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Abstract. Constraint based mining finds all itemsets that satisfy a set
of predicates. Many constraints can be categorised as being either mono-
tone or antimonotone. Dualminer was the first algorithm that could
utilise both classes of constraint simultaneously to prune the search
space. In this paper, we present two parallel versions of DualMiner.
The ParaDualMiner with Simultaneous Pruning efficiently distributes
the task of expensive predicate checking among processors with minimum
communication overhead. The ParaDualMiner with Random Polling makes
further improvements by employing a dynamic subalgebra partitioning
scheme and a better communication mechanism. Our experimental re-
sults indicate that both algorithms exhibit excellent scalability.

1 Introduction

Data mining in the presence of constraints is an important problem. It can pro-
vide answers to questions such as “find all sets of grocery items that occur more
than 100 times in the transaction database and the maximum price of the items
in each of those sets is greater than 10 dollars”. To state our problem formally,
we denote an item as i. A group of items is called an itemset, denoted as S. The
list of items that can exist in our database is denoted as I = {i1, i2, . . . , in},
S ⊆ I . The constraints are a set of predicates {P1, P2, . . . , Pn} that have to be
satisfied by an itemset S. Constraint based mining finds all sets in the powersets
of I that satisfy P1 ∧ P2 ∧ . . . ∧ Pn.

Many constraints can be categorised into being either monotone or anti-
monotone constraints [8, 10]. There exist many algorithms that can only use
one of them to prune the search space. There are also algorithms that can mine
itemsets using these two constraint categories in a sequential fashion (e.g. [13]).
DualMiner was the first algorithm able to interleave both classes of constraint
simultaneously during mining [4]. Nevertheless, the task of finding itemsets that
satisfy both classes of constraint is still time consuming. High performance com-
putation offers a potential solution to this problem, provided that an efficient
parallel version of DualMiner can be constructed.
Contributions: In this paper, we introduce two new parallel algorithms which
extend the original serial DualMiner algorithm [4]. We have implemented our
algorithms on a Compaq Alpha Server SC machine and they both show excellent
scalability. To the best of our knowledge, our algorithms are the first parallel



algorithms that can perform constraint-based mining using both monotone and
antimonotone constraints simultaneously.

2 Preliminaries

We now provide a little background on the original DualMiner algorithm [4].
Formally, given itemsets M ,J and S, a constraint is antimonotone if

∀S, J : ((J ⊆ S ⊆ M) ∧ P (S)) ⇒ P (J)

One of the most widely cited antimonotone constraints is support(S) > c. A
constraint is monotone if

∀S, J : ((S ⊆ J ⊆ M) ∧ Q(S)) ⇒ Q(J)

Monotone constraints are the opposite of antimonotone constraints. Therefore, a
corresponding example of a monotone constraint is support(S) < d. A conjunc-
tion of antimonotone predicates is antimonotone and a conjunction of monotone
predicates is monotone [4]. Therefore, many itemset mining problems involving
multiple constraints can be reduced to looking for all itemsets that satisfy a
predicate of the form P (S) ∧ Q(S). Even though some constraints are not ex-
actly monotone or antimonotone constraints, previous research indicates that
they can be approximated to be either monotone or antimonotone if some as-
sumptions are made [10]. According to previous work, the search space of all
itemsets forms a lattice. Given a set I with n items, the number of elements in
the lattice is 2n. This is equal to the number of elements in the powerset of I ,
which is denoted as 2n. By convention, the biggest itemset is at the bottom of
this lattice and the smallest itemset will always be at the top. Beside that, our
search space also forms a Boolean algebra with maximal element B and minimal
element T . It has the following properties (i)X ∈ Γ (ii) B =

⋃
X which is the

bottom element of Γ (iii) T =
⋂

X which is the top element of Γ (iv) for any
A ∈ Γ , A = B\A. A subalgebra is a collection of elements ⊆ 2n closed under

⋂

and
⋃

. The top and bottom element of the algebra is sufficient to represent all
the itemsets in between them. If the top and bottom elements satisfy both con-
straints, the monotone and antimonotone properties guarantee that all itemsets
in between them will satisfy both constraints. A good subalgebra is a subalge-
bra which has top and bottom elements that satisfy both the antimonotone and
monotone constraints.

Overview of DualMiner DualMiner builds a dynamic binary tree when search-
ing for all good subalgebras. A tree node represents a subalgebra, but not neces-
sarily a good subalgebra. Each tree node τ consists of three item lists which are
(i) IN(τ) representing all the items that must be in the subalgebra and the top
element of current subalgebra, T , (ii) CHILD(τ) representing all the items that
have not been apportioned between IN(τ) and OUT (τ) and (iii) OUT (τ) repre-
senting all the items that cannot be contained in the current subalgebra. Because



our search space forms a Boolean algebra, OUT represents the bottom element
of the current subalgebra, B. Note that OUT (τ) = {IN(τ) ∪ CHILD(τ)}.

When DualMiner starts, it will create a root node with IN(α) and OUT (α)
empty . It will start checking the top element of the current subalgebra first.
If the top element does not satisfy the antimonotone constraint, every itemset
below it will not satisfy the constraint too. Therefore, we can eliminate the
subalgebra. If it satisfies the antimonotone constraint, DualMiner will check all
the itemsets below T in the subalgebra using the antimonotone constraint. Each
is of the form IN ∪ {X}, where X is an item from the CHILD item list. If
all itemsets IN ∪ {X} satisfy the constraint, no item list will be altered. If an
itemset does not satisfy the constraint, X will be put into OUT item list. This
effectively eliminates the region that contains that item.

Next, the algorithm will apply the monotone constraint on B of the current
subalgebra. If the maximal itemset fails, the algorithm eliminates the current
subalgebra immediately. If it does not fail, DualMiner will start checking all the
itemsets one level above the current bottom itemset using the monotone con-
straint. Each is of the form OUT ∪ {X}, where X is an item from the CHILD

item list. If all itemsets OUT ∪ {X} satisfy the constraint, no item list will be
altered. If an itemset does not satisfy the constraint, X will be put into the IN

item list. This eliminates the region that does not contain that item.
The pruning process will continue until no pruning can be done. At the end

of the pruning phase, the top itemset must satisfy the antimonotone constraint
and the bottom itemset must satisfy the monotone constraint. If the top itemset
also satisfies the monotone constraint and the bottom itemset also satisfies the
antimonotone constraint, we have found one good subalgebra. If this is not the
case, DualMiner will partition the subalgebra into two halves. This is done by
firstly creating two child tree nodes and picking an item from the CHILD

itemset and inserting it into the IN of one child and OUT of another child. The
algorithm will mark the current parent node as visited and proceed to the child
nodes. The process is repeated until all nodes are exhausted.

3 Parallel DualMiner

DualMiner does not prescribe specific constraints that have to be used. The
antimonotone constraint and the monotone constraint are two types of predicates
over an itemset or oracle functions that return true or false. To simplify our
implementation, we will use support(S) > C as our antimonotone constraint
and support(S) < D as our monotone constraint. C ≤ D. We represent the
database with a series of bit vectors. Each bit vector represents an item in the
database. The support count of an itemset can be found by performing a bitwise
AND operation on the bit vector of each item in the itemset. This approach has
been used by many other algorithms[5, 9]. We represent the IN , CHILD and
OUT itemlist in each node as three bit vectors. Each item is represented as 1
bit in each of the three bit vectors. The position of the bit will indicate the item
id of the item.



ParaDualMiner with Simultaneous Pruning In the original DualMiner pa-
per, it was observed that the most expensive operation in any constraint based
mining algorithm is the oracle function. Therefore, we can achieve great perfor-
mance gain if we can distribute the call to the oracle function evenly among differ-
ent processors. We notice that after DualMiner verifies that the top element of a
subalgebra satisfies the antimonotone constraint, it will check whether all the ele-
ments one level below the top element satisfies the antimonotone constraint. Each
of them is of the form IN

⋃
{X}, where X is any item from the CHILD item-

set. Since each oracle function call is independent, it is possible to partition the
CHILD item list and perform the oracle function call simultaneously. e.g. Given
the following transaction database: Transaction 1={A,B,C,D}, Transaction 2 =
{A,B,C} and suppose our constraints are support(S) > 1 and support(S) < 3,
the execution of the algorithm is illustrated in figure 1. Before partitioning the
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Fig. 1. ParaDualMiner with Simultaneous Pruning

CHILD item list, all the processors will have the same IN ,CHILD and OUT

item list. After the parallel algorithm distributes the antimonotone constraint
checking among different processors, any itemset of the form IN

⋃
{X} such

as {D}, that does not satisfy the antimonotone constraint, will lead to an item
being inserted into the OUT item list in order to prune away that part of the
search space. Therefore, at the end of the simultaneous antimonotone checking,
the item lists that will be altered are the CHILD and OUT item list.

Before proceeding, we must merge the search space that has not been pruned
away using the antimonotone constraint. It only has to perform a bitwise boolean
OR operation on the CHILD and OUT item lists of all processors. This will
give us the global result based on the individual processor pruning process. This



simplification is the direct result of us choosing the bit vector as our item list
representation. The merging operation can be done between all processors using
the MPI Allreduce function, with boolean OR as the operator.

A similar process can be applied when we are pruning the search space us-
ing the monotone constraint. The difference is the algorithm is partitioning and
merging the IN and CHILD item lists instead of the OUT and CHILD item-
lists. The partitioning operation is entirely a local operation.There is no message
passing involved. Each processor will check the number of items in the CHILD

item list, the number of processors and its own rank to consider which part of
the CHILD itemlist to be processed. If it can divide the number of items evenly,
each processor will perform an equal amount of oracle calls. However, this will
happen only if the number of processors is a perfect multiple of the number of
items in the CHILD item list. If the algorithm cannot divide the CHILD item
list evenly, the algorithm will distribute the residual evenly to achieve optimal
load balancing. Therefore, the maximum idle time for processors each time the
algorithm distributes the task of oracle function call will be Toracle.

ParaDualMiner with Random Polling There are a number of parallel fre-
quent pattern miners that use the concept of candidate partitioning and mi-
gration to distribute task among processors (e.g. [7, 1]). We can see similar
behaviour in DualMiner. Whenever DualMiner cannot perform any pruning on
the current subalgebra using both constraints, DualMiner will split the current
subalgebra into two halves by splitting the tree node. This node splitting oper-
ation is essentially a divide-and-conquer strategy. No region of the search space
has been eliminated in the process. Therefore, the algorithm permits an arbi-
trary amount splitting of subalgebras subject to the condition that they are to
be evaluated later. The number of splits permitted is equal to the number of
items in the CHILD item list. This intuition gives us the simplest form of a
parallel subalgebra partitioning algorithm.

In the 2 processor case, the original search space is partitioned into two
subalgebras. Both processors can turn off 1 bit in the CHILD. One puts it in the
IN item list by turning on the similar bit in the IN bit vector. Another processor
will put it in the OUT item list by turning on the similar bit. The two processors
search two disjoint search spaces without any need for communication. After
the original algebra has been partitioned, each processor will simultaneously run
Dualminer locally to find itemsets that satisfy both constraints. Since our search
space can be partitioned up to the number of items in the CHILD itemlist, this
strategy can be applied to cases with more than two processors. The number
of processors that are needed must be 2n, where n is the number of times the
splitting operation has been performed. The partitioning operation is a local
process. Each processor will only process one of the subalgebras according to its
own rank. There is no exchange of messages.

This algorithm will only achieve perfect load balancing if the two nodes
contain equal amounts of work. This is unlikely because it is unlikely that the
search space of each processor is even. One of the processors may terminate



earlier than the rest of processors. Without any dynamic load balancing, the
processor will remain idle throughout the rest of the execution time. This leads
to poor load balancing and longer execution time. To overcome this problem,
we can view a node as a job parcel. Instead of letting a free processor stay idle
throughout the execution time, the new algorithm can delegate one of the nodes
to an idle processor to obtain better load balancing.

There are two ways to initiate task transfer between processors. They are
sender-initiated and receiver-initiated methods[6]. Our study indicated that the
receiver-initiated scheme outperformed the sender-initiated scheme. The reason
for this is that the granularity of time when a processor is idle in the receiver-
initiated scheme is large. DualMiner spends most of its time in the pruning
process. Therefore, the time a processor takes before it splits a node can be
very long. If a processor terminates very early at the start of its own prun-
ing process, it has to passively wait for another processor splits a node and
sends it. This greatly decreases the work done per time unit which leads to
poor speedup. Instead of being passive, the idle processor should poll for a job
from a busy processor. DualMiner can split a node anywhere, provided that
we do the splitting and job distribution properly. e.g. Given the transaction
database Transaction 1 = {A,B,C,D}, Tranaction 2= {C,D} and the constraint
is support(S) > 1 and support(S) < 3,the set of itemsets that satisfies both
constraints is {{C}, {D}, {C, D}}.

The original search space will firstly be split into two subalgebras as shown
in figure 2. Since itemset {A} is infrequent, processor one that processes the
left node will finish earlier. Processor two that processes right node could be
still within one of the pruning functions. Instead of staying idle, processor one
should then poll for a job from processor two.

Suppose processor two is pruning the search space using the antimonotone
constraint. This implies that the top element of the current subalgebra such as
{} has already satisfied the antimonotone constraint. Otherwise, this subalgebra
would have been eliminated. Therefore, while it is evaluating all the elements
one level below the top element, it can check for an incoming message from pro-
cessor one. Suppose it finds that processor one is free after evaluating itemset
{B}, it can split the subalgebra and send it to processor one as shown in figure
2. In this case, the subalgebra is further split into two smaller subalgebras and
can be distributed between these two processors. When the algorithm is prun-
ing the search space using the antimonotone constraint, the IN itemset must
have already satisfied the antimonotone constraint. Therefore, in this example,
if processor two continues pruning using the antimonotone constraint, processor
two should pick the right node. Likewise, if the algorithm is pruning the search
space using monotone constraint, the sender processor should pick the left node.
Suppose that processor two has already split a node and there is already a node
or subalgebra that is yet to be processed. The algorithm should send that node
to the idle processor instead of splitting the current one that it is working on.
This is because the size of the subalgebra that is yet to be processed is equal to
or greater than the size of the current subalgebra, if we are using a depth first
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Fig. 2. Subalgebra Partitioning with Random Polling

or breadth first traversal strategy .

There are mainly two approaches to extend this algorithm to multiple pro-
cessors. They are categorised into decentralised and centralised schemes [15].
To simplify our implementation, we have adapted the master-slave scheme. The
master processor acts as an agent between all the slave processors. Each slave
processor will work on the subalgebras that are assigned to it simultaneously.
However, it will anticipate an incoming message from the master. Whenever a
slave processor runs out of jobs locally, it will send a message to the master. The
master processor will then poll for a job from a busy processor. Therefore the
master has to know which processors are busy and which are idle.

For this purpose, we keep a list of processors that are busy and idle. The list
can be efficiently represented as a bit vector. The bit position of the vector will
then be the rank of the processor. A busy processor will be denoted as 1 in the
bit vector. A free processor will be denoted as 0 in the bit vector. Whenever the
master receives a message from the processor X , it will initialise bit X to zero.
It will then select a processor to poll for job. There are various way to select
a processor. A random selection algorithm has been found to work very well in
many cases. Also, there is previous work that analyses the complexity of this
kind of random algorithm [11, 12, 11]. Therefore, we have used this algorithm
in our implementation. The master will randomly generate a number between 0
and n− 1, where n is the number of processors. It will then send a free message
to the selected processor to poll for a job. If the selected slave processor does not
have any job, it will send a free message to the master processor. The master
processor will then mark it as free and put it into a free CPU queue. It will
continue polling until a job message is replied to it. It will then send the job
to a free processor. The slave processors can detect incoming messages using
the MPI Iprobe function. The termination condition is when the number of free
processors in the list is equal to the number of processors available. This implies
that there is no outstanding node to be processed. The master processor will



then send a termination message to all the slave processors.

4 Experiments

We implemented both serial and parallel versions of DualMiner on a 128-processor
Unix Cluster.The specification of the machine is 1 Terabyte of shared file stor-
age, 128 Alpha EV68’s at 833 MHz processor, a Quadrics interconnect which
has 200 Megabyte/sec bandwidth and 6 milliseconds latency and 64 Gigabytes
of memory. We used databases generated from the IBM Quest Synthetic data
generator. The datasets generated from it are used in various papers [4, 2, 14].
The number of transactions is 10000. The dimension of the dataset is 100000,
which means maximum number of distinct items in the transaction database is
100000. The length of a transaction is determined by a Poisson distribution with
a parameter, average length. The average length of transactions is 10. We also
scaled up the dimension of dataset by doubling the average length of transac-
tions. This is because the computing resources demanded is significantly higher
if the dataset is dense [3]. For our purpose, we define a dataset with an average
transaction length of 10 to be sparse and one with an average length of 20 to be
dense.

In the Random Polling version of ParaDualMiner, the master node only acts
as an agent between all the slave processors. It does not run the DualMiner like
the slave processors. At the start of algorithm, the original algebra is partitioned
into 2n part. This means this version of ParaDualMiner can only accept 2n

processors for the slaves and one additional processor for the master. Therefore,
we studied our algorithm with 2,3,5,9,17 processors.
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Results As shown in figure 3 and figure 4, the execution time of ParaDualMiner
with Random Polling is almost identical to the serial version of DualMiner even
though it is using 2 processors. The reason is that the master in Random ParaD-
ualMiner does not perform any task, besides acting as an agent between all the
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slave processors. Therefore, in the 2 processors case, there is only one processor
working on the original algebra. When there are 3 processors, there will be two
slave processors that work on the subalgebra distributed to them. Since the mas-
ter will always poll for job from the busy processor and it is always possible to
split work, the load balancing is excellent. Beside that, every communication is
point to point communication and the message is relatively small. This leads to
almost perfectly linear speedup after 2 processors. We also observe that there is
super linear speedup in some cases. This is due to better memory usage. When-
ever a processor has relatively more nodes to process, the nodes will migrate to
other processors with less work load. This distributes the memory requirement
among all the processors.

From figure 3 and figure 4, we can see that ParaDualMiner with Simultane-
ous Pruning is not as scalable as Random ParaDualMiner. The reason is that
whenever there is n processors, there will be exactly n processors that will split
the most computational intensive part of the algorithm which is the oracle func-
tion call. However, the algorithm will only achieve perfect load balancing if the
number of items in the CHILD itemlist is a perfect multiple of the number
of processors. As the number of processors increases, the chances of getting a
perfect multiple of the number of processors decreases. This implies the chance
of having some processors stay idle for one oracle function call becomes larger.
This may cause many processors to become idle too often, which impairs the
parallelism that can be achieved by this algorithm. Also, the algorithm only par-
allelises the oracle function call. Furthermore, there is a need to have all-to-all
communication to merge all the result of pruning. This is much more expensive
than point-to-point communication in ParaDualMiner with Random Polling.

5 Conclusion

We have proposed two parallel algorithms for mining itemsets that must sat-
isfy a conjunction of antimonotone and monotone constraints. There are many
serial or parallel algorithms that take advantage of one of these constraints.
However, both of our parallel algorithms are the first parallel algorithms that



take advantage of both constraints constraints simultaneously to perform con-
straint based mining. Both algorithms demonstrate excellent scalability. This is
backed by our experimental result. We are currently investigating the scalability
of both algorithms using hundreds of processors. Also, we are investigating how
ParaDualMiner performs if we use other type of constraints. We believe that
both parallel algorithms should perform well, because there is no reliance on the
underlying nature of the constraints.
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