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ABSTRACT 
Online learning environments are now pervasive in higher 
education. While not exclusively the case, in these environments, 
there is oen modest teacher presence, and students are provided 
with access to a range of learning, assessment, and support 
materials. is places pressure on their study skills, including self-
regulation. In this context, students may access assessment 
material without being fully prepared. is may result in limited 
success and, in turn, raise a significant risk of disengagement. 
erefore, if the prediction of students’ assessment readiness was 
possible, it could be used to assist educators or online learning 
environments to postpone assessment tasks until students were 
deemed “ready”. In this study, we employed a range of machine 
learning techniques with aggregated and sequential 
representations of students’ behaviour in a Massive Open Online 
Course (MOOC), to predict their readiness for assessment tasks. 
Based on our results, it was possible to successfully predict 
students’ readiness for assessment tasks, particularly if the 
sequential aspects of behaviour were represented in the model. 
Additionally, we used sequential paern mining to investigate 
which sequences of behaviour differed between high or low level 
of performance in assessments. We found that a high level of 
performance had the most sequences related to viewing and 
reviewing the lecture materials, whereas a low level of 
performance had the most sequences related to successive failed 
submissions for an assessment. Based on the findings, 
implications for supporting specific behaviours to improve 
learning in online environments are discussed. 
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1 Introduction 
Online learning environments (e.g., online courses, blended 
learning environments, MOOCs) are now pervasive in higher 
education. Even though there are many advantages of online 
learning, the scale of these environments, both in mainstream 
higher education and in new online environments such as 
MOOCs, present educators with challenges, such as providing the 
necessary supervision to students and the practical ability of 
instructors to guide and mentor students through courses. In 
many digital learning environments, students are often relatively 
solitary learners, and their success relies more heavily on their 
abilities and skills in self-directed learning. Moreover, in digital 
learning environments such as MOOCs, open learning structures 
are often emphasised in which students are offered unlimited 
access to different instructional materials, such as content-related 
resources (e.g., video, lectures), assessments, and collaboration 
tools [18]. This may well make these learning environments more 
challenging for students. There is a distinct danger that students 
may have difficulty adequately covering the learning material 
and, as such, may subsequently be ill-prepared for both 
developmental (formative) and summative assessment tasks. 

Assessment tasks often form a critical component of digital 
learning environments, as they allow students to reflect on their 
own level of understanding and provide a mechanism to 
determine whether or not students have mastery of the course 
materials [22]. Educational research has shown that when 
students are unsuccessful in assessment, this can have a negative 
impact on their confidence in their ability to succeed, which in 
turn can lead to disengagement [18]. This argument has also been 
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confirmed in a study based on five MOOCs [31], where students 
who received significantly lower grades in assessments, were 
likely to disengage from the course (e.g., drop-out the course, or 
become auditors). Thus, monitoring and predicting students’ 
performance on assessment tasks could provide an opportunity 
for developing an adaptive learning environment aware of 
students’ progress and readiness for online assessment tasks, and 
potentially delay or postpone tasks in cases where students are 
seen as not ready. Moreover, a deeper understanding of students’ 
behaviour before completing an assessment and knowing whether 
these behaviours differ for students with a high or low level of 
performance, could be used to tailor support and interventions 
that could maximise the likelihood of student success. 

The use of learning analytics allows us to model students’ 
behaviour throughout a course in order to predict and describe 
their specific characteristics. This area is known as Student 
Modelling and has been long described as a key area of learning 
analytics [6], particularly in MOOCs environment, which is the 
focus of our study. 

1.1 Student Modelling: Prediction 
During recent decades, the emergence of MOOCs and their known 
challenges (i.e. lack of direct supervision, low completion rates) 
has led to many studies that have focused on prediction of a 
particular variable describing students such as their final 
achievement or drop-out [15, 24]. e way that the prediction task 
is formulated has a considerable impact on the results. Many 
choices exist regarding the representation of students’ historical 
data with regards to different granularities and different forms in 
various contexts. Moreover, numerous decisions could be made 
regarding the choice of the prediction model. 

Early research that has focused on modelling students, has 
found frequency measures of students participation in MOOCs [2, 
21, 24], demographic factors [17], or a combination of these [20, 
38] can act as early predictors of student drop-out. Although there 
are many ways to represent learning behaviour, most studies have 
represented behaviour based on simple frequency measures of 
student participation in the course such as the number of sessions, 
video watched and access to discussion forums [24]. However, a 
sequential representation of students’ learning behaviour might 
be useful in showing how the process of students’ learning over 
time impacts on other key learning processes and outcomes. 

A recent direction of research has focused on building machine 
learning models based on students’ historical data over time in 
order to predict their learning outcome in exercises as they 
complete MOOC [27, 30]. Among the existing studies, Pardos et 
al. [29], employed Bayesian algorithms to model students’ 
knowledge over time based on the past history of quiz responses. 
They showed it is possible to predict with good accuracy whether 
or not each student has acquired the related knowledge during the 
course according to the result of prediction that is whether or not 
the quiz would be answered correctly. In a similar work by 
Yudelson et al. [41], a variant additive factors algorithm was used 
to model students’ knowledge. They determined acquirable 
knowledge using a domain model, which is the vocabulary of 
skills for the Java programming language. They demonstrated that 

their model is accurate for both modelling student knowledge and 
suggesting the concepts that students can address in their code. In 
another study, Piech et al. [30], used Recurrent Neural Networks 
(RNNs) to model students’ knowledge based on their performance 
on previously answered quizzes. Each time a student began a quiz, 
they predicted whether or not the quiz would be answered 
correctly. The historic sequences of correct and incorrect quiz 
responses determined the student’s gained knowledge. They 
created a graph of conditional influence between quiz concepts 
that can be used for curriculum design. Further, the effectiveness 
of RNNs was confirmed in a very similar study [27]. They utilised 
an RNN with a similar procedure as [30], but for students with 
different learning abilities separately. Overall, the focus of these 
approaches is on modelling students based on the concepts that 
they learned and the result of prediction was considered as an 
indication of students’ knowledge development and mastery on a 
topic. However, success in assessments is not just about the 
content. It also requires appropriate skills to access and work with 
the most relevant content. The current focus of educational 
research in this area is on strategies that enable effective learning. 
What remains understudied is evaluating how effective students’ 
preparation behaviours are when it comes to their success on 
assessment tasks. Such analysis may be helpful to automatically 
delay or postpone tasks when students are not adequately 
prepared.  

Another stream of research has applied and compared various 
predictive models to improve educational prediction. For instance, 
Al-Shabandar et al. [1], utilised various machine learning 
algorithms to model students’ online behaviour based on the 
frequency measures of their participation in a MOOC and found 
the random forest to be the best prediction model. A similar study 
by Chen et al. [12], compared various classifiers and found 
XGBoost as the most reliable model. While comparing and 
selecting an appropriate algorithm is a challenging task, switching 
between algorithms usually results in a minimal change (for more 
discussion see [5]), whereas a proper representation of data can 
lead to a considerable difference and can be more challenging. To 
the best of our knowledge, comparing the effect of modelling 
students based on the sequential and aggregated representations 
of the same activities in their behaviour within MOOCs has not 
yet been investigated. Such analyses could reveal the importance 
of considering the temporal nature of students’ behaviour for the 
application of student modelling. 

Prediction of students’ learning outcome could result in a 
valuable set of information for academic advisors, who can then 
communicate directly with students. However, these approaches 
usually do not provide actionable metrics regarding students’ 
online data traces. Thus, in addition to prediction, identifying 
important factors capable of predicting students’ learning 
outcome offers an excellent opportunity to support students by 
providing them with early feedback. 

1.2 Student Modelling: Structure and 
Relationship Discovery 

There has been considerable focus on the use of learning analytics 
approaches to profile students’ behaviours and determine factors 
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that differentiate them based on different levels of learning 
outcome. Recent studies have focused on factors in which 
educational data mining and educational psychology are 
combined. In this area, the positive effect of specific learning 
behaviours on students’ achievement has been widely studied 
using learning analytics approaches [19, 40], particularly in 
MOOC environments. 

The results of these studies mainly demonstrated that there 
were distinct student behaviours during learning, and there was a 
connection between those behaviours and students’ learning 
outcome in the course. For instance, the positive effect of regular 
study and negative impact of the number of late submissions [40], 
direct association of re-reading pages and video watching in 
response to an incorrect assessment submission [19], or direct 
association of the number of video viewed and assessment 
submissions [7] and many others were found on learning 
outcome. Each factor in the mentioned studies was considered as 
a reflection of using specific learning behaviour. For instance, the 
regular study and late submissions were defined as a measure of 
time-management [40], re-visiting the previously visited pages as 
revision strategy [19], and the frequency measures of video hits 
and quiz attempts were found to be correlated with students’ 
value beliefs and mastery approaches respectively [7]. 

The empirical investigations and modelling of students’ 
learning behaviour in MOOCs have mostly focused on predefined 
aggregated factors and evaluating their effect on a students’ 
learning outcome. However, utilising a data-driven approach for 
extracting the distinct students’ learning behaviours (measures of 
them) might reveal novel behaviours which were not identified by 
domain experts. Additionally, considering the sequential 
representation of students’ behaviour might disclose the effect of 
the process students used during learning. For instance, Brinton 
et al. [11], mined patterns from students’ sequences of video-
watching behaviour, with the aim of finding meaningful strategies 
rather than predefining them. They identified several video-
watching characteristics correlated with a high chance of success 
in a quiz, such as repeatedly playing and pausing the video as an 
indicator of reflection strategy, and revising the previously 
watched video related to revision strategy. Sequential pattern 
mining can also be applied through other methods such as hidden 
markov model. As an example of this case, Coffrin et al. [14], 
investigated students’ transitions between course materials in a 
MOOC and were able to visualize patterns of students’ 
engagement based on their achievement. In these studies, mining 
patterns, instead of predefining them, could lead to the 
identification of previously unknown solutions to defined 
problems. In this paper, we utilise a sequential pattern mining 
approach to discover patterns from sequences of behaviours used 
by students to prepare for assessments. 

1.3 Research Aim 
The first goal of this study is to utilise learning analytic techniques 
to build a students’ readiness profile (prediction model) to predict 
their performance in assessment tasks. Monitoring of students’ 
knowledge based on the sequences of concepts they have learned 
– as determined by their performance in assessments – is well-

studied in the literature. Our investigation focuses on the kinds of 
study behaviours students adopt in an online course as the 
foundation of a student model (rather than the concepts that have 
been learned). To create an accurate prediction model, we profile 
students’ behaviours in two distinct forms, including aggregated 
and sequential. We employ a range of machine learning 
algorithms to determine whether a particular profile would be a 
stronger representative of students’ readiness for assessment 
tasks.  

The second goal of this study is to explore whether the most 
recent activities prior to submission are more influential on 
assessment results compared to incorporating the more historic 
activities applied by students. This analysis could reveal the 
importance of considering the overall process used by students 
throughout the course rather than the most recent activities prior 
to assessment submissions. 

The last goal of this study is to explore students’ assessment 
preparation behaviours using sequential pattern mining. We aim 
to explore and expose underlying factors that might influence 
students’ assessment results. These factors could not only 
illustrate the different ways in which students prepare for 
assessment tasks but could also identify behaviours that need 
support to improve students’ future preparation.  

Overall, in this study, we model students’ assessment 
preparation behaviour based on their fine-grain overt behaviour 
in a MOOC to investigate the following research questions (RQs): 

RQ1. Can we develop useful prediction models for forecasting 
students’ readiness for assessment tasks? Does it matter if the 
sequential nature of students’ activities is considered in the model 
rather than aggregated measures? 

RQ2. What is the impact of considering the most recent 
activities prior to submission in the models compared to 
incorporating more historic activities applied by students? 

RQ3. Are there differences in assessment preparation 
behaviours that lead to high or low performance? 

2 Approach 

2.1 Study Context 
This study focuses on two offerings of a MOOC called Discrete 
Optimization (Disc Opt.) provided by the University of Melbourne 
in 2013 and 2014. This MOOC is a graduate-level course consisting 
of nine weeks of material presented in an open curriculum 
structure. It includes seven summative assessments, each of which 
contains a bank of questions. Students need to earn a passing 
grade (0.7/1) in each assessment to complete the course. The 
student’s final outcome for an assessment is based on their best 
submission score for that assessment. The content of assessments 
is slightly different across both offerings. A summary of the two 
offerings and students’ participation in assessment tasks are 
presented in Table 1. In the first offering of this course, of the 
51,306 students who initially enrolled, around 12% (6,664) engaged 
in the assessments. From those, 39% (2610) dropped out of the 
course immediately after a failure in an assessment. We cannot be 
sure about the reason(s) for this abrupt disengagement, but one 
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possible explanation is that failure experiences influenced some 
students to doubt their abilities to succeed, which then resulted in 
their disengagement [17, 30]. 

In this course, students were permitted to make an unlimited 
number of submissions for each assessment. In this paper, we have 
restricted our analysis to the first ten student’s submissions per 
assessment. Moreover, for the successful submissions, we have 
limited our analysis on those that finalised the assessments’ 
outcome. This means that if a student had multiple successful 
submissions on an assessment, only the first successful one was 
considered. Statistics summarising the total number of passed and 
failed submissions in each assessment of the two MOOCs are 
shown in Figure 2. We see that in both offerings, most 
submissions were passed for the first assessment (as it was 
considered to be an easy task). In contrast, for all the other 
assessments, less than half of the submissions were successful. 

2.2 Data Analysis 
A standard MOOC usually contains three different 

instructional events for students: content-related resources (e.g., 
video lectures, slides), assessments (e.g. assignments, and quizzes), 
and collaboration tools (e.g. discussion forums) [10]. The focus of 
our study is on students’ fine-grain overt learning activities in 
response to these instructional events, particularly those that help 
students achieve course outcomes and reflect particular kinds of 
approaches to online study. This involves accessing and 
downloading lecture, re-accessing and re-downloading the 
previously accessed lecture, accessing the discussion forums, and 
submitting assessments. A sample representation of a student’s 
list of ordered activities is shown in Figure 1. We refer to this 
figure throughout the paper as we develop our sequential 
analysis. For simplicity, the activity names are mapped to IDs as 
provided in the figure caption.  

Following sub-sections describe the analysis undertaken to 
assist on answering our research questions. 

2.2.1 RQ1. Assessment Readiness Prediction: Does the Sequence 
Maer. Using predictive models, we built a student profile based 
on their past history of learning activities, to determine which 
students were not ready for their assessment task. Once 
developed, this profile was then used to predict students’ success 
for each submission they make on an assessment task. We cast this 
problem as a binary classification task, where a classifier was 
developed based on a student’s past learning activities before 
submitting an assessment in two forms of aggregated and 
sequential, and the class label was whether or not a student’s 
submission passes.  

2.2.1.1 Aggregated Representation. Each submission s was 
described by a ݀ -dimensional vector of features ( ݏ ∈ Թௗ ) 

                                              
Figure 2: Number of passed and failed submissions in the a) 1st  offering, and b) 2nd offering of Disc Opt. 

               

Figure 1:  A sample representation of a student’s ordered list of learning activities in a MOOC. v= lecture viewed or 
downloaded, rev= lecture reviewed or redownloaded, fv= forum viewed, asses#-p= passed submission on a specific 
assessment#, asses#-f= failed submission on a specific assessment# 

Table 1: Summary of the two offerings of Disc Opt. 

 1st offering 2nd offering 

Number of students enrolled 51,306 33,975 

Number of assessments 7 7 

Number of students engaged in 
assessments 6,664 3,258 

Number of students dropping-out 
after assessment failure 2610 332 

Number of assessment submissions 42,094 18,495 

Number of failed assessment 
submissions 31,285 13,159 

Number of students completed 
 

795 322 

 



Prediction of Students’ Assessment Readiness in Online Learning Environments LAK20, March 23-27, 2020, Frankfurt, Germany 
 

 

conducted by a student (as presented in Table 3), started from the 
beginning of the course and ended before that submission. We 
aimed to build our prediction profile irrespective of the specific 
assessment. Thus, for each submission, we divided the previous 
submissions into two groups of; submissions on the same 
assessment, and on the other assessments with their respective 
results as represented in Table 3. 

Table 3: Aggregated profile for each student’s submission 

Aggregated profile 

Number of lectures viewed or downloaded 

Number of lectures reviewed or redownloaded 

Number of forums viewed 

Number of failed submissions on the same assessment 

Number of passed submissions on the other assessments 

Number of failed submissions on the other assessments 

 
2.2.1.2 Sequential Representation. Each submission was 

described by a variable sequence of ݐ  ordered activities 
( ଵܺ, … , ܺ௧ିଵ , ܺ௧)  conducted by student started from the 
beginning of the course and ended before that submission. (ܺ௧ ∈
 Learning activities). Table 4 presents the extracted sequences for 
the example provided in Figure 1 for illustration purpose. As can 
be seen, each submission is assigned a sequence that starts from 
the beginning of the course and ends before that submission. 
Similar to the aggregated profile, we made a distinction between 
submissions on the “same assessment” and “other assessments”. 
As can be seen in Table 4, we mapped them to “casses” and 
“oasses” respectively in the “Finalised Sequence” column.  

We first evaluated the effectiveness of the aggregated 
representation of students’ learning activities using a non-
sequential machine learning classifier. Then the prediction power 
of a sequential machine learning model was examined to 
investigate the impact of modelling the sequential nature of 
students’ behaviour. We used the first offering of the MOOC to 
train the model. Using this model, at each student’s submission in 

the second offering of the MOOC, we predicted the probability of 
success to determine the effectiveness of our models.  

2.2.1.3 Algorithms. We utilised Neural Network (NN) models 
for the evaluation purpose. NNs are popular for learning complex 
relationships from data in domains such as medicine [9, 36], 
security [37], loan applications [35], speech recognition [42], and 
natural language processing [23]. There are, thus far, a limited 
number of studies employing NNs for tasks in learning analytics. 
As an example, Okubo et al. [28], confirm the effectiveness of NNs 
for predicting students’ final grade compared to regression-based 
models. In this paper, we explored the utility of the aggregated 
profile for assessment readiness prediction, employing a basic 
three-layer structure NN with all layers fully connected - a 
Multiple Layer Perceptron (MLP). is is a simple proof of 
concept structure, and more complex structures (e.g. with more 
layers) are possible. the output was a prediction model learned for 
all the submissions. To investigate the impact of the sequential 
nature of students’ activities on the prediction task, we used a 
sequential prediction model based on a popular variant of 
Recurrent Neural Networks - Long Short-Term Memory 
(LSTM). An LSTM is capable of fiing paerns from data across 
both long- and short time scales. Our model used the sequential 
form of data as the input. e output was a prediction model 
learned for all the submissions.  

For this analysis, N is the number of assessments in a course, 
and we had ݊  submissions for each assessment ݏ௜,  1 ≤ ݅ ≤ ܰ. 
Each assessment ݅  was defined by a set of submissions, ݏ௜, =
,௜ଵݏ} ,௜ଶݏ … ,  ௜௝, a class label was definedݏ ௜௡}. For each submissionݏ
as passed (y = 1) or failed (y = -1). Thus each assessment was given 
by ሺݏ௜ , (௜ݕ = ሾሺݏ௜ଵ, ,(௜ଵݕ ሺݏ௜ଶ, ,(௜ଶݕ … , ሺݏ௜௡, .௜௡)ሿݕ The binary 
classification algorithm generated a probability estimate for each 
class by fitting a single model on all assessments’ submissions, 
{ሺݏଵଵ, ,(ଵଵݕ ሺݏଵଶ, ,(ଵଶݕ … , ሺݏଶଵ, ,(ଶଵݕ ሺݏଶଶ, ,(ଶଶݕ … }. 

2.2.1.4 Experimental Configurations. For both MLP and LSTM, 
we utilized binary cross-entropy as a loss function and trained 
models with mini-batch stochastic gradient descent. For 
determining the best parameters, grid search hyperparameter 

Table 2: Sequences for each assessment and their respective outcome based on the example provided in Figure 1. casses-f= 
failed submission on the same assessment 

Assessment# Sequence before completing each assessment (assessment outcome) Finalised Sequence Assessment Outcome 

1 v v rev v asses1-f v v (asses1-p) v v rev v casses-f v v passed 

2 v rev fv (asses2-f) v rev fv failed 

 

Table 4: Sequences before each submission and their outcome (class label) based on the example provided in Figure 1. casses-
f= failed submission on the same assessment, oasses-f= failed submission on the other assessments, oasses-p= passed 
submission on the other assessments 

Assessment# Submission# Sequence before 
each submission (submission outcome) 

Finalised 
Sequence 

Submission 
outcome 

1 1 v v rev v (asses1-f) v v rev v failed 

1 2 v v rev v asses1-f v v (asses1-p) v v rev v casses-f v v passed 

2 1 v v rev v asses1-f v v asses1-p v rev fv (asses2-f) v v rev v oasses-f v v oasses-p v rev fv failed 
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optimization [8] was used. In this technique, a set of parameter 
values for mini-batch size, the number of hidden dimensions (for 
MLP) and memory units (for LSTM) was defined. Then the model 
was trained using all combinations of those parameters and the 
solution that minimized the cost function was selected [8]. As 
there existed relationships between submissions, we considered 
the temporal order in which submissions were made when doing 
the cross-validation in parameter optimisation. For this purpose, 
we used the walk-forward cross-validation approach [26], in 
which multiple split points were selected in the ordered list of 
observations for determining the train and test data. We used 
early stopping on the number of epochs to avoid overfitting and 
unnecessary computations. For doing so, 20% of the training data 
at each fold of parameter optimisation was used as a validation 
set, and then the training in each fold stopped when the validation 
error started to increase. We implemented both networks using 
the Keras framework with TensorFlow™ back-end. 

2.2.2 RQ2. The Most Recent Activities Prior to Submissions and 
The Assessment Outcomes. To answer the second research 
question, we built our models (MLP and LSTM) based on the 
variable length of recent activities before submissions. Having 
these models, we then compared their prediction performance to 
examine whether the most recent activities prior to submission 
would be more predictive in each of the algorithms rather than 
including the more historical activities. 

2.2.3 RQ3. Differences in Successful and Unsuccessful 
Assessment Preparation Behaviours. To address this research 
question, we investigated students’ behaviour and their approach 
to preparing for assessment tasks for each of the MOOC offerings. 
We assessed, through a sequence mining approach, whether 
students exhibited systematic behavioural patterns before 
accomplishing assessment tasks (before and in between 
submissions). Then we investigated whether these patterns 
differed for students with a high and low level of task outcome, 
and whether they can be mapped on to interpretable learning 
behaviours. Overall, our aim was to relate students’ assessment 
preparation behaviour to their assessment outcomes. We defined 
assessment outcome and behaviour as below. 

Assessment Outcome. This corresponds to the final result of an 
assessment (typically passed or failed) for a student. As mentioned 
before, for each assessment, students needed a mark of at least 
70% to pass. Therefore, in our analysis, the pass mark for each 
assessment was considered to be 70% of the total assessment score. 

Behaviour. Similar to the previous analysis, we focused on the 
sequential representation of students’ learning activities. Such 
representation could reveal the process students used to be 
prepared for the task, rather than simple frequency measures 
examined in most studies. We defined behaviour as student’s 
activities before the submission that finalised the outcome for an 
assessment task. In this analysis, we aim to explore students’ 
behaviour before completing assessments. In fact, each student 
that engaged with an assessment (with one or more submissions) 
was assigned one sequence for that assessment. The beginning of 
the sequence was considered to be before the first submission for 
the same assessment and started with the latest submission for 
another assessment. If it was the first assessment attempted 

through all the course, the sequence started from the beginning of 
the course. Table 2 presents the extracted sequences for the 
example provided in Figure 1 for illustration purpose. As can be 
seen, a sequence started with the first activity after the other 
assessment submission and ended before the submission that 
finalised the outcome for the assessment. Since we aim to gain 
insight about the preparation behaviour irrespective of the 
specific assessment, for each sequence, we mapped the 
submissions on the “same assessment” and “other assessments” to 
“casses” and “oasses” respectively as shown in the “Finalised 
Sequence” column of Table 2. 

Accordingly, we categorized these sequences into two groups: 
1) sequences that ended with a passed submission (Passed group), 
and 2) sequences that ended with a failed submission (Failed 
group).  

We employed a sequential pattern extraction method [4] to 
identify the distinct behavioural patterns for the sequences. 
Sequential pattern mining is an analytical technique to identify all 
common subsequences of n-item in a sequence dataset that the 
proportion of their occurrence to the total number of sequences 
(called support) is more than a threshold. In other words, for each 
subsequence of n-item, support is generated, which determines 
the proportion of sequences that have enacted that subsequence 
at least once.  

In summary, for each of the course offerings, we extracted all 
the subsequence of n-item (we call them n-item for the simplicity) 
from every sequence. For instance the subsequences of 3-item 
from the finalized sequences presented in Table 2, are {<v v rev> 
<v rev v> <rev v casses-f> <v casses-f v> <casses-f v v> <v rev 
fv>}. Each unique n-item was then subject to the following 
analysis:  

1. The support of each n-item within each group of sequences 
(Passed/Failed) was computed. This allows comparison 
across groups as the groups might have different numbers of 
sequences.  

2. The most frequent n-items in at least one of the groups were 
retained as patterns for further investigation.   

3. The statistical significance of each frequent pattern was 
computed, using a chi-square test [39] on the 2*2 
contingency table (exists/not exists versus Passed/Failed). 
The chi-square test provides a measure of the statistical 
significance of the association between each pattern and the 
assessment outcome. A Bonferroni correction for multiple 
testing was applied to the result of the chi-square test to 
avoid Type I error.  

4. The patterns that were highly associated with outcome were 
further explored to determine the direction of association 
with the assessment result. This was performed based on 
comparing the fraction of each pattern in the Failed and 
Passed groups of sequences. In this way, the top patterns 
associated with the successful outcome were considered to 
be those that were more frequent (higher support) in the 
Passed group compared to the Failed group, ordered by their 
significance of association with the assessment outcome 
(based on smallest p-values). 
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5. The top patterns in each group that were highly associated 
with learning outcome were then explored to determine 
whether they can be related to interpretable learning 
behaviours. 

2.2.3.1 Comparison of the two MOOCs in Terms of Their 
Influential Paerns. We also compared the influential patterns 
between the two MOOCs based on their significant association 
with the assessment outcome. This comparison could reveal if the 
two MOOCs were similar in terms of their prominent patterns. 
For this purpose, we utilised the Spearman Rank-order correlation 
[16] that shows the association between the ranked value of two 
variables. In our case, the correlation between the patterns’ rank 
in the two MOOCs was examined. 

3 Results 
The analytic approach described above was used with two 

offerings of a MOOC and is presented in three parts in this section. 

3.1 RQ1. Assessment Readiness Prediction: Does 
the Sequence Matter 

The first set of analyses report on the ability of our models to 
predict assessment readiness. We report our results using the two 
metrics of accuracy and area under the ROC curve (AUC), a widely 
used metric in machine learning which is informative for the 
scenario of imbalance between classes [25]. We trained our 
models based on the first offering of the MOOC (with three-fold 
cross-validation for parameter optimisation) and evaluated them 
based on the second offering of the course.  

The outcome of the predictive performance of MLP and LSTM 
is shown in Table 5. We also investigated the utility of the 
aggregated profile based on a baseline model of Logistic 
Regression (LR) to make sure the result we obtained using MLP 
was not misspecified. The AUC and accuracy results of both MLP 
and LSTM algorithms demonstrate a high success rate in 
predicting student readiness for the second offering (AUC score > 
85.0% and accuracy>83.7%). A comparison of the two models 
illustrates that LSTM outperformed MLP in both AUC and 
accuracy. This suggests that taking the sequential nature of data 
into account was more beneficial.  

Table 5: Comparison of LR, MLP, and LSTM performance 
based on AUC and accuracy.   

 LR MLP LSTM 
Accuracy 83.3 83.7 87.1 
AUC 84.1 85.0 86.4 

 

3.2 RQ2. e Most Recent Activities Prior To 
Submissions and e Assessment Outcomes 

We examined whether building our models based on the various 
numbers of recent activities before submission would make any 
difference in their prediction power. We limited this analysis to at 
most 77 recent activities. This number was the median number of 

activities done before submissions. Figure 3 presents the result of 
this analysis based on AUC. In this figure, the x-axis corresponds 
to the upper limit of the number of recent activities prior to the 
submissions that the models were built on. As can be seen, all 
algorithms worked better when considering more activities. 
Furthermore, LSTM worked better than MLP in almost all cases. 
This could mean that the overall processes students applied 
through the course had more impact on the assessment outcomes 
rather than only the recent activities prior to submissions. 

3.3 RQ3. Differences in Successful and 
Unsuccessful Preparation Behaviours 

It was possible to collect 15,748 and 7,544 student sequences for 
all the assessments of the first and the second offerings of the 
course respectively. Using sequential pattern extraction method, 
we extracted a large number of subsequences (n-items) of various 
length (݊ ∈ {1, 2, . . ,10}) and support for each group of sequences 
in each of the offerings. Then for each offering, only the 
subsequences having more than 20% support in at least one of the 
groups were retained as potential patterns in order to contrast 
them across groups with different levels of the assessment 
outcome. We considered the maximum subsequence length (n) as 
10 because there was no unique 10-item subsequence that had a 
support value of at least 20% in each of the two groups.  

From all the subsequences, 95 and 84 number of n-items were 
found as frequent patterns from the first and second offerings of 
the MOOC respectively. Figure 4 reports the top-10 patterns with 
the most significant association (p-value <0.0005) with each of the 
passed and failed assessment outcome for each of the MOOCs, 
utilising chi-squares. The patterns are represented in the form of 
state transition diagrams to be able to present as much pattern as 
possible. The general representation of a pattern is illustrated in 
Figure 4(a). S and E indicate where a pattern started and ended. 
Each state illustrates an activity. The notation above each self-
transition illustrates the [lower limit - upper limit] on the number 
of times that activity can be repeated. Thus, the general pattern 
starts with activity A, that can be repeated for n to m times; then 

    

Figure 3: Comparison of LR, MLP, and LSTM based on AUC 
performance for the variable length of activities before 
submissions 
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we have activity B, which can be repeated for k to l times. For 
instance if we have [n,m,k,l] as [1,2,1,2], the pattern set would be 
equal to {(AB), (AAB), (ABB), (AABB)}. 

Results revealed that sequences with failed outcome in both 
MOOCs had exactly the same top-10 patterns as presented in 
Figure 4(b). This includes multiple attempts in an assessment 
without doing any activity in between as well as exploring the 
discussion forum before multiple failed assessment submissions. 
Whereas, sequences with passed outcome in both offerings had 
the most sequences related to accessing the lecture material for 
one or multiple times and reviewing the already accessed content 
(Figure 4(c&d)). In this group of sequences (Passed group), for 
both offerings, there is a pattern showing that numerous lecture 
materials observed before submissions (The leftmost pattern for 
both offerings). Furthermore, there exists a pattern in which 
already viewed lecture content was reviewed after viewing the 
lectures multiple times (the second pattern from the left for both 
offerings). In the first offering, there exists a pattern in which 
some contents were accessed after reviewing the material (The 
rightmost pattern in the first offering).  

3.3.1 Comparison of The Two MOOCs in Terms of Their 
Influential Patterns. Ranking in each MOOC was obtained by 
assigning a rank of 1 to the n-item with the highest association 
with the learning outcome, 2 to the next highest and so on. The 
ranking was calculated based on all the n-items rather than the 
frequent ones (patterns). The reason that we considered all n-
items for the ranking was that there were few patterns in one of 
the offerings which were not frequent in the other. By ranking all 
the n-items, we obtained rank for every existing pattern even if it 
was not prevalent in one of the offerings. The result of this 
analysis revealed a strong positive correlation (correlation 
coefficient of 0.83) between the rank of significant patterns of the 

two MOOCs. This means the two MOOCs shared similar 
influential patterns. 

4 Discussion 
In this paper, we used a range of learning analytics techniques to 
examine whether we can predict students’ readiness for 
assessments and to explore students’ preparation behaviour for 
accomplishing these tasks.  

For the first research question, we found that it was possible to 
predict student’s readiness for assessment tasks based on 
modelling their fine-grain overt behaviour with a MOOC in two 
forms of aggregated and sequential. We built and evaluated our 
models based on the same course but different cohorts. Based on 
our results, students’ sequence of task preparation activities was 
a more powerful predictor of assessment performance than the 
overall aggregated behaviour. This suggests that taking the 
sequential nature of students’ interactions into account was more 
beneficial than the frequency measures. Monitoring and 
predicting students’ performance on future tasks could provide an 
opportunity to support students in their learning path. Such 
analyses can be used to monitor students’ progress and readiness 
over time, to delay or postpone tasks that students are not yet 
ready for. The result of our temporal analysis revealed the 
importance of taking the temporal nature of behaviour into 
account to have better models and understandings of student 
behaviours. 

The second research question suggested that considering the 
more historical activities prior to submission led to the higher 
prediction power for the models. This supports the importance of 
the overall process students applied in the subject as a significant 

       

Figure 4:  The top-10 significant patterns identified across each of the Failed and Passed groups of sequences for the 1st and 
2nd offerings of Disc Opt. S and E indicate where a pattern starts and ends. Each state illustrates an activity. The notation 
above each self-transition illustrate the [lower limit – upper limit] on the number of times that activity can be repeated. v= 
lecture viewed or downloaded, rev= lecture reviewed or redownloaded, casses-f= failed submission on the same assessment, 
fv= forum viewed 
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indicator of performance rather than only the most recent 
activities before submissions.  

For the third research question, sequence mining was used to 
provide insight into significant differences in the assessment 
preparation behaviour for each of low and high-performance 
groups in assessments. Our results suggested viewing and 
reviewing the lecture content was an important factor for success, 
which is not surprising. This result is consistent with educational 
findings that reviewing learning material is beneficial in student 
learning [34]. As the study by Rohrer [34] contends, reviewing 
strategies can improve memory retention and lead to an 
improvement in learning. Other studies have also found that 
reviewing content is effective in algebra word problem solving 
[13], and advantageous in students’ memory retention of reading 
content [33]. However, an interesting insight is that a 
considerable number of students tried to improve their 
performance by attempting the assessments multiple times 
without doing any activity in between their attempts. There was 
a significant negative association between these patterns and 
learning outcome. This may imply that simply making multiple 
submissions without applying any clear strategy does not lead to 
success. This result also confirms educational findings that too 
many consecutive errors undermine students’ learning 
performance [32]. According to Ashcraft and Kirk [3], when an 
error is related to lack of knowledge and skill, it can lead to 
anxiety and negatively affect a student’s learning. The patterns 
reported in this paper, appear to be a valuable source of 
information to better understand students’ behaviour before 
completing assessment tasks and could be used to inform 
educators about the behaviours in need of support. Moreover, 
adaptive learning environments could be designed to steer 
students away from such behaviour, for instance, by placing a 
time constraint between successive attempts or limiting the 
possible number of attempts on an assessment.   

Overall, a clear implication of the research presented in this 
paper is that the temporal dimension in modelling students’ 
behaviour is important, and there may be a need to account for it 
in learning analytics research. In addition, the findings of pattern 
extraction analysis provide insights into how a framework for 
both educators and adaptive environments could be developed to 
identify which behaviours require support so that relevant 
interventions could be provided. However, this study has 
limitations commonly found in most MOOC studies. The first 
limitation relates to the generalizability of the analysis and 
interpretations of the patterns found. This study was based on 
different cohorts of one MOOC. Considering other MOOCs with 
different learning designs could provide better insight into 
students’ assessment preparation behaviour and its impact on 
performance. Additionally, the MOOC that was the focus of this 
study was an optimization course, and the assessments required 
applied activities that expected students to put efforts in to 
achieve a good outcome. Our approach might not be as effective 
for other assessment types, such as when students are able to play 
with the system or guess the answers without effort. Another 
limitation is not examining the learners’ personal factors such as 

skills, prior knowledge, demographic factors, goal and motivation 
throughout the course, as it was beyond the scope of this study.  

5 Conclusion 
In this paper, we used machine learning techniques to predict 
students’ readiness for assessment tasks and target those at risk 
of disengagement as a result of assessment failure. This analysis 
could be useful in monitoring students’ progress and postponing 
tasks that students are not yet ready for. Our results show the 
effectiveness of our prediction models in estimating student 
readiness, especially if we formulate the prediction problems 
using sequential models and focusing on the overall behaviour of 
students before submission (rather than the most recent 
activities). We also explored how students approached their 
assessments and what strategies they applied to be prepared for 
this task. The patterns we discovered suggest there were several 
behaviours which impacted on students’ performance, like 
reviewing the learned content, and multiple consecutive failed 
attempts without mastering the topic. These results align with 
previous educational research. For future research, it would be 
interesting to determine whether these patterns and results are 
applicable to other MOOCs and online learning environments and 
to conduct a study assessing their effectiveness for feedback via a 
randomized controlled study. 
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