negative instances, and n is the number of features,
the label of a new instance xnew can be determined by using orthogonal basis
vectors from SVD as follows.

We compute the SVD of each class of the instance matrix:

X+ = S+Σ+(V +)T ; X− = S−Σ−(V −)T .

An Efficient Adversarial Learning Strategy 5

−2 0 2 4 6 8
−2

0

2

4

6

8

Positive samples
Negative samples
Classification border

(a) Initial state.

−2 0 2 4 6 8
−2

0

2

4

6

8

Transformed positives
Negative samples
Original classification border

(b) The adversary moves.

−2 0 2 4 6 8
−2

0

2

4

6

8

Transformed positives
Negative samples
Readjusted classification border

(c) The data miner reacts.

Fig. 1: An example of the interactions between a data miner and an adversary. The
line in the middle of the data clouds represents the classification boundary. Based on
the initial state of the game (subfig. a), the adversary moves positive instances towards
negative samples and produces more false detections (subfig. b); the data miner then
reacts by re-constructing (shifting) the classification boundary (subfig. c).

The instances of X+ and X− both span a linear space of Rn, so their right
singular vectors (i.e. column vectors of V + ∈ Rn×n and V − ∈ Rn×n) form an
orthogonal basis of their corresponding type of class.

We characterize each type of class by the first k singular vectors of that class.
If the new class-unknown instance x can be better represented in the basis of
singular vectors of one class (e.g., the positive class) than in those of the opposite
class, then x is more likely to belong to the former class (i.e., positive class).
Then the classification process is equivalent to choosing the smaller residual
vector generated from the representations of the two classes:

Label of xnew = arg min
c∈{+,−}

||
k∑

i=1

(
vci × ((vci)T × xnew)

)
− xnew|| (5)

where vi is the ith column vector in V c, c ∈ {+,−}, || · || is the Euclidean norm,
and we assume xnew and vci are column vectors. This classification strategy forms
the fundamental basis of many practical classifiers (e.g., [10,11]). Now we proceed
to analyze how manipulations from adversaries can degrade the performance of
this SVD classification model.

3.1 Formulation of Adversarial Manipulations

The data miner’s classification strategy in Eq. 5 (i.e., on the original data)
constitutes the initial state of our game theoretical model when there are no
moves made by the adversary. Fig. 1a shows an example of such an initial state:
without malicious modifications on positive samples (blue asterisks), the (solid
red) boundary line learned from Eq. 5 separates the two classes of data samples
and defines the optimal initial classification boundary.

Although data miners are able to obtain correct singular vectors from solving
Eq. 5, these initial singular vectors become ineffective when adversaries change

6 W. Liu et al.

the distribution of their input feature vectors. We assume the adversaries mod-
ify feature vectors by introducing a transformation vector α, so that positive
instances “X+” in the training phase are shifted to “α + X+” during the test
phase. Moreover, in order to decrease the data miner’s classification accuracy, a
rational adversary will transfer positive instances2 in a way that makes its dis-
tribution similar to that of the negative class, as shown in Fig. 1b. By denoting

α+X+ = SαΣα(V α)T

as the SVD of the positive instances transformed by an adversary, and vαi ∈ V α

as the transformed positive singular vectors, the payoff function of an adversary
can be stated as

J(α) =

k∑
i=1

||vαi − v−i || , (6)

whose aim is to minimize the difference between the singular vectors of the
negative instances and those of the (transformed) positive instances.

However, the further the original positive instances are transformed the
higher the cost the adversary has to pay, and when positive instances are trans-
formed to the same as negatives the adversary pays the highest cost, since such
positive instances bring no profit to the adversary even if they are undetected
by the classifier. For example, when the pattern of words in spams is modified
such that it is the same to legitimate emails, these spams might not be detected
by a spam filter but they also bring no profit at all to the spammer. Therefore
at the same time of maximizing her payoff, a rational adversary also attempts
to minimize the step size of transformations. So we propose that the adversary’s
optimal movement α∗ is determined by the following optimization problem:

α∗ = arg min
α

J(α) + λ||α||2

= arg min
α

k∑
i=1

||vαi − v−i || + λ||α||2
(7)

Eq. 7 is our overall objective function. It reflects that a rational adversary wants
to not only minimize the distance between distributions of negative instances and
transformed positive instances (i.e., the first term of Eq. 7), but also minimize the
transformation itself (i.e., the second term of Eq. 7). In contrast to the iterative
method that solves Eq. 4, we aim to find the final equilibrium state of the
players by solving one optimization problem, and hence we call the minimization
problem in Eq. 7 the “one-step” method.

3.2 Solving the Minimization Problem

In this section, we describe how we solve the minimization problem in Eq. 7
via trust region methods – a powerful yet simple technique for solving convex

2 In this paper, we assume it is the positive class which is of value to an adversary. For
example, in spam filtering domain, we assume spam emails belong to the positive
class, and legitimate emails belong to the negative class.

An Efficient Adversarial Learning Strategy 7

optimization problems [12]. The following unconstrained minimization problem
is an abstraction of Eq. 7:

α∗ = arg min
α

f(α) (8)

Suppose we are at the point α0 of function f , and we want to move to another
point with a lower value of f . The main idea of the trust region method is to
approximate f with a simpler function q, which mirrors the behavior of function
f in a neighborhood Ω around the point α0. This neighborhood is the so-called
trust region [13]. Then instead of minimizing f on the unconstrained range as in
Eq. 8, the trust region method minimizes q in the constrained neighborhood Ω:

s∗ = arg min
s∈Ω

q(s) (9)

and the next point is determined as α0 + s∗ if it has a lower f value. The ap-
proximation function q by convention is defined though the second order Taylor
expansion of f at α0, and the neighborhood Ω is usually a spherical or ellipsoidal
in shape [12]. So the problem in Eq. 9 is reduced to:

s∗ = arg min
s

1

2
sTHs + sT g

subject to ||Ds|| ≤ ▽
(10)

where g and H are the gradient and the Hessian matrix of f , D is a diagonal
scaling matrix, and ▽ is a positive number. The problem in Eq. 10 is also known
as the trust region sub-problem. While there are many ways to avoid the expensive
computation on H, we reuse the straightforward subspace approximation [14],
which restricts the problem in Eq. 10 to a two-dimensional subspace S. In this
subspace, the first dimension s1 is in the direction of the gradient g, and the
second dimension s2 is an approximated Newton direction (i.e., the solution to
H · s2 = −g). Within the subspace S, Eq. 10 becomes easy and efficient to solve
since it is always in a two-dimensional space.

4 Experiments and Analysis

We focus on comparing the difference between the equilibrium states generated
from our one-step model, and the ones from the iterative process proposed in [7],
in terms of their efficiency and the accuracy of the classifiers at equilibrium. Our
experiments are carried out on a real email spam data set and a handwritten
digit data set. To balance the two terms in our objective function (Eq. 7), we
set λ to the number of singular vectors (i.e., k) used in each experiment.

4.1 Rational Behavior on Synthetic Data

We first carry out experiments on synthetic data, and examine whether the data
miner and the adversary do behave in a rationalmanner under our one-step game
model. We generated positive and negative class data from multivariate normal
distributions with mean [µp

1, µ
p
2] = [4, 1] and [µn

1 , µ
n
2] = [1, 4] respectively, and a

8 W. Liu et al.

common standard deviation I (the identity matrix). Note that the multivariate
normal distribution has been used only to generate the data and not for the
purpose of solving for the Nash equilibrium. We expect a rational adversary
to transform the data so that the positive class elements are displaced towards
the negative class, and at the same time to try to prevent the two classes from
completely overlapping. Thus we expect that the transformation in the first
dimension (f1) to be in the range of (−3, 0) and second dimension (f1) in the
range (0, 3).

We put the synthetic data into our objective function with k = 2 (the data
has only two features/dimensions), and obtain equilibrium transformation α∗ =
[1.67, -1.91]. In Fig. 2 we show the value of the objective function with respect
to different settings of the transformation α on f1 and f2. As we can visually
inspect from the figure, the obtained equilibrium transformation α∗ is an effective
minimizer of the objective function. This visualization of the objective function
also confirms our expectations that a rational adversary would transform the
first dimension by a value in the range (−3, 0) and second dimension in (0, 3).

Fig. 2: Values of the adversary’s objec-
tive function (Eq. 7), with respect to dif-
ferent setting of transformations (α) on
the two-dimension synthetic data. The
arrow in the figure points to a minimizer
of the objective function, generated by
our one-step method.

0
−1.5

−3

31.50
1.5

2

2.5

3

3.5

V
al

ue
 o

f t
he

 o
bj

ec
tiv

e
fu

nc
tio

n

α on f
2α on f

1

Minimizer: [1.67, −1.91]

4.2 Email Spam Filtering

The objective of this experiment is to compare the performance of classifiers built
on a normal training data set and on a training data set obtained at equilibrium
after the application of an adversary’s final optimal manipulation.

The spam data set consists of fifteen months of emails obtained from an
anonymous individual’s mailbox [15]. The first three months of data was used
for training and the remaining twelve months for testing. We further split the
test data into twelve bins - one for each month. Since at any given time spam can
be received from diverse sources and spammers have different goals, the intrinsic
nature of spam evolves over time. The data has 166,000 unique features. A
feature ranking process using information gain was carried out and we selected
the top 20 features to build the classifier.

To test the influence of k in terms of classification, we control k and vary it
from 1 through 20, in testing all the twelve months’ test data with 5-fold cross
validation. With spam emails belonging to the positive class, the true positive
rate (TPR), true negative rate (TNR) and overall accuracy is illustrated in

An Efficient Adversarial Learning Strategy 9

5 10 15 20
0

0.2

0.4

0.6

0.8

k (number of singular vectors used)

A
cc

ur
ac

y

TNR TPR Overall Accuracy

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5000

10000

15000

Numbers of months of data used in training

T
im

e
(in

 s
ec

on
ds

)

Iterative method One−step method

(b)

Fig. 3: Subfig.(a): Accuracy of SVD classifications on all test data with varying k.
Subfig.(b): Comparisons on time (in seconds) between iterative processes and our one-
step processes in finding Nash equilibria. To compare these two methods, in (b) we
used varying amounts of training data indicated on the x-axis. We find that the one-
step process substantially reduces computation time in searching for Nash equilibria,
especially when the total amount of data is large.

Table 1: Comparisons on classification accuracy on spam data between iterative pro-
cesses and our one-step processes, by using the data at Nash equilibria. Although the
one-step method needs much less time compared against the iterative method, it is still
capable of producing comparable equilibrium classification results.

Months M1 M2 M3 Months M1 M2 M3 Months M1 M2 M3

Jan .7686 .9179 .9195 May .6803 .7655 .7439 Sep .7648 .8277 .8187
Feb .6256 .7258 .6817 Jun .9249 .9671 .9882 Oct .5169 .6046 .6490
Mar .9071 1 .9991 Jul .9384 1 1 Nov .5915 .6597 .6946
Apr .9150 .9892 .9534 Aug .5527 .6032 .6795 Dec .7950 .9323 .9146

Friedman test (M1 vs. M2): 5×10−4

Friedman test (M1 vs. M3): 8×10−5

Friedman test (M2 vs. M3): 0.7630

Figure 3a. The overall accuracy stops increasing at around 16, which means the
training data can be well represented by the first 16 singular vectors. We choose
16 as the value of k in our following experiments on spam emails.

We first test the difference on time used in achieving Nash equilibrium be-
tween the previous iterative method and our one-step method. Since there are
fifteen months of data available to us, we test the total time used in training
one month, two months, ..., until all fifteen months. The total running time is
shown in Figure 3b, where we can see that the one-step process has substantial
savings in computation time on searching for Nash equilibrium, especially when
the size of data set is large.

We then compared the one-step method with the iterative method on clas-
sification accuracy, where we used the first three months of data for training
and the other twelve for test. We perform Friedman tests on the classification
accuracy across all data sets, where p–values that are lower than 0.05 reject the

10 W. Liu et al.

hypothesis with 95% confidence that the classifiers in the comparison are not
statistically different. The Friedman test is reported as the most appropriate
method for validating multiple classifiers among multiple data sets [16]. In Ta-
ble 1, “M1” uses the original data (i.e., X+ and X−), “M2” uses the equilibrium
data generated by the iterative method (i.e., X+ + α∗ and X−, where α∗ is
from the iterative method [7]), and “M3” uses the equilibrium data generated
by our one-step method (i.e., X++α∗ and X−, where α∗ is from solving Eq. 7).
As shown by the Friedman tests in Table 1, although one-step processes save a
great amount of time in finding the Nash equilibrium, it can still generate com-
parable classification results compared against the iterative method (i.e., not
significantly different under the Friedman test).

4.3 Handwritten Digit Recognition

In this section we examine the influence of equilibrium feature weights on the
problem of feature selection. We use the classic US Postal Service (USPS) data
set which was created for distinguishing handwritten digits on envelopes [17].
This data set consists of gray-scale images of digit “0” through “9” where each
image consists of 16 × 16 = 256 pixels or features in the classification problem.
We assume that the data was independent and identically distributed, and the
objective of the data miner is to separate the digits while that of the adversary
is to transform an image so that one digit can be confused with another.

Each digit has 2200 images, and we divide them equally into training and
test sets. All combinations of pairs of digits from “0” to “9” are tested and we
select the ones whose false positive rates are higher than 0.02 in the initial game
state. The selected pairs are (2,6), (2,8), (3,8), (4,1), (5,8), (7,9), where we use
the first digit of a pair as the class of interest for the adversary (i.e., the positive
instances that the adversary manipulates).

Fig. 4: Comparisons on time (in sec-
onds) between iterative processes and
our one-step processes in finding Nash
equilibria. Numbers on the x-axis rep-
resent indexes of selected digits pairs
in the order of (2,6), (2,8), (3,8), (4,1),
(5,8), (7,9). Similar to experiments on
spam emails, here we also can see that
the one-step process used much less
computing time compared against the
iterative method. 1 2 3 4 5 6

0

2000

4000

6000

8000

10000

Indexes of selected pairs of digits

T
im

e
(in

 s
ec

on
ds

)

One−step methods Iterative methods

We first compare the total amount of time (in seconds) used for finding Nash
equilibrium of these digit pairs, as shown in Figure 4. As expected, we can see
from the figure that the one-step process used much less computation time com-
pared to the iterative method in each of the six pairs of digits. More importantly,

An Efficient Adversarial Learning Strategy 11

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5: Some example comparisons of transformed images in digit pair “3” vs. “8”, “7”
vs. “9”, and “5” vs. “8”, with the first digit being positive class. Subfig. (a), (f) and (k)
show the original digit “3”, “7” and “5”; (b), (g) and (l) show these digits transformed
by the iterative method; (c), (h) and (m) are these digits transformed by our one-step
method; (d), (i) and (n) are the equilibrium transformations generated by the iterative
method; (e), (j) and (o) are the equilibrium transformations generated by our one-step
method. Although our one-step method require much less computational time, it can
still produce comparable equilibria results compared with the iterative method.

although the one-step method requires much less time, Nash equilibrium results
obtained from the one-step method can still reasonably approximate adversarial
manipulations on positive training data. As shown by some examples of our digit
pairs in Figure 5, the adversary simulated by our one-step method increases or
decreases values on some specific pixels on the positive images (i.e., digits “3”,
“7” and “5”), so that they look more like negative images (i.e., digits “8”, “9”
and “8”) after the equilibrium play. Moreover, the close similarities of the final
equilibrium adversarial transformations between the interactive method and the
one-step method further confirm that the one-step model can perform compara-
bly to iterative models in terms of finding correct Nash equilibria.

5 Conclusions and future research

In this paper we have studied the classification problem in the presence of adver-
saries. In this scenario data miners produce classification models and adversaries
transform the data to deceive the classifier. We have modeled the interaction of a

12 W. Liu et al.

data miner and an adversary using a one-step game theoretical model, where the
adversary aims to minimize both the difference between distributions of positive
and negative classes and the adversarial movement itself. The solution to the
minimization problem unveils the state of Nash equilibrium in the interactions
between the data miner and the adversary. We have also demonstrated that our
one-shot game significantly reduces computation time compared with iterative
process used in the previous literature, while it can still generate comparable
results in searching for Nash equilibria.

In the future we plan to investigate the use of coalition games to model sce-
narios where multiple adversaries exist and collaborate against the data miner.

References

1. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classifica-
tion. In: Proc of KDD 2004. (2004) 99–108

2. Lowd, D., Meek, C.: Adversarial learning. In: KDD 2005. (2005) 641–647
3. Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature

deletion. In: Proc of ICML 2006. (2006) 353–360
4. Ko lcz, A., Teo, C.: Feature weighting for improved classifier robustness. In:

CEAS’09: Sixth Conference on Email and Anti-Spam. (2009)
5. Kantarcioglu, M., Xi, B., Clifton, C.: Classifier evaluation and attribute selection

against active adversaries. Data Min. Knowl. Discov. 22(1) (2011) 291–335
6. Liu, W., Chawla, S.: A game theoretical model for adversarial learning. In: Pro-

ceedings of the 2009 IEEE International Conference on Data Mining Workshops.
(2009) 25–30

7. Liu, W., Chawla, S.: Mining Adversarial Patterns via Regularized Loss Minimiza-
tion. Machine Learning 81(1) (2010) 69–83

8. Brückner, M., Scheffer, T.: Stackelberg games for adversarial prediction problems.
In: Proc of KDD 2011. 547–555

9. Fudenberg, D., Tirole, J.: Game Theory. 1st edn. The MIT Press (1991)
10. Fortuna, J., Capson, D.: Improved support vector classification using PCA and

ICA feature space modification. Pattern Recognition 37(6) (2004) 1117–1129
11. Selvan, S., Ramakrishnan, S.: SVD-based modeling for image texture classification

using wavelet transformation. IEEE Transactions on Image Processing 16(11)
(2007) 2688–2696

12. Byrd, R., Schnabel, R., Shultz, G.: Approximate solution of the trust region prob-
lem by minimization over two-dimensional subspaces. Mathematical programming
40(1) (1988) 247–263

13. Moré, J., Sorensen, D.: Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing 4 (1983) 553

14. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems. SIAM Journal
on Scientific Computing 21(1) (2000) 1–23

15. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: Tracking concept drift in
spam filtering. Knowledge-Based Systems 18(4–5) (2005) 187–195

16. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7 (2006) 1–30

17. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. (2001)

