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Abstract

Cell tracking is a key task in the high-throughput quantitative study of important

biological processes, such as immune system regulation and neurogenesis. Variability

in cell density and dynamics in di�erent videos, hampers portability of existing trackers

across videos. We address these potability challenges in order to develop a portable

cell tracking algorithm. Our algorithm can handle noise in cell segmentation as well

as divisions and deaths of cells. We also propose a parameter-free variation of our

tracker. In the tracker, we employ a novel method for recovering the distribution

of cell displacements. Further, we present a mathematically justi�ed procedure for

determining the gating distance in relation to tracking performance. For the range of

real videos tested, our tracker correctly recovers on average 96% of cell moves, and

outperforms an advanced probabilistic tracker when the cell detection quality is high.

The scalability of our tracker was tested on synthetic videos with up to 200 cells per

frame. For more challenging tracking conditions, we propose a novel semi-automated

framework that can increase the ratio of correctly recovered tracks by 12%, through

selective manual inspection of only 10% of all frames in a video.
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1 Introduction

Automated cell tracking enables high throughput quantitative analysis of cell
behavior (e.g., cell proliferation and motility), which can provide valuable in-
sights into biological processes, such as immune system regulation (Nitschke
et al., 2008) or neurogenesis (Al-Kofahi et al., 2006). Cell tracking involves seg-
menting cells from the video and associating observed cell occurrences between
frames. These steps can be combined, but developing a dedicated association
procedure usually supports a wider range of tracking conditions, such as abrupt
cell motions (Pad�eld et al., 2010). In this paper, by cell tracking we mean the
data association stage, which is the focus of our paper.

A major challenge for automated cell tracking is the substantial variation
that cell videos can exhibit in terms of cell density and dynamics (Fig. 1).
In practice, these variations can arise even within a single laboratory, due to
di�erent experimental conditions, e.g., a control group and a treated group.
Even in the case of several videos with similar cell appearance, there can be a
variation in cell density and dynamics. For such videos, one can use the same
segmentation algorithm, but the variation still poses challenges for the tracking
stage.

Fig. 1: Fragments of video frames used in this study. The images show B lym-
phocytes at di�erent scales (left, middle), and neural progenitor cells
(right, with permission from Al-Kofahi et al., 2006). There is a variation
in cell dynamics: videos with B lymphocytes contain abrupt cell mo-
tions, while neural progenitor cells tend to have smooth motions. There
is also a variation in cell density.

There has been substantial work in the �eld of cell tracking. However based
on the previous approaches, Meijering et al. [2009] conclude that �the consensus
arising from the literature seems to be that any speci�c tracking task requires
dedicated (combinations of) algorithms to obtain optimal results�.

Indeed, it appears that a number of factors hamper the application of the
previously proposed algorithms across videos: some algorithms rely on smooth
cell motions, some algorithms use association costs speci�c to Brownian motion,
some algorithms require the user to set parameter values, whereas the optimal
values may di�er across videos.

Our aim has been to minimize the amount of manual work needed to enable
cell tracking across a variety of di�erent videos. To this end, we propose two
novel methods: an automated and a semi-automated cell tracking algorithm.

In the design of our automated tracker we addressed the factors that a�ect
the portability of cell trackers. Speci�cally, we propose a parameter-free tracker.
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Tab. 1: Common challenges that hamper applying tracking methods across dif-
ferent videos

Methods Unaddressed
Challenge

Evolving models (Adanja et al., 2010;
Debeir et al., 2005).

abrupt cell motions

Interframe assignments (Al-Kofahi et al.,
2006; Pad�eld et al., 2010).

cost function for a
variety of conditions

Interframe assignments (Jaqaman et al.,
2008); motion �lters (Li et al., 2008).

avoid requiring prior
knowledge

Most of the methods (Adanja et al.,
2010; Chen et al., 2009).

manual post-processing

By parameter-free, we mean that our algorithm (in one of the versions) requires
only the problem input (cell detection), and does not require any additional
information from a user. Internally, our algorithm uses a parameter (gating
distance), but this parameter is estimated automatically from the input data.

In this work, we found that using only cell centroid locations can be su�cient
for achieving reasonably high tracking performance. However, as we argue in
Section 4, other features, such as cell size or �uorescence can be seamlessly
added to our tracker, while keeping the algorithm parameter-free.

Further, we note that even the best proposed algorithms make occasional
tracking errors and may require a post-processing stage with manual error cor-
rection. Therefore we designed a semi-automated tracker for assisting this man-
ual post-processing step, by selecting the frames for manual review.

1.1 Related work and our method

We can categorize previously proposed cell tracking methods into two groups.
Methods in the �rst group try to �t models of cells tracked in previous frames
to a new frame (Adanja et al., 2010; Debeir et al., 2005). Methods in the
second group use assignments between cell detections found independently at
each frame (Al-Kofahi et al., 2006; Pad�eld et al., 2010). Further, methods in
both groups can use additional tools such as stochastic motion �lters (Degerman
et al., 2009; Li et al., 2008).

While there are many advantages of the proposed methods, we note that
there is always an unaddressed challenge that a�ects the transferability of each
particular method across videos. We summarize the challenges in Table 1.

We now introduce some of the methods from the �rst group. Adanja et al.
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[2010] and Debeir et al. [2005] model cells with centroid locations and follow cell
movements using variations of the mean-shift procedure. Dufour et al. [2005]
and Dzyubachyk et al. [2010] use active contours and level-set based meth-
ods. Inglis et al. [2010] propose an adaptation of segmentation by weighted
aggregation technique for clustering, while Pad�eld et al. [2008] propose clus-
tering spatio-temporal �tubes�, where a �tube� is constructed from segmented
cell contours in subsequent frames. One can argue for categorizing the latter
two methods into a separate group, but we leave them in the �rst group for
brevity.

Methods from the �rst group allow the combination of cell detection and
tracking stages, but these methods rely on smooth cell motions (Debeir et al.,
2005; Pad�eld et al., 2010). Methods from the second group focus on the assign-
ment stage for previously detected cells. There are various approaches proposed
for assigning cell locations between frames.

Al-Kofahi et al. [2006] use an integer programming framework; Bonneau
et al. [2005] treat measurements from all frames as points in a spatio-temporal
volume, and iteratively link the closest points in this volume; Chowdhury et al.
[2010] employ a graph matching formulation; Jaqaman et al. [2008] state the task
as a two-stage linear assignment problem; Kirubarajan et al. [2001] start with
two frame assignment and iterate over several frames modifying the assignment
costs; and Pad�eld et al. [2010] propose an extension of a minimum-cost �ow
algorithm.

Some of the methods (Chowdhury et al., 2010; Kirubarajan et al., 2001;
Sbalzarini and Koumoutsakos, 2005) do not directly handle the cases of cell di-
visions and deaths, hence requiring an adaptation for the cell tracking problem.
Other assignment methods (Bonneau et al., 2005; Jaqaman et al., 2008) either
do not give an explicit form of their assignment cost function, or derive the
costs assuming Brownian motion of cells. However, we found that in most of
our real videos, cells are unlikely to follow a Brownian motion model (Section
3.1). We develop our cell tracking algorithm under a relaxed assumption on cell
dynamics. Moreover, the method of Jaqaman et al. [2008], requires choosing
two cost functions, one for divisions and one for moves, whereas in our method
only one function is required.

Al-Kofahi et al. [2006] and Pad�eld et al. [2010] propose di�erent cost func-
tions for links corresponding to di�erent events (e.g., cell moves, cell divisions),
and give explicit forms of these functions (Gaussian functions and absolute dif-
ferences). However, it is not obvious why these particular forms should be used
and what is the set of tracking conditions for which these functions are e�ective.
In particular, the choice of the cost function for division events is non-trivial. In
contrast, in our paper, we provide a systematic argument for using only one cost
function. We also state the assumptions that determine the possible choices of
the cost function.

Some methods require prior knowledge in order to be e�ective. For exam-
ple, a user can be asked to provide a gating threshold (Al-Kofahi et al., 2006;
Jaqaman et al., 2008; Sbalzarini and Koumoutsakos, 2005). This a�ects the
portability of the methods across di�erent videos, because, in general, the opti-
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mal threshold value needs to be estimated for each new video. In our work, we
propose a technique for an automated estimation of the threshold. Providing
the gating threshold is not required in the methods of Mori et al. [1992] and
Pad�eld et al. [2010], but these methods do not directly handle both types of
noise in cell detection: missing detections and spurious measurements.

The cell motion model is another kind of prior knowledge. This is typi-
cally required by stochastic motion �lters. Examples of such works include the
method of Degerman et al. [2009] which uses a modi�ed auction algorithm com-
bined with Hidden Markov Models for predicting cell locations; Godinez et al.
[2009] which combines interframe assignments with particle �lters; and Li et al.
[2008] which employs an active contours technique combined with motion pre-
diction using interacting multiple models. Stochastic �lters usually require the
user to be speci�c about the cell motion model, e.g., by providing the state tran-
sition matrix for Kalman �ltering. However, it is di�cult to be speci�c about
cell motions prior to tracking. Therefore, we focus on developing a method that
works under a general assumption about cell motions.

In summary, there are challenges that a�ect the portability of cell track-
ers across videos. We propose an automated cell tracker that addresses these
challenges. Our automated tracker uses nearest neighbor based interframe
assignments and is called NENIA.

Automated cell tracking is a di�cult task, therefore it is common to use
a post-processing stage where errors of the automated tracking are corrected
manually (Chen et al., 2009; Hamzic et al., 2008). Here the challenge is to
identify the likely errors in tracking.

Recently there has been some work addressing this problem. Adanja et al.
[2010] propose to look at the situations when two tracks come too close to
each other, because it is likely that such tracks will be confused. Chen et al.
[2009] propose to sort automatically constructed links according to their costs.
The links with unusually high costs are likely to be incorrect. However, both
methods cannot spot missing correct links. There is also no estimation of the
e�ectiveness of the proposed methods. In our work, we present a novel semi-
automated tracking method called SAMTRA, that allows selection of frames
that are likely to require manual review. Moreover, we provide an evaluation of
our semi-automated tracker.

We present our automated cell tracker in Sections 2.1 � 2.4, our semi-
automated tracker in Section 2.5, an evaluation of both algorithms in Section
3, and further discussion of our methods and results in Section 4.

2 Methods

Informally, our �rst goal has been to develop an automated cell tracker that
is (i) portable, i.e., easily transferable across a variety of videos, (ii) capable of
handling cell divisions and deaths, and (iii) able to perform reasonably well, i.e.,
resolve the majority of cell moves between frames correctly.

In order to meet the portability requirement, we address the previously dis-



2 Methods 6

Tab. 2: The key elements of our work that are designed to address the portability
challenges
Challenge Solution Details

abrupt cell motions using assignment based
method

Sections 2.1
and 2.2

cost function for a
variety of conditions

mathematical framework
that shows that one can use
a single cost function, and
which function to use

Sections 2.1
and 2.2

avoid requiring prior
knowledge

method for an automated
estimation of the optimal

gating distance

Section 2.3

manual
post-processing

method for an automated
selection of frames for

manual review

Section 2.5

cussed challenges (Table 1). In Table 2, we repeat these challenges and comment
on how we have addressed them.

As it was discussed in the previous section, tracking methods based on evolv-
ing models and clustering of spatio-temporal volumes tend to rely on smooth
cell motions. Therefore we use an assignment based method.

A novel aspect of our work is a mathematical framework that allows us to
(a) demonstrate that using a single cost function for both cell movement and
division events is su�cient, (b) show which cost function can be used, and (c)
treat gating distance as an optimization criterion. Preliminaries and formal
de�nitions are given in Section 2.1 and the framework is presented in Section
2.2.

Another novel aspect is a method for an automated estimation of the optimal
gating distance presented in Section 2.3. The gating distance is a key variable
of our tracker, and the automated estimation of its value makes it easier to
transfer the algorithm between videos.

An overview of our cell tracker is presented in Fig. 2A. In addition to an
interframe assignment method, our automated tracker employs a track manage-
ment module that uses the assignment results to maintain (e.g., update or split)
the set of cell tracks.

Our second goal has been to develop a method for selecting frames that are
likely to contain tracking errors. The overview of our method, called SAMTRA,
is presented in Fig. 2B, and details are given in Section 2.5. SAMTRA enables
us to further improve tracking accuracy with minimal manual intervention.
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Fig. 2: Overview of our automated and semi-automated tracking methods. De-
tails are given in the corresponding sections.

2.1 Cell Tracking Preliminaries

Consider a video of living cells. We characterize a cell by its location, i.e., its
centroid position, in every video frame. A cell occurrence is the cell location
in a certain frame. The video is �rst processed by a segmentation algorithm1,
which identi�es the likely cell locations in each frame. We refer to each given
estimate of a cell location as a measurement mf,i = ~xf,i, where ~x is a point
in the Euclidean space, f is the frame number (when unambiguous, we will
omit this subscript), and i is the measurement index within a frame. The cell
occurrence may or may not have a corresponding measurement.

Between any two consecutive frames f and f+1, a cell can eithermove, divide
or die (Fig. 3). In the case of a move, the cell persists in both frames (remaining
still is characterized as a �move�), and P (i→ j) denotes the probability that a
cell moves from measurement mf,i to mf+1,j . A cell o�set is a vector pointing
from the previous cell position to the next position, and a cell displacement is
the magnitude of the cell o�set.

In the cases of a division or a death, the cell ceases to exist in all frames

1 For videos with lymphocyte cells we used the algorithm of Cheng et al. [2008] supple-
mented with manual post processing of cell detections (less than 30% of manual corrections).
For the video with neural progenitor cells (that have signi�cantly di�erent appearance than
lymphocytes) we did not have an implementation of a segmentation algorithm and did the
segmentation manually. There is evidence that we could �nd a better automated segmen-
tation algorithm for our videos (Al-Kofahi et al., 2006; Pad�eld et al., 2010). However, the
segmentation is not the focus of our paper, we merely needed to collect the ground truth.
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Fig. 3: Sample lineage trees (left) summarize cell events: cell A moves between
frames 1, 2, and 3, and divides between frames 3 and 4; cell D moves
between frames 1, 2, and 3, and dies between frames 3 and 4. In a sample
detection resulting from these events (right), mi,j are measurements,
where i is a frame index and j is a measurement index within a frame.
In this example, the correct track for cell A is {m1,1, m2,1, m3,1}, for
cell B it is {m4,1}, for cell C it is {m4,2}, for cell D it is {m1,2, ?, m3,3}.
There is a false negative error (cell D is not detected) in frame 2, and a
false positive error (spurious measurement) in frame 3.

starting from f +1. Also in the case of a division, the cell that ceases to exist is
called the mother cell, and two new cells, called daughter cells, appear in frame
f + 1.

For a given video, across all frames we de�ne the following probabilities of
a cell move Pm, cell division (split) Ps, and cell death Pd as

Pm =
#occurrenceswhen cell moves

#occurrences
, (1)

Ps =
#occurrenceswhen cell divides

#occurrences
, (2)

Pd =
#occurrenceswhen cell dies

#occurrences
. (3)

Here # occurrences is the total number of occurrences of all cells in the video
(except the last frame), and # occurrences when cell moves (divides, dies) is
the number of occurrences corresponding to cell moves (divisions, deaths). Note
that Pm + Ps + Pd = 1.

The probabilities Pm, Ps, Pd, and P (i→ j) characterize the cells. In general,
these probabilities are unknown prior to tracking. Moreover, tracking is often
used to derive these probabilities (Degerman et al., 2009; Hawkins et al., 2009).

In our tracker, we do not directly address cells entering and leaving the �eld
of view. We observe that using small wells or microgrids [Day et al., 2008]
is becoming increasingly common to address the problem of cells migrating
into or out of the �eld of view. Further, in our tracker, entering the view is
registered as a division (if a new cell enters somewhere close to another cell)
or as a false positive (otherwise), and leaving the view is registered as a death.
Therefore, if handling of entering and leaving cells is required, our tracker can
be supplemented with an extra step to distinguish between cell divisions and
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enterings, and cell deaths and leavings. This step can be based on the proximity
to the frame border.

The cell segmentation algorithm extracts a set of measurements from all
frames of the video. We refer to this set of measurements as a detection. Note
that in practice, detections can contain errors: spurious measurements (false
positives) and missed cell occurrences (false negatives). The quality of the
cell detection can be measured by standard precision and recall metrics, or
alternatively by the probability of false positives (Pfp) and the probability of
false negatives (Pfn) de�ned as2

Pfp =
#fp

#tp+#fp
= 1− Precision, (4)

Pfn =
#fn

#tp+#fn
= 1−Recall. (5)

Here #fp and #fn are the numbers of false positive and false negative er-
rors, and #tp is the number of cell occurrences that have the corresponding
measurements in the detection.

The detection forms the input of the tracking problem. The output of the
tracking problem is a set of tracks, where a track is a list of measurements
from the subsequent frames. The track may contain dummy measurements that
indicate that at a particular frame the track was not detected (there was a false
negative error). The quality of the output is measured as explained below.

2.1.1 Cell Tracking Performance

There are two popular approaches to measuring the tracking performance. The
�rst approach is based on the ratio of the correctly reconstructed links between
consecutive frames [Degerman et al., 2009], while the second measures the ratio
of the correctly reconstructed tracks [Li et al., 2008]. The two performance
metrics are de�ned as follows.

Let a correct track be a track that includes all occurrences of the same cell
and does not include any other measurements (the correct track may include
dummy measurements). Each distinct cell in a video has a corresponding correct
track.

We de�ne the �rst performance measure based on the de�nition of a �mix-
up� error given by Degerman et al. [2009]. A cell tracker produces a set of tracks
where each track (not necessarily correct) has a unique non-zero identi�cation
number (ID). Then each measurement can be labeled by the ID of the containing
track, or with 0, if the measurement is not included in any track (considered as

2 Note that these are di�erent from the standard false positive rate and false negative rate
metrics. The standard metrics require the number of true negatives. A true negative in cell
detection is a point in space that was not classi�ed as a cell location and at which there is
indeed no cell. However, there are in�nitely many such points in space. If we limit ourselves
to the pixel resolution, the number of such true negative points will depend on the resolution
of a video and the de�nition of the frame borders. Therefore the concept of a true negative is
impractical for cell detection.
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a false positive). A swap error is a situation when the labels of two consecutive
measurements in a correct track change. Let #all measurements be the number
of measurements in all correct tracks. We then propose to measure the tracking
performance by the ratio of correctly reconstructed links de�ned as

Plinks = 1− #swap errors

#all measurements
. (6)

Further, let #corr tracks be the number of correct tracks produced by a cell
tracker, and #cells be the number of distinct cells in a video (we count all cells
that have appeared in the video in at least one frame). We then use the second
performance metric as proposed by Li et al. [2008],

Ptracks =
#corr tracks

#cells
. (7)

Clearly, the two metrics are related: higher Plinks generally implies a higher
Ptracks and vice versa. Ptracks is harsher and less sensitive to tracking algorithm
improvements, because, in a cell track, a single swap error leads to invalidation
of the entire track. On the other hand, the Ptracks measure is more relevant
in the case when correct reconstruction of the entire track is of paramount
importance (e.g., in the analysis of Hawkins et al., 2009).

We use Plinks in the development and evaluation of NENIA, because our cell
tracker is designed to resolve as many correct moves as possible. By contrast,
our SAMTRA algorithm can be used to manually improve the tracking results,
when the subsequent data analysis is sensitive to the correct tracks recovery.
Therefore, we use Ptracks for the evaluation of SAMTRA. Reporting both mea-
sures for both algorithms does not add much new information and is omitted in
the interest of space.

Resolving cell divisions is critical for reconstructing lineage trees. A correctly
resolved division is one for which the frame number when the division occurs,
and both mother-daughter relations are established correctly. We measure the
ability of NENIA to resolve cell divisions by using the ratio of correctly resolved
divisions to the total number of divisions in a video. At the same time we
emphasize that resolving cell moves is also critical for reconstructing lineage
trees. For example, a swap error can result in a loss of two cell tracks, and
further in an inability to construct lineage trees for these cells. Moreover, note
that in the videos, the number of cell moves tends to be much larger (often
by several orders of magnitude) than the number of divisions (Hawkins et al.,
2009; Li et al., 2008; Pad�eld et al., 2010). Therefore Plinks alone can give an
estimation of how useful NENIA can be in practice, although we also report the
ratio of resolved divisions for NENIA.

2.1.2 Assumptions

We conclude our cell tracking preliminaries with a list of assumptions. While
the assumptions determine the scope of our work, we also provide comments
explaining why our work is applicable to a wide range of real world situations.
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Assumption 1. Probabilities of cell and detection events. We assume that the
cell video has a good temporal resolution, i.e., the time between successive frames
is small in comparison to a cell lifetime. Speci�cally, we assume that Ps+Pd ≤
0.1 (here Ps and Pd are de�ned by equations 2 and 3). This assumption means
that there are on average at least 10 frames per cell lifetime. The videos reported
in the literature satisfy this property (Al-Kofahi et al., 2006; Hawkins et al.,
2009).
We also assume a reasonable cell detection quality, speci�cally Pfp +Pfn ≤ 0.1.
In practice, researchers have reported detections with Pfp, Pfn < 0.03 (Li et al.,
2008; Pad�eld et al., 2010).

If the above assumption does not hold, it is hard to expect an accurate cell
data analysis regardless of the quality of tracking. Poor temporal resolution
implies a coarse estimation of cell lifetimes and speeds. Poor detection quality
leads to poor tracking quality (Jaqaman et al., 2008; or our evaluation in Section
3.2).

Assumption 2. Independence. In any given frame, the decisions whether to
move, divide or die are made independently for di�erent cells. In the case of a
move, the direction and the cell displacement occur independently for di�erent
cells.

Although there is likely to be a correlation in the lifetimes and fates of
cells, under Assumption 1 the time between frames is much shorter than a cell
lifetime. On this short time scale, the behavior of cells is more stochastic, and
the independence assumption is reasonable.

Assumption 3. Cell dynamics. (i) The probability P (i → j) of a cell move
between locations ~xi and ~xj decreases according to the squared Euclidean distance
‖~xi − ~xj‖2 between the locations. (ii) The spatial distribution of cells is similar
across consecutive frames.

The �rst part of this assumption is applicable to a number of distributions
that are likely to describe the cell dynamics. In particular, normal-like distribu-
tions are prominent in nature. Gomez et al. [1998] introduce the multivariate
power exponential distribution as a generalization of the normal distribution.
This generalized normal distribution satis�es our assumption (see Appendix A
for mathematical details).

Notice that Assumption 3 allows us to develop a parameter-free tracker,
without an explicit speci�cation of the distribution of cell o�sets. Moreover,
our experiments (Section 3.2) show that the assumption does not a�ect the
applicability of NENIA across real cell videos with di�erent distributions of cell
displacements. Our cell tracker performs well on each of these videos.

The second part of Assumption 3 is related to cell density. If the directions of
cell moves are random, we can expect cell density to remain approximately the
same between consecutive frames. If there is a prevalent direction, we can expect
the whole group of cells to shift in one direction, again, preserving the density.
Finally, if there are subpopulations of cells with di�erent prevalent directions,
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we still expect them to keep the spatial distribution between consecutive frames,
because under Assumption 1, the time between frames is relatively short.

The key step of NENIA is interframe assignments. This step is described in
the next section.

2.2 Interframe Assignment Problem

In this section, we describe our novel approach to the assignment problem in
the context of cell tracking. In this context, the assignment problem has already
been described in the literature (Jaqaman et al., 2008; Kirubarajan et al., 2001).
We �rst re-introduce some of the related de�nitions, and then provide the details
of our new approach.

Suppose that at frame f we have a set of previously established tracks Tf =
{ti}, where a track ti has the location mf,i. Further, suppose that at frame
f + 1 we have a set of measurements Mf+1 = {mf+1,j}.

Consider assigning measurements in Mf+1 to tracks in Tf such that a mea-
surement m can be assigned to 0 or 1 tracks, and 0, 1, or 2 measurements can
be assigned to a track t. Fig. 4 explains the choice of this assignment setup
with an example. We refer to an individual assignment of measurement j to
track i as a link i � j. The link i � j represents a potential cell o�set from
the location mf,i to the location mf+1,j . The length of a link i � j is the
Euclidean distance rij = ‖~xi − ~xj‖ between the locations of mi and mj . Where
unambiguous, we use the term link to denote the length of a link.
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Fig. 4: A sample assignment between two consecutive frames. Measurements
are assigned to previously established tracks. In the assignment, there
are four possible combinations that represent di�erent cell events, such
as moves, divisions, deaths and noise in cell detections.

We refer to a set of tracks, measurements, and established links between
them as an assignment. Our task is to �nd the assignment that corresponds to
the true set of cell events that occur between frames f and (f + 1). A popular
approach for solving this kind of task is based on Bayesian inference. Here the
likelihood of an assignment is expressed using the probabilities of individual
events implied by the assignment (Kirubarajan et al., 2001; Mori et al., 1992).

Under the independence assumption 2, we can express the likelihood of as-
signment A as L(A) =

∏
e∈E(A)

P (e). Here E(A) is the set of all events implied

by assignment A. Event e ∈ E(A) can be one of the following (see Fig. 4):
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cell move, cell division, cell disappearance due to cell death or a false negative
error, and appearance of a new measurement due to a false positive error. The
probabilities of the events in E(A) can be expressed with the parameters Ps,
Pd, Pfp, and Pfn (see Appendix B). Now the problem is to �nd assignment
A′ = argmaxA L(A).

The search space of all possible assignments is usually reduced by introducing
gating. The gating involves �ltering out assignments with invalid links. An
invalid link is a link with length rij ≥ Rg, whereRg is called a gating distance (or
gating threshold). The exact de�nition of an invalid link varies in the literature
(Jaqaman et al., 2008; Kirubarajan et al., 2001), but the intuition is that the
links that are deemed to be unlikely are not considered. In the case of our
method, gating plays an important role. As we show later in the paper, there
is a dependency between the gating distance Rg and the tracking performance.

So far we introduced an assignment problem formulation that closely follows
previous work (Jaqaman et al., 2008; Kirubarajan et al., 2001). In what follows
we present our contribution, a novel approach to the assignment problem.

Note that a straightforward solution of the problem (e.g., using integer pro-
gramming) requires values for parameters Ps, Pd, Pfp, and Pfn. We propose to
replace the four parameters by a single parameter Rg, and then formulate the
problem as a maximization of performance with respect to Rg.

We claim that an approximate solution to the assignment problem can be
found using the two round assignment procedure outlined below. The formal
argument for our claim is presented in Appendix B.

In both assignment rounds we impose the following constraints: (1: no splits)
at most one measurement can be assigned to one track, (2: gating) assigning
measurement j to track i is only allowed if rij < Rg, and (3: maximum) we
consider only the assignments with the maximum possible number of links.

Constraint 1 implies that in a single assignment round we eliminate the
possibility of splitting a track. Instead, we capture a cell division event when
in both rounds a measurement is assigned to the same track. Constraint 2
introduces the gating, and constraint 3 is explained as follows.

Consider, for example, assigning 2 measurements to 2 tracks, and suppose
that no links are �ltered out by the gating. There are a number of possible
assignments: (a) link 1 � 1, and unassigned measurement 2, (b) links 1 � 1
and 2 � 2, (c) links 1 � 2 and 2 � 1, and so on. Constraint 3 states that
assignment (a) cannot be considered because it consists of one link, whereas
making two links is possible.

Recall that our task is to assign the measurements Mf+1 in the next frame
to tracks Tf in the current frame. In the �rst assignment round, we �nd
an assignment of measurements Mf+1 to tracks Tf that minimizes the cost
C =

∑
a∈links

r2ij , subject to constraints 1 � 3. Let Mun ∈ Mf+1 be the set of

measurements (possibly empty) that were not unassigned in the �rst round. In
the second round, we �nd the assignment ofMun to Tf that minimizes the same
cost C =

∑
a∈links

r2ij subject to the same constraints.
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Cases when two measurements (one from each round) are assigned to the
same track represent cell divisions. All other links represent cell moves. The
measurements that were not unassigned in both rounds represent false positives,
and the tracks that received no measurements after the both rounds represent
disappearance due to cell death or a false negative error.

Our two round assignment approach allows us to �nd an approximate so-
lution for an assignment problem (see Appendix B). At the same time, our
approach addresses the possibility of cell divisions and deaths, yet it uses a
single and simple expression for cost C. Essentially we have reduced our in-
terframe association problem to the global nearest neighbor assignment task in
each round. This problem can be solved using the polynomial time algorithm
of Munkres [1957].

Moreover, our approach does not require values of Ps, Pd, Pfp, and Pfn. We
replaced these parameters by a single parameter Rg. In the next section, we
present a method for deriving the value of this remaining parameter.

2.3 The Choice of Gating Distance

In previous work, the choice of gating distance has not been considered from
the perspective of tracking performance. Indeed, it is an open challenge to
derive a principled procedure for determining gating distance. For example,
Jaqaman et al. [2008] choose the distance �beyond which a link between two
particles was deemed impossible�. Further, deriving the value for the gating
distance has required prior knowledge about cell o�sets, i.e., required training
(Godinez et al., 2009; Kirubarajan et al., 2001). In contrast, we provide an
analytical framework for the choice of gating distance that maximizes tracking
performance for a given video. Moreover, we propose an automated method for
estimating the value of the optimal gating distance.

2.3.1 The Optimal Gating Distance

Previously, we approached the cell tracking problem as a likelihood maximiza-
tion task. Now we consider the same tracking problem from a di�erent per-
spective. We analyze how the tracking performance depends on the choice of
the gating distance Rg. The performance is measured by the ratio of correctly
reconstructed links Plinks (equation 6).

Let us divide all possible links between measurements mi and mj into two
groups. If the two measurements correspond to occurrences of the same cell,
the link is a true link, otherwise the link is a false link (Fig. 5). For a given
distance R, let the number of true [false] links shorter than R be nt(R) [nf (R)].
For brevity we also denote these values as nt and nf . The tracking performance
can then be expressed as a function Plinks(R) = Plinks(nt, nf ). Further, let
the �rst derivative of Plinks with respect to nt (nf ) be denoted as dPlink/dnt
(dPlink/dnt).

Gating implies �ltering out the links longer than some gating distance Rg.
In turn, �ltering out a true link implies a swap error. Moreover, including more
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Fig. 5: A sample frame f superimposed on frame f +1. Measurements in frame
f are labeled with numbers (e.g., 1). Measurements in frame f + 1
are labeled with numbers with prime signs (e.g., 1′). Measurements
with the same number correspond to the same cell, so 3′ is a spurious
measurement. Solid lines represent true links, and dotted lines represent
false links.

true links increases the tracking performance, i.e., dPlink/dnt > 0. On the
other hand, including a false link, decreases the probability of correct tracking,
thus dPlink/dnf < 0. Notice, that the proportion of true links involved in
tracking determines the upper bound of the tracking performance. Therefore,
our hypothesis is that the proportion of true links is the dominating factor for
tracking performance, i.e., ∣∣∣∣dPlink

dnt

∣∣∣∣� ∣∣∣∣dPlink

dnf

∣∣∣∣ . (8)

Consider an example that illustrates the dependency between the gating
distance and the tracking performance (Fig. 6). Here Rtmax (Rfmax) is the
maximal length of a true (false) link. If 0 ≤ Rg < Rtmax then both nt and nf are
increasing according to Rg. Under our hypothesis (equation 8), the increasing
proportion of true links is the dominating factor, hence the performance rises.

If Rtmax ≤ Rg < Rfmax then we have all true links involved in the tracking
process, i.e., nt is �xed. Now the only factor that changes is the portion of false
links that are passed in tracking, and we have that dPlink/dnf < 0, hence the
performance decreases. Under our hypothesis, the part of the curve between
0 and Rtmax is steeper than the curve between Rtmax and Rfmax. After the
point Rfmax, both nt and nf are �xed, thus the choice of Rg has no e�ect on
the performance.

The optimal gating distance is the distance when NENIA achieves the best
performance. Under our hypothesis, the optimal gating distance is the distance
Rg = Rtmax (this suggestion is validated by our experiments). It is natural
to assume Rfmax > Rtmax, however, the optimal gating distance is the same
Rg = Rtmax in the case when Rfmax < Rtmax. In the case when Rfmax <
Rtmax (diagram not shown), in the interval 0 ≤ Rg < Rfmax, the proportion
of true links is increasing. Under our hypothesis, the proportion of true links
is a dominating factor, hence the performance is increasing. In the interval
Rfmax ≤ Rg < Rtmax, nf is �xed and we also have dPlink/dnt > 0. Thus the
maximum performance is achieved at Rg = Rtmax.

In order to �nd the point Rtmax, we reconstruct the cumulative density
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Fig. 6: Hypothetical curve of the cell tracker performance as a function of gating
distance. Rtmax (Rfmax) is the maximum length of a true (false) link.
Our hypothesis is that the portion of allowed true links is the dominant
factor that a�ects the performance (0 ≤ Rg < Rtmax). This factor is
stronger than the portion of allowed false links (Rtmax ≤ Rg < Rfmax).
The choice of Rg ≥ Rfmax corresponds to a tracking without gating.
The tracking performance is the same for all Rg ≥ Rfmax.

function (CDF) for the true links (i.e., cell displacements) as described in the
next section.

2.3.2 Distribution of Cell Displacements

Let Pt(r ≤ R), Pf (r ≤ R), and Pall(r ≤ R) be the probabilities that the length
of a true, false, and any link is less than a certain distance R and let CDFt,
CDFf , CDFall be the cumulative distribution functions for true, false and all
links respectively.

We can empirically estimate CDFall by considering all possible links between
any two measurements in consecutive frames in the video.

Now consider false links. These links connect two unrelated measurements in
consecutive frames. Under Assumption 3 the spatial distribution of cells within a
frame does not change greatly, hence connecting two unrelated measurements in
consecutive frames is approximately the same as connecting unrelated measure-
ments within a frame. This can be illustrated using two superimposed frames
(Fig. 5). We therefore propose to approximate CDFf with the distribution of
links between measurements within a frame.

Now let Nt, Nf , Nall be the numbers of true, false and all links in a video.
Here Nt + Nf = Nall. We can calculate Nall by counting the number of all
potential links in the video. At the moment, assume that we know Nt.

At a given R let nt, nf , nall be the numbers of true, false and all links that
are less than R, here nt + nf = nall. Then Pt(r ≤ R) = nt

Nt
, Pf (r ≤ R) =

nf

Nf
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and Pall(r ≤ R) = nall

Nall
, and for all R, the CDFt can be reconstructed using

the following equation

Pt(r ≤ R) =
NallPall(r ≤ R)− (Nall −Nt)Pf (r ≤ R)

Nt
. (9)

Finally, we show how to �nd Nt. Consider a frame i with ni measurements
(Fig. 7). Among these measurements there are on average niPfp false positives,
hence we expect on average ni(1−Pfp) cells. However, on average ni(1−Pfp)Pfn

of these cells are not detected in the previous frame i− 1. Therefore, there are
on average ni(1− Pfp)(1− Pfn) true links between frames i− 1 and i, and we
can approximate Nt as

Nt ≈ (1− Pfp)(1− Pfn)
F∑
i=2

ni, (10)

where F is the number of frames in the video.
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Fig. 7: Estimation of the number of true links. This number depends on the
number of measurements in each frame and on the probabilities of a
false positive and a false negative error.

Let N̂t ∈ (0, Nall) be an approximation of Nt. We then set the gating
distance Rg = R̂tmax, where R̂tmax is the �rst point such that

NallPall(r ≤ R)− (Nall − N̂t)Pf (r ≤ R)
N̂t

= 1. (11)

We refer to the method of estimatingNt using equation 10 as method A. Here
we require two parameters Pfp and Pfn for the estimation of Nt. Estimation of
Pfp and Pfn generally involves manual veri�cation of cell segmentation results.
Therefore, in the rest of this section, we present method B � a rough estimation
of Nt without these parameters.

Let denote Q = (1−Pfp)(1−Pfn). Notice that, under Assumption 1 about
cell detection quality, Q ∈ [0.9; 1]. Further, note the following property.

Lemma 1. If N̂t ≥ Nt then R̂tmax ≥ Rtmax.

Recall that our hypothesis was that the part of the error curve (Fig. 6) that
is on the left from Rtmax is steeper than the part on the right. Further, on the
right hand side, there is an intercept value Rfmax, beyond which we do not have
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performance degradation. Thus, we conclude that it is �safer� to overestimate
Rtmax rather than underestimate. We, therefore, suggest to use

Nt ≈ N̂t =

F∑
i=2

ni (12)

as an approximation for Nt.
Algorithm 1 summarizes our method for deriving the gating distance value.

Method A and method B di�er only in the way they set the value Nt.

Algorithm 1 Estimation of Gating Distance

1: function EstimateGatingDistance(M,Pfp, Pfn)

2: // M is the set of measurements in the entire video;

3: // Pfp, Pfn are not required in method B

4: method A: use Pfp, Pfn and equation 10 to estimate the number of
true links Nt;

5: (or method B: use equation 12 to estimate the number of true links
Nt);

6: use equation 11 to estimate the distribution of true links;

7: �nd the minimum Rg such that Pt(r ≤ Rg) = 1;

8: return Rg

We have now described the key parts of our tracking algorithm. In the
following section, we summarize the algorithm.

2.4 Automated Cell Tracker NENIA

Previously, we formulated the cell tracking task as a problem of iterative as-
signment between two frames. However, in each iteration, this method does
not take into consideration the information available outside the two frames.
Iterative interframe assignment represents a greedy approach to cell tracking.

Cell tracking can be formulated as a global assignment problem, but then the
solution becomes computationally infeasible even for relatively short videos. It
is, therefore, common to use heuristic methods that represent trade-o�s between
the greedy and global approaches (Kirubarajan et al., 2001; Sha�que and Shah,
2005).

Our cell tracking algorithm (see Algorithm 2) uses interframe assignments
supplemented with a track management module. The track management module
uses the information available outside the two frames to improve the interframe
assignments.

The algorithm takes as input sets of measurements in each frame of a video
and produces a set of established tracks with lineage relations between tracks.
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Algorithm 2 Parameter-free tracker NENIA

Input: measurements M1, ...,MF ; detection quality Pfp, Pfn (these two are
not required in method B);
Output: set of tracks T ;

1: T ⇐ InitNewTracks(M1);

2: Rg ⇐ EstimateGatingDistance(M1, ...,MF , Pfp, Pfn);

3: for each frame f = 2...F

4: mapping1 ⇐ FirstAssignment(T,Mf , Rg);

5: T ⇐ UpdateTracks(T,mapping1);

6: T ⇐ManageLostTracks(T,mapping1);

7: T ⇐ SplitTracks(T,mapping1);

8: Mun1 ⇐ UnassignedMeasurements(mapping1);

9: mapping2 ⇐ SecondAssignment(T,Mun1, Rg);

10: T ⇐MarkDivCandidates(T,mapping2);

11: end

12: return T ;

At each iteration, an interframe assignment is performed in two rounds (lines
4 and 9). Cell move events are processed by appending a new measurement to
the corresponding track (line 5).

NENIA uses an extra frame to supplement interframe assignments. The
extra frame is implicitly used in functions ManageLostTracks (line 6 and
SplitTracks (line 7). At iteration i, these functions use the result of the as-
signment between frames i− 1 and i to complete processing of tracks based on
the assignment between frames i− 2 and i− 1. Speci�cally, the disappearance
events in the �rst assignment round between frames i − 2 and i − 1 result in
marking the corresponding tracks as lost. A track is then terminated only if it
is lost in two consecutive frames (line 6).

Similarly, in the second round of assignment between frames i− 2 and i− 1,
there can be division events, but then the mother track is only marked as a
division candidate (line 10). The division is processed only if both daughter
tracks persist in two consecutive frames (line 7).

Lemma 2. The probability of encountering a sequence of two or more false pos-
itive errors linked together by NENIA is less than 0.05. Similarly the probability
of encountering a sequence of two or more false negative errors missing from
the same track is less than 0.05.

Lemma 2 gives an upper bound estimation for the probabilities. In practice,
we expect the sequences of related errors to be even more rare. Based on this
lemma we decided to use only one look-ahead frame.
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Our evaluation shows that NENIA achieves strong performance on a variety
of videos. However, for some videos, our tracker still makes occasional tracking
errors (this is also true for the other modern tracking algorithms). These errors
can be resolved manually by an operator. In the next section, we present a novel
method to assist this manual correction process.

2.5 Semi-automated Tracker SAMTRA

Tracking can be improved using human assistance, where an operator reviews
the video superimposed with the tracking results. Once the operator detects
a tracking error, he or she can intervene to correct those errors. However, the
drawback of this approach is that the operator has to review all frames.

Evaluations of tracking algorithms (Jaqaman et al., 2008; or Section 3.2 in
this paper) suggest that better cell detection leads to better tracking. One way
to improve cell detections is by manual intervention, although this is time con-
suming. In order to speed up the process we propose a system called SAMTRA
to identify those frames most likely to bene�t from manual editing. SAMTRA
(semi-automated tracker) predicts the probability of a detection error in a given
frame. If human resources are limited, then only the frames with the highest
error probability are selected for manual review.

SAMTRA predicts the probability of detection errors in a frame using a
set of features that are collected during tracking. Let Mf be the number of
measurements in frame f . Consider a transition from frame f − 1 to frame f .
Suppose that at this point, according to some tracker, Tf existing tracks are
updated, Nf new tracks are initiated, Lf lost tracks are terminated, Rf lost
tracks are recovered, and Sf tracks are split.

For each updated track ti, let a displacement between the track positions
xf,i and xf−1,i at frames f and f − 1 be rf,i = ‖xf,i − xf−1,i‖2, and the mean
displacement over all updated tracks for frame f be

Rf =
1

Tf

(
T∑

i=1

rf,i

)
. (13)

We use 11 tracker independent features F ={Mf−2, Mf−1, Mf , Mf+1, Nf ,

Lf , Rf , Sf , Rf−1, Rf ,
Rf

Rf−1
} in a linear logistic regression with the logit

z = ωo +

11∑
i=1

ωiFi, (14)

where Fi enumerates the features in F and ωi are feature weights.
Let k1 and k2 be chosen such that k1 + k2 is the number of frames that is

considered feasible for manual inspection, and k1 is the number of instances that
is su�cient to train the logistic regression classi�er. We then take k1 frames from
a video and run a cell segmentation algorithm. We then manually generate the
response vector. For each frame, the corresponding value in the vector equals
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to 1 if there is a detection error, or 0 otherwise. Using this manually collected
response vector, we learn the weights ωi using the logit in equation 14 with
features F . Finally, for the rest of the video, or for other similar videos, we
estimate the probability of detection error in frame f is as

Perr =
1

1 + e−z
. (15)

Finally, we take k2 frames with the highest probabilities of error, and man-
ually correct cell detection (not tracking) in these frames. This results in im-
proved tracking quality, as shown by our evaluations, presented in the next
section.

3 Evaluation

The goal of our experiments has been to evaluate the proposed automated and
semi-automated cell tracking methods across a variety of tracking scenarios. To
this end, we used �ve videos that di�er in cell density, and motility. The videos
are described in Section 3.1.

We implemented our cell tracking system in MATLAB, version R2009a. In
our system, we used one of the assignment algorithm implementations freely
available from the Web3. This implementation is based on the algorithm of
Munkres [1957], and is capable of processing rectangular cost matrices with
in�nite costs representing prohibited links.

In the gating distance estimation, the CDF of true links was reconstructed as
described in Section 2.3 (with both methods A and B). We also applied median
�ltering to reduce noise in the reconstructed CDF curve. See Appendix D for
details of the �ltering.

We evaluate the e�ect of the gating distance on the tracker's performance in
Section 3.2. In the same section, we compare the performance of NENIA with
the performance of an advanced probabilistic cell tracker. We evaluate NENIA
on synthetic videos in Section 3.3. Finally, we study the e�ciency of SAMTRA
in Section 3.4.

3.1 Cell Videos

The videos used in our evaluations are summarized in Table 3.
Video ak shows the development of neural progenitor cells. This video se-

quence consists of the �rst 300 frames (enough to observe 3 division rounds) of
supplementary movie one4 from the work of Al-Kofahi et al. [2006].

The remaining four videos show the development of B lymphocytes. Pri-
mary B lymphocytes were puri�ed from the spleen of C57/BL6 mice modi�ed

3 Functions for the rectangular assignment problem by Markus Buehren. Available on-line
at http : //www.mathworks.com/matlabcentral/fileexchange/6543

4 Used with permission. Available on-line from the Cell Cycle journal website at http :
//www.landesbioscience.com/journals/cc/supplement/alkofahi.zip
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Tab. 3: Videos used for tracker evaluation. These videos di�er in cell density,
and motility. The parameter βn re�ects the �di�culty of video� for cell
tracking (de�ned in Section 3.3).

Name Frames Cells
βn ×
102

Comments

ak 300 18 0.25
dense clutter of cells, low

motility, 7 divisions

hex.6 100 6 5.94
starts with 2 cells, 2 divisions

hex.16 100 16 3.45
dense clutter of cells, no
events, except cell moves

hex.22 100 22 3.18
dense clutter of cells, 4
divisions, 2 deaths

square 50 35 0.14
cells are uniformly distributed
with low density, 2 divisions

to ubiquitously express GFP, prepared as described in the work of Hawkins
et al. [2009]. These were placed in 250µm hexagonal microwells (videos hex∗)
and 125µm square microgrids (video square), and photographed once every 2
minutes using an Axiovert 200m microscope with a 20× objective at di�erent
scales for hexagonal and square microwells.

Fig. 1 shows the fragments of frames from videos hex.16 (left), square
(middle), and ak (right), see Supplementary Fig. 15 for sample frames from
videos hex.6 and hex.22.

We found that our videos represent a variety of tracking scenarios, such as
di�erent cell density and dynamics (see details in Appendix E). This is despite
four of the videos showing the same type of cells. Further, three videos hex∗
give an example of variation in cell density and dynamics, while having similar
cell appearance. In this case, the same segmentation algorithm can be used, but
the variability challenge still needs to be addressed by the tracker.

Some of the previously proposed methods made an assumption of the Brow-
nian motion of cells (Bonneau et al., 2005; Jaqaman et al., 2008). However, in
our videos, we found that at least in four of them, cells are unlikely to follow
Brownian motion (see details in Appendix E).

For each video, we generated detections with di�erent qualities speci�ed
by {Pfp, Pfn}. We refer to a combination {video, Pfp, Pfn} as a case. For each
case, we generated 5 random versions (see details in Appendix E) and report the
average performance across 5 versions. Cases with Pfp+Pfn ≤ 0.06 correspond
to high detection quality.

We do not report the sizes of videos in pixels, because the sizes are not
directly related to the tracking performance. Instead, we report a dimensionless
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parameter βn which is the normalized object density. This parameter is formally
de�ned in Section 3.3.

The number of frames in our videos is not very large. In practice, videos can
comprise thousands of frames. However, our videos include several instances
of cell division and death events. Having short videos does not a�ect our eval-
uation, since NENIA is based on independent frame by frame assignments.
Further, we compare our tracker with a competitor's tracking algorithm called
LJIPDA (introduced in the next section). Having short videos does not a�ect
the evaluation of LJIPDA, because LJIPDA is also assignment based (however,
LJIPDA uses a di�erent approach for the assignment).

Despite the variety in cell density and dynamics, NENIA is capable of achiev-
ing high tracking accuracy on di�erent detection qualities, as illustrated in the
next section.

3.2 Evaluation of NENIA

In this section, we �rst analyze the performance of NENIA on di�erent de-
tections and compare it with the performance of a probabilistic tracker. We
then compare the tracking performance for estimation methods A and B. For
each video, all video frames were used for automated derivation of the gating
distance and evaluation of performance. The derivation of the gating distance
parameter is one of the crucial steps in NENIA. Therefore, we conclude with
the measurement of the e�ect of gating distance on the performance of our cell
tracker (measured with Plinks).

Fig. 8 shows the performance of NENIA (with method A for selection of the
gating distance) compared with the performance of the Linear Joint Integrated
Probabilistic Data Association (LJIPDA) tracker. LJIPDA is one of the most
advanced probabilistic trackers [Musicki and Evans, 2002].

Unfortunately at present, it is di�cult to compare tracking results directly
across di�erent trackers. This is due to the absence of common baseline datasets,
and the lack of open-source algorithm implementations. Most papers in the �eld
tend to report results only for their method and on their datasets (Al-Kofahi
et al., 2006; Li et al., 2008; Pad�eld et al., 2010). We managed to obtain an
original implementation of the LJIPDA tracker, which allowed us to perform a
direct comparison easily.

When the detection quality is high (cases when Pfp /Pfn = 0/0, 1/0, 0/1,
3/3, expressed in %), NENIA outperforms LJIPDA and the di�erence is statisti-
cally signi�cant. On average across all cases, there is no statistically signi�cant
di�erence in performance (the statistical signi�cance was measured with the
Wilcoxon matched-pairs signed-rank test at the 5% signi�cance level). At the
same time NENIA does not require setting parameter values manually, whereas
for LJIPDA we had to use the manually produced ground truth to tune the
parameter values for LJIPDA.

We now compare the performance corresponding to methods A and B in
Fig. 9. On average across all cases, method A is better and the di�erence is
statistically signi�cant as measured with the Wilcoxon matched-pairs signed-
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rank test at the 5% signi�cance level. On the other hand, in all observed cases,
method B recovers more than 80% of cell moves correctly, thus it still performs
well enough to be useful. The two methods provide a trade-o�: if the detection
quality can be estimated easily, then method A gives better tracking accuracy;
if it is hard to estimate the detection quality, then method B can still be useful.

Finally, Fig. 10 shows empirical curves for the tracking performance as a
function of gating distance. It can be observed that in all cases, empirical
data supports our hypothetical curve (compare with Fig. 6). When the gating
distance is too small, �ltering out a part of the true links has a dramatic e�ect
on the performance. When the gating distance lets all the true links in, the
performance depends on the proportion of the true and false links. However,
when the gating distance is too large and allows all true and false links, the
performance does not depend on the gating.

Vertical strokes in Fig. 10 show the gating distances, estimated by method
A. Both methods A and B estimate suboptimal gating distances (strokes are
not shown for method B). The optimal performance, on average, is only 1.6%
higher than the performance of method A (data not shown).

When the cell detection is perfect (Pfp =Pfn =0%), NENIA was able to
recover all division events correctly. We further investigate the ability of NENIA
to resolve cell divisions in our synthetic experiments in the next section.

We summarize our evaluation results as follows.

• For high cell detection quality, NENIA resolves almost 100% of moves
correctly and can be used as a main tracking algorithm. In all other
cases, NENIA (with method A or B) resolves more than 80% of cell moves
correctly and could be used for collecting the ground truth for training
of a more specialized tracking algorithm. The ground truth can be �rst
automatically generated by NENIA. Then a human operator is required
to label at most 20% of links.

• For high cell detection quality, NENIA (with method A) outperforms
LJIPDA, despite NENIA being a simpler parameter-free algorithm.

• Method A for determining the gating distance outperforms method B.
However, in the case when the estimation of Pfp and Pfn is hard, method
B still gives reasonable performance, more than 80% in all cases.

• The tracking performance degrades with the detection performance. This
suggests that in order to improve a tracker's performance one can investi-
gate improving detection quality.

The running time for our cell tracker was on average 65 frames per second (i.e.,
in total, 10 seconds for all 5 videos, which includes the estimation of gating
distance) run on a desktop PC (Intel Core 2 Duo CPU E8400 @ 3.00GHz and
3.4GB RAM, Ubuntu 9.10). The scalability of NENIA for larger numbers of
cells is evaluated in the next section.
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3.3 Evaluation on Synthetic Videos

In addition to our real videos, we used synthetic videos for evaluating di�erent
aspects of NENIA: scalability in terms of the tracking performance and running
time, validity of our hypothesis about tracking performance as a function of gat-
ing distance, and the ability of NENIA to resolve cell divisions. In this section,
we outline main �ndings on our synthetic videos. Details of the evaluation are
presented in Appendix F.

The �rst type of synthetic video that we used consists of pairs of frames.
The cells are randomly placed with uniform distribution in the �rst frame, and
randomly moved with a bivariate normal distribution. In the synthetic videos
we varied a number of parameters, such as the number of cells N , the variance
of a random o�set σ, and the side of a square video frame L. We also added
random false positives and false negative errors with error rates Pfp, Pfn.

Mori et al. [1992] de�ne a normalized object density as a dimensionless value
βn = (N · σ2 · π/L2) and show that this density determines the �di�culty� of
the tracking problem (a similar observation has been made by Jaqaman et al.,
2008). An intuitive interpretation is that, given a �xed frame size, increasing
the number of cells or cell speeds increases the probability of confusing their
tracks, and hence makes the tracking more di�cult.

For the evaluation of tracking scalability in terms of the performance and
running time, we varied the number of cells N in the range 30 � 200 and used
several di�erent sets of other parameters. Overall we found that once the nor-
malized density, βn, is �xed, the tracking performance, Plinks, does not de-
pend on the number of cells. This is consistent with the result of Mori et al.
[1992]. Further, we observed a polynomial relation between the running time
and the number of cells. Empirical polynomial complexity of NENIA is con-
sistent with theoretical complexity estimation for the assignment algorithm of
Munkres [1957] which is a core step of NENIA.

For testing the relationship between the tracking performance and the gating
distance, we varied βn such that it covers a much wider range of values than the
real videos. We used a few di�erent sets of other parameters, and recorded the
performance of NENIA Plinks as a function of gating distance Rg. All obtained
empirical curves (see examples in Fig. 11, not all curves shown) preserve the
prominent features of our hypothesized curve (Fig. 6): sharp rise from zero to
maximum, maximum around the point Rg = Rtmax, and gradual decrease, after
this point (recall that Rtmax is the maximum length of a true link). We conclude
that it is feasible to estimate the optimal gating distance as Rg = Rtmax, as
proposed in our analysis (Section 2.3).

Synthetic videos cover both cases when Rtmax < Rfmax and Rtmax > Rfmax

(recall that Rfmax is the maximum length of a false link). The cases when
Rtmax > Rfmax occur at high values of βn (βn > 300). These cases correspond
to a situation when, between consecutive frames, cells travel distances that are
large compared to the distances between cells in a frame. This results in a rapid
confusion of cells and consequently in a poor tracking performance. We found
that the empirical performance curve in this situation (Rtmax > Rfmax) still
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resembles our analytical curve.
Finally, we used another type of synthetic video to evaluate the ability of

NENIA to resolve cell divisions. These videos consist of 3 frames, and start
with 100 cells out of which 30 cells divide. We generated the synthetic videos
using di�erent combinations of parameters βn and Pfp. Please see the details
of our evaluation in Appendix F.

We found that for every parameter combination, the majority of divisions are
resolved correctly: the ratio was about 100% for the easiest cases and about 72%
for the hardest cases. We cannot compare these numbers with the performance
of the LJIPDA algorithm, because LJIPDA does not address cell divisions, but
we note that our results are somewhat similar to the results of Jaqaman et al.
[2008] and Pad�eld et al. [2010]. The evaluation of Pad�eld et al. [2010] roughly
corresponds to our case when Pfp = 0%. This comparison is indirect, as di�erent
authors use di�erent videos.

Overall, we found NENIA to be scalable in terms of performance and running
time. Further, we veri�ed our hypothesis about the relation between the track-
ing performance and the gating distance. We also found that in our synthetic
videos, NENIA correctly resolves most cell divisions.

Further, we note that incorporating a physically well-conserved observable
quantity such as cell �uorescence into NENIA can improve its ability to resolve
divisions (this is the subject of future work). Finally, recall that cell moves
signi�cantly outnumber cell divisions in real videos. Therefore the accumulation
of errors from cell moves in between divisions needs to be taken into account
when comparing a tracker's ability to maintain cell identity between and across
divisions.

3.4 Evaluation of SAMTRA

In the evaluation of SAMTRA, we used Ptrack (equation 7) as the tracking
performance measure, because SAMTRA is designed for the situations when
it is important to recover as many tracks as possible correctly. Evaluation
of SAMTRA was conducted using �ve real cell videos described previously in
Section 3.1.

We trained SAMTRA using only one of the videos (hex.22) with one detec-
tion quality level (Pfp = Pfn ≈ 2.5%). We then used all our videos at other
detection levels (other values for Pfp and Pfn) to evaluate SAMTRA. For each
video, we randomly chose a detection such that the tracking quality on that
detection is around 75%. We then randomly selected 10% of the frames and
corrected the cell detection, where necessary, in the selected frames. We then
ran the tracking again and recorded the tracking performance. In the evaluation,
we used NENIA with method B.

After that, we took the original detection and again selected 10% of frames.
This time we selected frames with the highest probabilities of errors as predicted
by SAMTRA. Where necessary, we corrected cell detection in these frames, ran
tracking again, and recorded the tracking performance. For each video we ran
the experiment 5 times (in Table 4, we show only the �rst experiment for each
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Tab. 4: Tracking performance gain for NENIA by manual correction of cell de-
tections in 10% of all frames in a video. SAMTRA is generally better
than random selection.

Video Frames
total

Performance
(original)

Performance
(random
recovery)

Performance
(SAMTRA
recovery)

ak 300 78 78 100
hex.6 100 67 67 67
hex.16 100 75 75 81
hex.22 100 82 82 95
square 50 83 83 100

video). In most runs, SAMTRA gave a higher tracking performance increase
than the random frame selection. In none of the runs did SAMTRA give a
smaller increase than the random selection.

The results show that using SAMTRA we were able to increase the ratio of
correct tracks by 12% (recall that a correct track has all its links correct). This
was achieved by inspecting only 10% of frames and correcting cell detections
in those frames. Also note that in most experiments, selecting frames for re-
view using SAMTRA led to more substantial performance gains than random
selection. These results demonstrate that SAMTRA can be used for e�cient
semi-automated tracking correction.

We also studied how much training data is needed for SAMTRA to achieve
a certain level of performance gain. We observed an increase when using as
few as 20 frames. The results are presented in Table 6, and the details of the
evaluation are presented in Appendix G.

In the next section, we further review the potential and applicability of our
automated and semi-automated methods. We also comment on the prospects
of our method for estimation of the CDF of the true links.

4 Discussion

In our evaluation, we only use cell centroid locations because it appears that
this feature is available with any cell segmentation algorithm. We found that
the performance of NENIA is reasonably high even with this minimum amount
of information. In practice, there can be more information available, such as
cell size or �uorescence. These extra features can be seamlessly incorporated in
NENIA to improve the performance further.

New features can be added to the Euclidean distance expression after nor-
malizing by the features variances. The segmentation algorithm produces sets of
features, e.g., set of centroid locations and set of cells areas. Then the variance
of each feature can be calculated automatically. Therefore, after incorporating
new features, NENIA does not require extra human attention.

In NENIA we use the same gating threshold and division probabilities for
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all cells. We note that in reality the lengths of cell moves and the division
probabilities are cell and time dependent. Varying the parameters across cells
might further improve the accuracy of tracking. However, estimating the divi-
sion probability or the gating threshold for a particular cell requires tracking
cell identities in the �rst place. It is possible to use tracking results for the past
frames to estimate the gating threshold for a cell in the future frames [Jaqaman
et al., 2008], but the past tracking results may contain errors and therefore the
estimation can be inaccurate. To the best of our knowledge, there is no evidence
yet in the literature that such an adaptive method is superior to one that uses
a common gating threshold (comparative analysis can be a direction for future
work). A similar remark can be applied to adaptive estimation of division prob-
abilities. Further, we note that on the range of videos tested, NENIA (with a
common gating threshold and division probability) performs su�ciently well to
be useful in practice.

NENIA with method B is a parameter-free algorithm in the sense that for
its operation it only requires the problem input (i.e., cell detection), and does
not require user attention. Internally NENIA does use some variables, such
as the gating distance Rg, but these are initialized automatically. Therefore
the use of internal variables is immaterial for end-users. Note that this is not
the case with many previously proposed algorithms, where a user is required
to somehow determine the value for a gating threshold (Al-Kofahi et al., 2006;
Jaqaman et al., 2008; Kirubarajan et al., 2001).

NENIA with method A requires the user to provide an estimation of the
quality of cell detection (Pfp, Pfn). In some cases, one can assume that the
detection quality remains roughly the same across a number of videos (e.g.,
the videos show the same cells at about the same density). In these cases, a
manual estimation of the detection quality can be done for one video and then
used for the other videos. In cases where the similarity assumption cannot be
made, we suggest to use NENIA with method B. We emphasize that providing
accurate estimations for the detection quality is not critical for our cell tracker as
our experiments show that NENIA with method B can still achieve reasonable
performance.

Some variables in NENIA are �xed to particular values (e.g., the form of the
cost function and the number of look-ahead frames). However, for each such
variable we provide an argument as to which particular values are reasonable
under the assumptions 1 � 3.

NENIA was designed to be portable across a variety of videos. In particular
cases, specialized algorithms can achieve higher performance. For example,
there can be a tracker optimized to certain cell dynamics. The problem is,
given a video, to �nd out which particular case it represents. Generally, the cell
dynamics are not known a priori. To address this problem, NENIA can be used
in a �bootstrap� procedure: it can assist manual collection of the ground truth
for a part of the video. The ground truth can then be used to decide which
specialized algorithm to use for the rest of the video.

Regarding the semi-automated method, notice that SAMTRA uses tracker-
independent features, and thus is applicable for use with di�erent tracking al-
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gorithms. Moreover, SAMTRA can be used for tracking in the �rst place, by
aiming to �nd a tracking that minimizes the probability of errors in all frames.

Our implementation of SAMTRA involves training from the tracking results.
This approach is independent of the choice of segmentation algorithm. More-
over, it can be possible to avoid training when using a segmentation algorithm
that yields the relative level of certainty in its detections as a part of its output.
Here the estimation of the probabilities of errors in frames can be based on how
certain the segmentation algorithm was in a particular frame.

Finally, we would like to highlight our method for the reconstruction of the
CDF of true links. This method was presented here in the context of our cell
tracking algorithm. However, this technique does not depend on the tracking
algorithm and has further potential applications as follows.

• The method can be used for the estimation of the average speed of cells
(without doing cell tracking). This, in turn, can be used for deriving an
optimal frame acquisition rate for cell videos.

• The method can be used for automated detection of the changes in distri-
bution of cell displacements. This can be used for searching for some key
time points in a video.

• The method can be used for estimation of a cell tracker's performance
in the absence of a ground truth. Consider a cell tracker that produces
a set of tracks. From this set of tracks, one can derive the CDF of the
cell displacements. On the other hand, we can reconstruct the CDF of
true links using our method (without tracking). We can then use the
Kolmogorov-Smirnov test to compare two distributions. The closer the
distributions are to each other (i.e., the smaller the p-value of the test),
the better is the tracker.

5 Conclusions

We have developed and evaluated a novel cell tracking algorithm called NENIA.
The algorithm can handle cell divisions and deaths, and is portable across a
variety of videos. We also propose a parameter-free con�guration of NENIA.
Our algorithm is based on interframe assignments supplemented by a track
management module. We �rst designed the algorithm in such a way that it
depends on a single parameter, the gating distance. Further, we analyzed the
e�ect of gating distance on the tracker's performance, and proposed methods for
automated estimation of the gating distance, hence removing this parameter.

For the range of videos tested, NENIA correctly resolves on average 96%
of cell moves, and when the quality of cell detection is high, NENIA correctly
resolves almost 100% of cell moves. This performance is achieved across a variety
of real cell videos that di�er both in cell density and dynamics. The scalability
of our algorithm was tested on synthetic videos with up to 200 cells per frame.
The empirical complexity of NENIA was found to be a polynomial of degree 3
on synthetic videos.
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NENIA is based on a novel method for reconstruction of the CDF of cell dis-
placements. This method has several potential applications, such as evaluation
of tracking performance without the ground truth.

We also proposed a semi-automated tracking method called SAMTRA. This
method uses logistic linear regression to predict the probability of detection
errors in a video. Our evaluation shows that SAMTRA is capable of increasing
the proportion of correctly reconstructed tracks on average by 12% through
manually correcting detections in only 10% of all frames in a video.
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Fig. 8: Performance of NENIA compared with the performance of LJIPDA on
di�erent detection qualities. Over all cases, both algorithms have similar
performance. NENIA outperforms LJIPDA on high detection qualities.
The lines connecting points have no interpretation and are given for
perceptual convenience. Note the di�erent scales on the y-axes.
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Fig. 9: Tracking performance of NENIA with method A compared with method
B. On average, method A outperforms method B. Both methods recover
more than 80% of cell moves correctly in all cases. The lines connecting
points have no interpretation and are given for perceptual convenience.
Note the di�erent scales on the y-axes.



5 Conclusions 35

0 50 100 150
0.9

0.92

0.94

0.96

0.98

1

gating distance in pixels, R
g

p
e
rf

o
rm

a
n
c
e
, 
P

lin
k
s

ak

P
fp

 = P
fn

 = 0%

P
fp

 = P
fn

 = 3%

P
fp

 = P
fn

 = 5%

0 100 200 300 400
0.9

0.92

0.94

0.96

0.98

1

gating distance in pixels, R
g

p
e
rf

o
rm

a
n
c
e
, 
P

lin
k
s

hex.6

P
fp

 = P
fn

 = 0%

P
fp

 = P
fn

 = 3%

P
fp

 = P
fn

 = 5%

0 50 100 150 200 250
0.8

0.85

0.9

0.95

1

gating distance in pixels, R
g

p
e
rf

o
rm

a
n
c
e
, 
P

lin
k
s

hex.16

P
fp

 = P
fn

 = 0%

P
fp

 = P
fn

 = 3%

P
fp

 = P
fn

 = 5%

0 100 200 300 400
0.8

0.85

0.9

0.95

1

gating distance in pixels, R
g

p
e
rf

o
rm

a
n
c
e
, 
P

lin
k
s

hex.22

P
fp

 = P
fn

 = 0%

P
fp

 = P
fn

 = 3%

P
fp

 = P
fn

 = 5%

0 500 1000
0.8

0.85

0.9

0.95

1

gating distance in pixels, R
g

p
e
rf

o
rm

a
n
c
e
, 
P

lin
k
s

square

P
fp

 = P
fn

 = 0%

P
fp

 = P
fn

 = 3%

P
fp

 = P
fn

 = 5%

Fig. 10: Empirical cell tracking performance curve as a function of gating dis-
tance for detections with di�erent qualities. Empirical performance
curves support our hypothesis about the dependency of performance on
the gating distance (compare with Fig. 6). Vertical strokes correspond
to the gating distances estimated by a method A. Note the di�erent
scales in the top two diagrams (y-axes), and all diagrams (x-axes).
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Fig. 11: Empirical performance curves as a function of gating distance obtained
on a synthetic videos. When the normalized object density is low (left)
the tracking performance remains high for di�erent detection levels (the
performance curves overlap, therefore only the case Pfp = Pfn = 5% is
shown). When the object density is high (right), the performance de-
pends on the detection quality. Dots correspond to actual data points.
The vertical stroke marks the point Rg = Rtmax. At this point the
performance is maximized or near the maximum. The empirical per-
formance curves preserve prominent features of our analytical curve
(compare with Fig. 8).


