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Abstract

One of the roadblocks to the wide-spread use of virtual reality sim-
ulation as a surgical training platform is the need for expert super-
vision during training to ensure proper skill acquisition. To fully
utilize the capacity of virtual reality in surgical training, it is im-
perative that the guidance process is automated. In this paper, we
discuss a method of providing one aspect of performance guidance:
advice on the steps of a surgery or procedural guidance. We manu-
ally segment the surgical trajectory of an expert surgeon into steps
and present them one at a time to guide trainees through a surgical
procedure. We show, using a randomized controlled trial, that this
form of guidance is effective in moving trainee behavior towards an
expert ideal.

To support practice variation and different surgical styles adopted
by experts, separate guidance templates have to be generated. To
enable this, we introduce a method of automatically segmenting a
surgical trajectory into steps. We propose a pre-processing step that
uses domain knowledge specific to our application to reduce the
solution space. We show how this can be incorporated into exist-
ing trajectory segmentation methods, as well as a greedy approach
that we propose. We compare this segmentation method to existing
techniques and show that it is accurate and efficient.

Keywords: Virtual Reality; Surgery Simulation; Automated Guid-
ance

Concepts: •Applied computing→ Interactive learning environ-
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1 Introduction

Virtual reality (VR) training environments are gaining popularity
as training tools for skills development in a number of professions.
They are particularly useful in fields such as surgery, where train-
ing resources are limited, participant numbers are high, and failure
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could be catastrophic. In simulation based surgical training, perfor-
mance feedback has been identified as an integral component [Ste-
fanidis 2010]. However, the lack of automated feedback has thus far
necessitated the need for expert supervision during training, imped-
ing the more wide-spread use of VR simulation as a self-directed
platform for surgical training.

Most existing automated feedback systems provide summative
feedback at the end of a procedure [Mackel et al. 2006; Sewell et al.
2008]. Although this is a valid form of feedback that promotes
skill acquisition, it does not fully emulate the advice expert sur-
geons provide. Some recent works have addressed the issue of pro-
viding real-time guidance on technical performance to overcome
this drawback [Rhienmora et al. 2011; Wijewickrema et al. 2015].
However, motor (technical) skills are just one aspect of the skills
that have to be mastered to achieve expertise in surgery. Thus, pro-
cedural guidance (where to drill and when) should also be provided.

‘Path following’, where visual cues guide the trainee on the steps
pertaining to a surgical procedure, has been identified as a way of
providing procedural guidance. Visual guidance of this form was
presented to the trainee in a virtual laparoscopic simulator using
a spline that indicated the path to follow [Passmore et al. 2001].
Botden et al. provided a similar form of guidance using visual
cues such as arrows to train a suturing task [Botden et al. 2009].
Rhienmora et al. presented the trainee with a ghost drill they had to
follow in a dental surgery simulation [Rhienmora et al. 2011]. Al-
though this is more appropriate for open surgery, it does not allow
the trainees to drill at their own pace. Step-by-step guidance is an
alternative presentation of procedural guidance that overcomes this
limitation.

One way to provide step-by-step guidance of this form is to seg-
ment procedures performed by expert surgeons and present it to the
trainee one step at a time. However, different surgeons have differ-
ent styles of surgery, often reflected by how they handle the drill
and the sequence in which they perform non-critical steps of a pro-
cedure. Therefore, it is important that trainees are given the oppor-
tunity to learn operations based on a ‘template’ of the style of their
preferred expert. Furthermore, as practice variability is an impor-
tant aspect of gaining expertise [Stefanidis 2010], guidance should
be provided on how to perform a procedure on different specimens.
However, due to anatomical variations of specimens, a procedure
performed on one specimen cannot be used as a template for an-
other. Thus, it is critical that the trajectory of an expert procedure
is segmented automatically to develop guidance templates.

Segmentation of trajectories is essentially a problem of unsuper-
vised clustering of sequential data. Some of the existing litera-
ture on unsupervised clustering are application-oriented [Yan et al.
2011; Yoon and Shahabi 2008]. These methods typically use do-
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main knowledge to obtain optimal results, and as such are diffi-
cult to apply to other application domains. General segmentation
methods, which do not utilize domain-specific knowledge, usually
optimize a criterion function to generate segments of a trajectory
[Anagnostopoulos et al. 2006; Leiva and Vidal 2013]. These algo-
rithms are generally applicable to any domain, and can more easily
be extended to incorporate domain-specific knowledge if required.

Here, we propose a presentation technique for procedural guidance
that highlights areas to be drilled one at a time. We show through a
user trial that this form of procedural guidance can be successfully
used in training a surgical procedure. We further introduce an au-
tomatic trajectory segmentation method that removes the need for
manual identification of steps. This work was based on a haptic
enabled VR temporal bone (ear) surgery simulator (see figure 1).

Figure 1: The VR temporal bone surgery simulator

2 Presentation of Procedural Guidance

2.1 Methods

The procedure under consideration for the provision of procedu-
ral guidance was a simple temporal bone surgery: cortical mas-
toidectomy. A surgical trajectory of an expert surgeon performing
a cortical mastoidectomy was recorded by the simulator and man-
ually segmented into logical steps. A set of points was considered
to be a segment if 1) the points are clustered in the same region
of the temporal bone, 2) the direction of movement of the trajec-
tory is similar, 3) there are no large gaps between two consecutive
drilled areas, and 4) the size of the cluster is appropriate for the
area being drilled. The segmentation was performed manually and
the resulting segments were approved by two expert surgeons. Al-
gorithms were developed so that each step is highlighted on the
temporal bone to indicate the area to be drilled and the next step is
only shown once 75% or more of the current step has been drilled
(see figure 2).

2.2 Experimental Results

To evaluate the effectiveness of this form of procedural guidance,
we conducted a randomized controlled trial of 20 medical students
performing cortical mastoidectomy on a VR simulator. Participants
were first shown a video tutorial on how to perform the procedure
and randomized into one of two groups: intervention and control.
The intervention group received step-by-step procedural guidance
(along with feedback on technical aspects of the procedure) during
surgery while the control group did not. Both groups performed
the operation twice. In the first run, the intervention group received

Figure 2: Presentation of procedural guidance

procedural guidance throughout the procedure. In the second run,
they were asked to turn the guidance on when they required it. The
dissections were recorded by the simulator for all procedures.

The quality of the dissections were determined by a blinded expert
surgeon in a post-experiment analysis using the validated Welling
scale [Butler and Wiet 2007]. The quality of dissection is a discrete
score in the range [0, 35], with 35 being the best score. The scores
between the two groups were analyzed for each run. An increase
in both the mean and median differences in dissection quality was
observed in the intervention group when compared to the control
group. The differences between groups were determined to be sig-
nificant through Kruskal-Wallis tests. A confidence interval of 95%
was considered when testing for significance (see table 1).

Table 1: Percentage increase in the dissection score of the inter-
vention group when compared to the control group.

Run Mean Median Significance Usage
Difference Difference

1 72.09% 70.27% p < 0.001 100.00%
2 50.00% 62.86% p = 0.002 60.40%

3 Automatic Trajectory Segmentation

3.1 Methods

The algorithm discussed here comprises two steps. The first step in-
corporates domain-specific information to pre-process the surgical
trajectory and reduce the solution space. The second step is a gen-
eral trajectory segmentation algorithm that uses a greedy approach.
These two algorithms can be used together or with other similar
algorithms.

3.1.1 Pre-Processing using Domain Knowledge

Sampling: To lighten the computational burden of segmentation,
the probability of consecutive data points that are close together be-
ing detected as decision points (in the next step) should be reduced.
We overcome this by defining a sampling rate s =

⌈
nT
nr

⌉
, where,

nT is the number of points in the complete trajectory, and nr is the
recommended number of points for a given procedure. nr is deter-
mined empirically as the number of points in the trajectory of an
expert surgeon familiar with the simulator.

Identifying decision points: The methods used here are designed
to mimic the reasoning used in manual segmentation of surgical tra-



jectories (see section 2.1). First, if the distance between two points
is larger than a threshold, the first of the two points is selected as
a decision point. The distance threshold td is calculated as the pthd
percentile of all the distance differences for a given trajectory.

Since trajectory segments should be in the same general direction,
points at which there is a sharp change in direction should be con-
sidered as a decision point. To detect changes in direction, we use
a k-metric based (k-cos) algorithm [Hall et al. 2008] with an angle
threshold of ttheta and k = 1..3. In a surgical trajectory, these
turning points are also typically associated with lower speed. To
accommodate this, and to remove outliers detected by the turning
point detection method, we only select those turning points at which
the speed is less than a given threshold ts, selected as the pths per-
centile of speeds between all pairs of consecutive points in a trajec-
tory.

These sets of points detected to preserve distance and direction in
a cluster are combined to form the complete set of decision points.
The use of percentiles ensures that the thresholds adapt to the char-
acteristics of each trajectory to capture the nuances of different sur-
gical styles. The percentile values pd and ps are chosen empirically.

Merging small segments: Even after the sampling, some decision
points that are close together may be detected in the previous step.
To avoid this, all segments smaller than a given number of points
nsmall are considered for merging. For these segments, the clos-
est neighbor of its end points is considered. If the closest neighbor
is at a distance less than a given inclusion threshold tD , the two
segments are combined. To ensure that tD is adaptable to different
styles of surgery, it is calculated as the pthD percentile of all distances
between two consecutive points in the trajectory under considera-
tion. This condition is used to avoid merging segments that are too
far apart and thus should be separate regardless of size.

3.1.2 Segmentation Algorithm

The proposed trajectory segmentation algorithm uses a greedy ap-
proach to minimize the intra-cluster distance at each step. By con-
sidering only the decision points as possible points at which a split
can occur, this algorithm not only decreases the computation time,
but also reduces the probability of points that clearly cannot be split
points being detected as local minima.

The algorithm uses pre-defined minimum and maximum segment
sizes (smin and smax respectively) as constraints to perform tra-
jectory segmentations. We recursively split the trajectory into two
segments at a time. At each level, we find the possible decision
points that would form a valid split. For a valid split to occur, the
first segment resulting from the current split should have a num-
ber of points within the range [smin, smax]. The second segment
should be at least smin in size (as it could either be one segment or
split into multiple segments in the subsequent steps).

For all possible split pointsDpos, we calculate the sum of quadratic
error (SQE) J =

∑c
j=1

∑
x∈Cj

||x−µj ||2, where, c is the number

of clusters and µj is the mean of the jth clusterCj [Leiva and Vidal
2013]. Now we find the set of all possible split points Dsplit with
the least values of SQE. The possible splits are calculated as those
that are closest to the value of the minimum SQE. The ‘closeness’
threshold is defined as a fraction (ip) of the difference between the
minimum and maximum SQE values. Thus, the points Dsplit are
the splits that minimize the SQE. For all these points, the first seg-
ment caused by the split is removed from the trajectory, and the
above process is continued recursively until no splits can be found.

If no possible split points are available, it could mean one of two
things. If the size of the trajectory at this level is within the given

size range [smin, smax], then the sequence of prior splits that led
to the current level is valid. If not, this sequence of splits is not
valid. As the lower limit of the range has already been checked
when calculating the possible splits, only the upper limit has to be
checked at this point. Thus, if the number of trajectory points n ≤
smax, the split sequence is accepted. If not, it is rejected.

The valid split sequences thus calculated are then tested globally
(for the complete trajectory) to find the one with the best segmenta-
tion/clustering quality. The accuracy of a clustering was determined
using the Davies-Bouldin (DB) index [Davies and Bouldin 1979].
The DB index is an internal evaluation scheme that is defined as a
function of the ratio of the intra-cluster distance, to the inter-cluster
distance. As such, a lower value of the DB index indicates a better
clustering.

3.2 Experimental Results

Eight consulting ENT surgeons performed 17 procedures of
cochlear implant surgery on one specimen in the VR temporal bone
surgery simulator. Their surgical trajectories were saved by the sim-
ulator.

Parameter values that drive the pre-processing step were selected
empirically, and through consultation with expert surgeons. The
recommended number of trajectory points was selected as nr =
8000. The k-cos angle threshold was set to tθ = 8π

9
. Speed and

distance percentiles for the detection of decision points were se-
lected to be ps = 5% and pd = 95% respectively. A distance
percentile of pD = 99.9% was used to avoid combining segments
that are too far apart. The size of segments to be merged was set to
nsmall = 5. The minimum and maximum segment sizes were de-
fined as smin = 80 and smax = 1300, based on manual segmen-
tations. The experiments were conducted on a 2.5GHz computer
with an 8-core processor and 16GB of RAM running Windows 7
Professional (64 bit). The algorithms were implemented and run on
Matlab 2016a.

The proposed algorithm was compared with two existing segmen-
tation algorithms: mutual nearest neighbour [Gowda and Krishna
1978] and warped k-means [Leiva and Vidal 2013]. The original
algorithms that use all trajectory points (MNN-All and WKM-All),
along with modified versions constrained to split segments only at
decision points (MNN-Dec and WKM-Dec), were compared. The
mean (and median) DB indices and processing time of the 5 algo-
rithms on the 17 surgical procedures were calculated. Out of the
algorithms tested, the proposed method performed best in terms of
clustering/segmentation quality. With respect to processing time,
it was only better than the original warped k-means algorithm (see
table 2).

Table 2: Clustering quality and processing times of the different
methods. The best values are shown in bold.

Method DB Index Processing Time (s)
Mean Median Mean Median

Proposed 2.09 1.94 33.53 12.71
MNN-All 2.71 2.75 4.01 2.54
MNN-Dec 2.53 2.43 0.30 0.30
WKM-All 2.44 2.43 483.28 273.05
WKM-Dec 2.29 2.04 6.27 5.93

The results show that incorporating the pre-processing method to
detect decision points into existing algorithms not only reduced
their processing time, but also increased their accuracy. It indi-
cates that the pre-processing algorithm was successful in detecting
the most likely points for splitting the trajectory.



As trajectory segmentation can be performed off-line to create guid-
ance templates, accuracy (or segmentation/clustering quality) is the
more important factor in our application. Thus, we conducted a
further analysis to compare the differences in segmentation quality.
Kruskal-Wallis tests showed that the differences in the DB indices
were significant at a 95% level of confidence (see table 3).

Table 3: Decrease in the DB index of the proposed method when
compared to each of the other methods

Method Mean Median Significance
Difference Difference

MNN-All 25.96% 34.72% p < 0.001
MNN-Dec 19.33% 22.32% p = 0.024
WKM-All 15.79% 22.59% p = 0.001
WKM-Dec 9.29% 5.17% p = 0.008

4 Conclusions

In this paper we introduced a method of presenting automated step-
by-step procedural guidance to trainees performing surgery on vir-
tual reality simulation platforms. We showed using a randomized
controlled trial of medical students performing a temporal bone sur-
gical procedure, that this form of guidance is effective in improving
trainee behavior.

We also proposed an algorithm for automatically segmenting a sur-
gical trajectory to develop guidance templates using which proce-
dural guidance can be provided. This is important because different
guidance templates are required to reflect different surgical styles
and to support practice variation. This process consists of two
stages: pre-processing and trajectory segmentation, which can be
used together or in combination with other relevant methods.

Experimental results showed that incorporating the pre-processing
algorithm into trajectory segmentation methods not only reduced
their processing time, but improved their segmentation quality as
well. This is due to the reduction in the solution space to the most
likely points at which the trajectory should be segmented, reducing
the probability of local minima being detected as split points. Re-
sults further showed that the proposed trajectory segmentation al-
gorithm performed well with respect to segmentation quality. This
algorithm has the added advantage of being able to detect segments
within a given size range. Although the processing time was higher
than most methods it was compared with, it was still low (about
33 seconds on average). In our application, this is acceptable as
trajectory segmentation can be performed off-line, and as such pro-
cessing time is a secondary concern to the segmentation quality.

Note that the user study discussed here only tested for the effective-
ness of the guidance technique in changing user behavior and did
not test for retention of knowledge. In future work, further studies
will be conducted to investigate how skills learned through auto-
mated guidance is retained. Expert data will be collected on differ-
ent specimens and the methods discussed will be applied to develop
guidance templates for those as well. The segmentations thus gen-
erated will be qualitatively evaluated by expert surgeons.
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