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A Assumption about the Cell Dynamics

We only consider the distributions of P (i→ j) with zero mean, because before
doing any assignment we can subtract the superposition of o�sets over all pairs
of measurements, e.g., as proposed by Chowdhury et al. [2010].

Let P (i → j) be the probability that a cell moves between the locations xi
and xj , ~xi, ~xj ∈ Rn. This probability can be written as P (i→ j) = P (~θ)P (r2|~θ),
where ~θ is a n dimensional vector of angles between the line ~xi~xj and each of
the coordinate axes, and r2 is the squared Euclidean distance r2 = ‖~xi − ~xj‖2.

We do not restrict our algorithm to any speci�c distribution of ~θ, and we
estimate P (i→ j) only on the basis of the expected probability for the distance

P (i→ j) ∝
2πˆ

0

...

2πˆ

0

P (~θ)P (r2|~θ) dθ1... dθn. (16)

As de�ned by Gomez et al. [1998], the n dimensional power exponential
distribution with zero mean

P (~x) = k(n, β) |Σ|−
1
2 exp

{
−1

2

[
~xTΣ−1~x

]β}
, (17)

where k(n, β) is a parameter that determines the shape of the distribution, Σ is
a positive de�nite covariance matrix, and superscript T means the transpose of
a matrix, e.g., AT is a transpose of matrix A.

Here ~x ∈ Rn can be written as ~x = r · cos ~θ, and the expression ~xTΣ−1~x

= r2
[
(cos ~θ)TΣ−1(cos ~θ)

]
, where cos ~θ denotes the n dimensional vector with

elements cos θi. Σ is a positive de�nite matrix, hence Σ−1 is also a positive

de�nite and thus
[
(cos ~θ)TΣ−1(cos ~θ)

]
> 0 for all ~θ. We have that for all ~θ,

~xTΣ−1~x increases with r2 and thus expression 17 decreases with r2.
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B Two Round Assignment Approach

In this section, we repeat some of the text (de�nitions and problem statement)
from Section 2.2 for convenience of reading.

Suppose that at frame f we have a set of previously established tracks Tf =
{ti}, where a track ti has the location mf,i. Further, suppose that at frame
f + 1 we have a set of measurements Mf+1 = {mf+1,j}.

Consider assigning measurements in Mf+1 to tracks in Tf such that a mea-
surement m can be assigned to 0 or 1 tracks, and 0, 1, or 2 measurements can be
assigned to a track t. Fig. 4 (in main text) explains the choice of this assignment
setup with an example. We refer to an individual assignment of measurement
j to track i as a link i � j. The link i � j represents a potential cell o�set
from the location mf,i to the location mf+1,j . The length of a link i � j is the
Euclidean distance rij = ‖~xi − ~xj‖ between the locations of mi and mj . Where
unambiguous, we use term link to denote the length of a link.

We refer to a set of tracks, measurements, and established links between
them as an assignment. Our task is to �nd the assignment that corresponds to
the true set of cell events that occur between frames f and (f + 1). A popular
approach for solving this kind of task is based on Bayesian inference. Here the
likelihood of an assignment is expressed using the probabilities of individual
events implied by the assignment (Kirubarajan et al., 2001; Mori et al., 1992).
The four possible events in the assignment are as follows.

1. A one-to-one assignment i � j (e.g., link 1 � 1 in Figure 4) implies a
cell move between locations mi and mj , and we express the probability of
such an event as Pm · P (i→ j).

2. A two-to-one assignment i � j and i � k (e.g., links 2 � 2 and 2 � 3 in
Figure 4) implies the following set of events: {a cell division, a displace-
ment between mi and mj of the �rst daughter cell, and a displacement
between mi and mk of the second daughter cell}. We express the proba-
bility of this events as Ps·P (i→ j)·P (i→ k).

3. A zero-to-one assignment (e.g., point 3 at frame f in Figure 4) implies a
cell disappearance: death or a false negative error. The probability of this
event is Pdis = Pd + Pfn.

4. A one-to-zero assignment (e.g., point 4 at frame f + 1 in Figure 4) implies
a false positive error with the probability Pfp.

Under the independence assumption 2, we can express the likelihood of assign-
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ment A as

L(A) =

 ∏
a∈M(A)

PmP (ia → ja)


×

 ∏
b∈S(A)

PsP (ib → jb)P (ib → kb)


×

 ∏
c∈D(A)

Pdis

× [ ∏
d∈FP

Pfp

]
(18)

Here, M(A), S(A), D(A) and FP (A) are the sets of links and measurements
corresponding to a move, division (split), disappearance and false positive con-
�gurations respectively. At least one of the sets is non-empty. Now our prob-
lem is to �nd assignment A′ that maximizes expression 18, that is, �nd any
A′ = arg maxA L(A). In what follows, we shorten expressions like L(A) to L.

A straightforward solution of the problem (e.g., using integer programming)
requires values for parameters Ps, Pd, Pfp, and Pfn. In what follows, we pro-
pose an approach that delivers an approximate solution, but does not require
knowledge of the values for these parameters. The idea is to replace the four
parameters by a single parameter, called the gating distance (introduced later),
and then use our technique to estimate the value of this remaining parameter.
Our approach is based on a simpli�cation of the objective function (equation
18) in three steps.

B.1 Simpli�cation Step 1

The �rst simpli�cation step is based on the following lemma.

Lemma 3. Consider an arbitrary assignment, such that there exist links i �
j, i � l and unassigned track tk (Fig. 12A). If P (i → l) < 81 · P (k → l) then
removing the link i � l and adding the link k � l (Fig. 12B) increases the
likelihood of the assignment.1
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Fig. 12: (Fig. A1) Possible con�gurations of links between two measurements
and two tracks. Lemma 3 states that con�guration in the Figure B is
more likely.

1 Proofs of all lemmas are given in Appendix C.
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For a random pair of move probabilities P (i→ l) and P (k → l), it is likely
that P (i → l) < 81 · P (k → l), because the second term is multiplied by a
large coe�cient. The particular value here is not important (the number 81
arises from probabilities in Assumption 1, see the proof). Thus it is likely
that the second con�guration is favorable. As an approximation, we put that
there cannot be divisions, unless all tracks have been assigned a measurement.
Therefore, we propose to seek for an assignment that maximizes equation 18
using a two-round assignment approach, where, in each round, assigning two
measurements to one track is not permitted. We then �nd optimal assignments
in each round using modi�ed objective functions, presented below, and then
combine two found assignments into one (Fig. 13). The advantage of our two
round approach is that the divisions are eliminated from a single assignment
round. A division event occurs when there are measurements assigned to the
same track in both rounds.
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Fig. 13: (Fig. A2) Two-round assignment approach. In a single round two-to-
one links are not permitted, hence division events are eliminated from
a single round. However, a division event can occur when there are
measurements assigned to the same track in both rounds.

Let A′1 be an optimal assignment in the �rst round, and A′2 be an optimal
assignment in the second round. We approximate an optimal interframe assign-
ment by the assignment A′ that is derived by adding the links and measurements
from A′2 to A′1 (Fig. 13).

B.2 Simpli�cation Step 2

We now present the objective functions for the two assignment rounds. Recall
that the probability of a division event is Ps·P (i → j)·P (i → k). This can be

written as [PmPfpP (i→ j)]·
[
PsP (i→k)
PmPfp

]
. We use this decomposition to divide

the likelihood in equation 18 into two parts L = L′1L
′
2, where one part contains

one of the terms with P (i→ j) or P (i→ k) for each division.
Using this decomposition, in the �rst round we assign measurements inMf+1



B Two Round Assignment Approach 5

to tracks in Tf , and seek an assignment A′1 that maximizes

L′1 =

 ∏
a∈M ′

1

PmP (ia → ja)


×

 ∏
b∈D′

1

Pdis

 ∏
c∈FP ′

1

Pfp

 . (19)

Here M ′1, D
′
1, and FP

′
1 are the sets of links and measurements corresponding

to the selection of moves, disappearances and false positives in the �rst round.
Note that at least one of the sets is non-empty.

In the second round, we assign the measurements that are left unassigned
after the �rst round (i.e., measurements in FP ′1), to tracks in Tf . Here we seek
an assignment A′2 that maximizes

L′2 = min

1,
∏
a∈M ′

2

PsP (iv → kv)

PmPfp

 . (20)

Here the measurements or tracks that are left unassigned imply disappearance or
false positive events that have already been implied in the �rst round. Thus we
omit the corresponding terms in equation 20. M ′2 corresponds to the selection
of links. Note that if M ′2 is empty, L′2 = 1.

Lemma 4. Let A′1 and A′2 be optimal assignments in the �rst and the second
rounds respectively. If there is a link i � k in A′2, then there must be a link i
� l in A′1.

This lemma shows that in the �rst assignment round we select the links that
correspond to cell moves, and we also follow one of the daughters in divisions.
In the second round, from this set of links we select those that correspond to
cell divisions (we follow the second daughter).

B.3 Simpli�cation Step 3

Finally, we simplify both rounds further by introducing gating. Recall that
each link i � j has a corresponding probability P (i→ j). By gating we mean
that we prohibit making the links that have P (i → j) ≤ Pg, where Pg is some
probability gating threshold. We now want to express the gating threshold in

terms of other parameters. If we set Pg =
√

PmPfp

Ps
then the following property

holds.

Lemma 5. If the links that have P (i → j) ≤
√

PmPfp

Ps
are prohibited, then

the optimal assignment in the �rst or second round has the maximum possible
number of allowed links.
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Each link i � j has a length denoted rij , and under Assumption 3 about
cell dynamics, P (i→ j) is decreasing with r2ij . Hence there exists some distance

threshold Rg such that the links that have P (i→ j) ≤ Pg also have r2ij ≤ Rg and
vice versa. Threshold Rg is called the gating distance. Let Rg be a parameter of
our tracking problem. Then in both assignment rounds, we can follow the same
procedure: �rst, we prohibit the links where rij ≥ Rg; next, we only consider
assignments with the maximum number of possible links; �nally, we select an
assignment A′′ that maximizes

L′′ =
∏

a∈links

P (ia → ja), (21)

or, taking the log likelihood, minimizes assignment cost

C =
∑

a∈links

− lnP (ia → ja) =
∑

a∈links

c(ia → ja). (22)

Here, c(i → j) is the cost of link i � j. Under Assumption 3 about the cell
dynamics, we propose to set c(i→ j) = r2ij , where r

2
ij is the squared Euclidean

distance between locations mi and mj .
We have reduced our interframe association problem to the global nearest

neighbor assignment task. This problem can be solved using the polynomial
time algorithm of Munkres [1957]. After the simpli�cation the solution does
not require values of Ps, Pd, Pfp, and Pfn, that is we have replaced all the
parameters from the assignment task by a single parameter Rg.

C Proofs of Lemmas

Proof of Lemma 1. Equation 11 can be written as

Pf (r ≤ R) +
Nall

N̂t
(Pall(r ≤ R)− Pf (r ≤ R)) = 1. (23)

Let R̂tmax be the �rst point such that equation 23 holds, and let Rfmax be
the �rst point such that Pf (r ≤ Rfmax) = 1.

If R̂tmax ≥ Rfmax, then Pf (r ≤ R̂tmax) = 1. This implies Pall(r ≤ R̂tmax) =

Pf (r ≤ R̂tmax) = 1, and thus R̂tmax ≥ Rtmax.
If R̂tmax < Rfmax and R̂tmax < Rtmax then we have that Pf (r ≤ R̂tmax) <

1, hence Pall(r ≤ R̂tmax) > Pf (r ≤ R̂tmax). We also have that

Nall

N̂t
(Pall(r ≤ R̂tmax)− Pf (r ≤ R̂tmax)) >

Nall
Nt

(Pall(r ≤ R̂tmax)− Pf (r ≤ R̂tmax)). (24)

This implies N̂t < Nt which contradicts the initial statement.
We have that in all possible cases, if N̂t ≥ Nt then R̂tmax ≥ Rtmax.
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Proof of Lemma 2. Consider a false negative error. An error chain is a set of
false negative errors from the same track and from consecutive frames. The
chain must contain at least 2 errors, and two consecutive chains from one track
are considered to be one chain.

Let n be the total number of occurrences of all cells in all frames in a video.
Then the number of false negative errors in the video is nfn = Pfn · n (de�ned
by equation 5). If follows that the maximum number of chains for the video is
b0.5 · nfnc, and hence the probability of a false negative that starts a chain is
less than b0.5 · Pfnc. Using assumption 1 about the detection quality, we have
that the probability of a false negative starting a chain is less than 0.05.

Similar reasoning applies to false negative error. Here a chain is a set of false
positive errors that are linked by NENIA.

Proof of Lemma 3. Let A be an arbitrary assignment A, such that there exist
links i � j, i � l and unassigned track tk (Fig. 12A). Here the two links and
the track implies two events: a split of track ti, and a disappearance of track
tk, with the total probability of the two events Pdis · Ps · P (i→ j) · P (i→ l).

Let B be the assignment derived from A by removing the link i � l and
adding the link k � l (Fig. 12B). Here the division and disappearance events
are replaced by two move events with the total probability Pm · Pm · P (i →
j) · P (k → l).

We now compare Pdis · Ps · P (i → j) · P (i → l) and Pm · Pm · P (i →
j) · P (k → l), or equivalently, we compare P (i → l) and PmPm

PsPdis
P (k → l). Here

Pdis = Pd + Pfn. Under assumption 1 about cell event probabilities we have
Pfn ≤ 0.1 and Ps + Pd ≤ 0.1, hence Ps · Pdis ≤ (0.1 − Pd)(0.1 + Pd) ≤ 0.01.
Under the same assumption we also have Pm · Pm ≥ 0.81, thus PmPm

PsPdis
≥ 81.

We have that if P (i→ l) < 81 · P (k → l) then the likelihood of assignment
B is greater than the likelihood of assignment A.

Proof of Lemma 4. Let A′1 be an assignment that maximizes 19, and A′2 be an
assignment that maximizes 20, and there is a link i � k in A′2. Suppose, that
there is no measurement assigned to track ti in A

′.

Note that PsP (i→k)
PmPfp

≥ 1, otherwise link i � k would not be included in A′2.

This can be rewritten as P (i → k) >
PmPfp

Ps
. Under assumption 1 about cell

and detection events
PmPfp

Ps
>

PdisPfp

Pm
, hence P (i→ k) >

PdisPfp

Pm
.

We have that, in A′1, ti and mk were unassigned, but Pm · P (i → k) >
Pdis · Pfp. Hence adding a link i � k increases the likelihood of A′1. But A

′
1 is

an optimal assignment. We have a contradiction.

Proof of Lemma 5. In this proof we denote any probability P (i→ j) as P (link).
Consider an arbitrary assignment A1 in the �rst round after the gating. Sup-

pose there is a potential link that is allowed, but not included in A1. Including
the link to A1 implies adding a move event and removing disappearance and
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false positive events. Thus after the link inclusion the likelihood of A1 (equation

19) is multiplied by T11 = PmP (link)
PdisPfp

. Because the link is allowed, we have that

P (link) >
√

PmPfp

Ps
, hence T11 >

Pm

Pdis

√
Pm

PsPfp
, and, under assumption 1 about

cell event probabilities, T11 > 1. Hence adding the link increases the likelihood
of A1.

Now suppose that there are no allowed links to add to A1. Notice that
removing any of the links already in A1 can introduce two other allowed links
that can be added to A1. Removing one link and adding two other links implies

that the likelihood of A1 is multiplied by T12 = PmP (link1)P (link2)
PdisPfpP (link3) . Note that

T12 ≥ PmP (link1)P (link2)
PdisPfp

. For any allowed link we have that P (link) >
√

PmPfp

Ps
,

and thus T12 >
PmPmPfp

PdisPfpPs
, and under assumption 1 about cell event probabilities,

T12 > 1. Hence increasing the number of links increases the likelihood of A1.
Consider an arbitrary assignment A2 in the second assignment round after

the gating. Suppose there is a potential link that is allowed, but not included
in A2. Including the link to A2 implies that the likelihood of A2 (equation

20) is multiplied by T21 = PsP (link)
PmPfp

. Because the link is allowed, we have

that P (link) >
√

PmPfp

Ps
. This implies T21 >

√
Ps

PmPfp
. If

PmPfp

Ps
> 1 then

P (link) > 1 and there must be no allowed links, which contradicts the �rst

statement in this paragraph. If
PmPfp

Ps
≤ 1 then

√
Ps

PmPfp
≥ 1, hence T21 > 1,

and adding the link increases the likelihood of A2.
Now suppose that there are no allowed links to add to A2. Notice that

removing any of the links already in A2 can introduce two other allowed links
that can be added to A2. Removing one link and adding two other links implies

that the likelihood of A2 is multiplied by T22 = PsP (link1)P (link2)
PmPfpP (link1) . Note that

T22 ≥ PsP (link1)P (link2)
PmPfp

. For any allowed link we have that P (link) >
√

PmPfp

Ps
,

and thus T22 >
Ps

PmPfp

PmPfp

Ps
= 1. Hence increasing the number of link increases

the likelihood of A2.

D Median Filtering

In Section 2.3, we propose a method for reconstruction of the CDF of cell
displacements. When using this method, the reconstructed CDF in general
follows the true CDF curve, however, it is subject to noise (Fig. 14, left). Low
pass �ltering reduces the noise but introduces distortions of sharp edges in true
CDF curves. Therefore, we use median �ltering (Fig. 14, right).

Speci�cally, we use the �lter implemented in MATLAB function medfilt1().
This �ltering algorithm has only one parameter (the window length). We make
this algorithm parameter-free as follows. We set the parameter of the �lter-
ing to 2W , where W is the maximum distance between two consecutive peaks
(minimum or maximum) in the reconstructed CDF.
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Fig. 14: (Fig. A3) Reconstruction of CDF of cell displacements results in a noisy
curve (left). Median �ltering reduces the noise (right). The dotted line
represents the true CDF curve, the solid line is the reconstructed curve.

E Details for Real Cell Videos

The di�erences in cell dynamics in our real videos were found as follows. We
compared distributions of cell displacements between consecutive frames using
a Kolmogorov-Smirnov (KS) test with the null hypothesis that the distributions
are the same. Between each pair of videos, the null hypothesis was rejected at
5% signi�cance level.

The normalized distributions of cell displacements (with zero mean and unit
variance) also di�ered for all pairs of videos, except for pair hex.6 and square,
where the hypothesis was rejected at the 11% signi�cance level. This comparison
shows that the distributions of cell displacements vary in their shape.

Further, in our videos, we found that at least in four of them, cells are un-
likely to follow Brownian motion. Brownian motion in 2 dimensions (i.e., a
bivariate normal distribution of cell displacements) results in a Rayleigh distri-
bution of the cell displacements [Papoulis, 1991]. Therefore, using the maximum
likelihood method, for each video, we estimated the parameters of the Rayleigh
distribution. For all videos, except hex.6, the distribution of cell displacements
di�ered from the �tted Rayleigh distribution.

For each video, we generated detections with di�erent qualities as follows.
First, we manually produced the ground truth. Next, for a given detection
quality as speci�ed by {Pfp, Pfn}, we calculated the corresponding number nfp
of spurious measurements and the number nfn of missed cell occurrences. We
then randomly added nfp spurious measurements and removed nfn cell oc-
currences. For each video, and each pair {Pfp, Pfn} we generated 5 random
versions of detections. For the level {0, 0} we generated 5 random variations of
the ground truth, by adding normally distributed o�sets to each cell occurrence
in the ground truth.
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Fig. 15: (Fig. S1) Frames from videos (left to right) hex.6, hex.16, and hex.22.
These videos have similar appearance, however we found di�erences
in cell dynamics across the videos. Hence the same segmentation al-
gorithm can be used, but the variability challenge still needs to be
addressed by the tracker.

F Evaluation on Synthetic Videos

In this section, we provide details for our synthetic evaluations presented in
Section 3.3.

The synthetic videos of the �rst type consist of pairs of frames, where each
pair is generated as follows. In the �rst frame, we placed n cells randomly with a
uniform distribution in a square with side L. We then produced random o�sets
of these cells using the bivariate normal distribution with a diagonal covariance
matrix having the same variance σ2 in each dimension. In the second frame,
we placed cells at the o�set positions of the cells in the �rst frame. A synthetic
video is 100 random pairs with the same set of parameters {n, σ, L}.

For the evaluation of tracking performance scalability, we used �xed values
L = 100, Pfp = Pfn = 3%, and took values of N (number of cells in each
frame) in the range 30 � 200. We chose σ accordingly such that βn = 3. We
found that the tracking performance is similar for all N (Plinks ≈96%). We
repeated the experiment for βn = 10 and varied N again. Again the observed
performance was similar for all N (Plinks ≈ 86%). We found that, once the
normalized density βn is �xed, the tracking performance does not depend on
the number of cells.

For the evaluation of the running time, we used �xed values L = 100, Pfp =
Pfn = 3% and took values of N (number of cells in each frame) in the range
30 � 200. We chose σ accordingly such that βn = 10. We run the algorithm on
a desktop PC, with the gating distance set to in�nity, that is we evaluated the
worst case when all possible links needed to be considered. The running time
was about 1.17 second per frame for N = 100 cells, and 13 seconds per frame
for N = 200 cells. We found that the dependency of the running time on the
number of cells can be �t with a degree 3 polynomial (mean root square error
is about 0.02 seconds per frame, the data is not shown).

For testing the hypothesis about the tracking performance as a function of
gating distance, we used �xed values N = 30 and L = 100, and chose σ such
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that βn takes values in the range (0.01 ∼ 100 000) × 10−2, i.e., covers a much
wider range of values than real videos. Recall that our real videos have βn in
the range (0.14 ∼ 5.94)× 10−2.

For each video, we produced detections with quality levels Pfp = Pfn in
{0%, 3%, 5%}. For each detection quality, we calculated the required number
of spurious observations and missed cell locations and distributed these errors
uniformly across all frame pairs in the video. We then used NENIA to perform
interframe assignments on each frame pair, and report an average performance
Plink across all pairs for a given video with a given detection quality. We used
NENIA with di�erent gating distances Rg, to obtain the empirical performance
curve.

All obtained empirical curves (see examples in Fig. 11 in main text, not all
curves shown) preserve the prominent features of our hypothesized curve (Fig.
6 in main text): sharp rise from zero to maximum, maximum around the point
Rg = Rtmax, and gradual decrease, after this point. We found that, as the de-
tection quality decreases, the distance Rg that maximizes the performance shifts
further away from Rtmax. This can be attributed to a higher proportion of false
links compared to true links on a poorer detection quality. However, in the part
of the curve around Rg = Rtmax, the exact value of Rg makes little di�erence.
As a result, in all observed curves the di�erence Pmax − Plink(Rtmax) < 2%.

We evaluated the ability of NENIA to resolve cell divisions using synthetic
videos of the second type generated as follows. Each synthetic video consists
of 3 frames, where the �rst frame contains Ncells = 100 cells randomly placed
with a uniform distribution in the square with side L = 10, 000 units. Ndiv =
30 random cells out of 100 divide and there are 130 cells in the second and
third frames. Between each two frames a cell that does not divide moves with
a random 2D o�set drawn from bivariate normal distribution with the same
variance σ2 in each dimension. Cells that divide do not appear in the second
frame. Instead, the two daughters of the divided cell appear. Each daughter
is independently shifted from the mother cell's position by a random 2D o�set
drawn from bivariate normal distribution with the same variance σ2 in each
dimension. Finally, a certain number of false positive measurements are added
to the synthetic video. The number of false positives depends on the false
positive rate parameter Pfp. We do not add false negative errors, because in
this case some divisions can be missed due to missing cell locations rather than
due to the abilities of NENIA.

In our evaluation, we �xed all parameters, except βn and Pfp. Recall that
βn is the normalized object density that characterizes the �di�culty� of a video

(Section 3.3). Using the de�nition of βn, we put σ
2 = βn·L2

(Ncells+Ndiv)·π .

For each (βn, Pfp) pair, we generated 10 random variations of a synthetic
video and ran NENIA with method B to resolve divisions. In Table 5 we report
the mean and the standard deviation for ratios of correctly resolved divisions
observed on 10 videos. We found that the ratio of correctly resolved divisions
depends on both parameters βn and Pfp. Further, we found that for every
parameter combination, the majority of cell divisions are resolved correctly.



G Evaluation of SAMTRA 12

Tab. 5: Ratio of correctly resolved cell divisions for synthetic videos with dif-
ferent parameters βn and Pfp. For every parameter combination, we
tested 10 di�erent synthetic videos, and report the mean and standard
variation across 10 runs. For every parameter combination, the majority
of cell divisions are resolved correctly.

Pfp = 0% 3% 5%
βn × 102 = 0.1 99.67; 1.05 88.67; 4.22 80.00; 6.48

1 95.00; 5.27 83.33; 4.16 80.67; 8.28
5 80.00; 6.08 71.00; 8.76 71.67; 6.33

Tab. 6: Number of frames used for SAMTRA training and the corresponding
tracking performance gain

Number of Frames 20 40 60 80 100
Performance gain (%) 2 1 13 13 14

G Evaluation of SAMTRA

In this section we present experiments that we conducted to �nd out how much
training data is needed for SAMTRA to achieve a certain gain in tracking per-
formance. The experimental setup was similar to that in Section 3.4 of the main
text. The di�erence was that we varied the number of training frames from the
hex.22 video. For convenience, we �rst repeat the description of the experiment
from the main text here.

In the evaluation, we used NENIA with method B, and we used Ptrack as
the tracking performance measure. We trained SAMTRA using only one of
the videos (hex.22) with one detection quality level (Pfp = Pfn ≈ 2.5%). We
then used all our videos at other detection levels (other values for Pfp and Pfn)
to evaluate SAMTRA. For each video, we randomly chose a detection such
that the tracking quality on that detection is around 75%. We then randomly
selected 10% of the frames and corrected the cell detection, where necessary, in
the selected frames. We then ran the tracking again and recorded the tracking
performance that we denote as Prandom.

After that, we took the original detection and again selected 10% of frames.
This time we selected frames with the highest probabilities of errors as predicted
by SAMTRA. Where necessary, we corrected cell detection in these frames,
ran tracking again, and recorded the tracking performance that we denote as
Psamtra. The performance gain is de�ned as G = Psamtra − Prandom. For
di�erent numbers of training frames and di�erent testing videos we observed
di�erent gains.

In Table 6, we report a weighted average of the gain for a �xed number of
training frames. A weight for a gain for a testing video is the number of correct
tracks in that video divided by the number of correct tracks in all testing videos.

We conclude that a larger number of training frames tends to lead to a better
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performance. At the same time, in our experiments, we observed a positive
gain using as few as 20 frames. Note that correct tracks in our videos almost
always span longer than 20 frames, and therefore in order to validate a single
track manually one normally needs to review more than 20 frames. Therefore
SAMTRA can be useful here.

We did not conduct experiments with more than 100 frames, because the
hex.22 video has only 100 frames (and we report the details of the evaluation
on this level in Section 3.4 of the main text).

Finally, we note that as a rule of thumb the training can be considered to
be satisfactory if the performance of the binary classi�er (which is at the core
of SAMTRA) is good. The performance of the classi�er can be measured using
standard techniques, such as cross-validation and calculating the area under
receiver operating characteristic curve (ROC AUC). For example, a performance
can be considered to be good when ROC AUC > 0.85.
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