
Providing Effective Real-time Feedback in
Simulation-based Surgical Training

Xingjun Ma�, Sudanthi Wijewickrema, Yun Zhou,
Shuo Zhou, Stephen O’Leary, and James Bailey

The University of Melbourne, Melbourne, Australia
{xingjunm@student.,swijewickrem@,yun.zhou@,

zhous@student.,sjoleary@,baileyj@}unimelb.edu.au

Abstract. Virtual reality simulation is becoming popular as a train-
ing platform in surgical education. However, one important aspect of
simulation-based surgical training that has not received much attention
is the provision of automated real-time performance feedback to support
the learning process. Performance feedback is actionable advice that im-
proves novice behaviour. In simulation, automated feedback is typically
extracted from prediction models trained using data mining techniques.
Existing techniques suffer from either low effectiveness or low efficiency
resulting in their inability to be used in real-time. In this paper, we pro-
pose a random forest based method that finds a balance between effec-
tiveness and efficiency. Experimental results in a temporal bone surgery
simulation show that the proposed method is able to extract highly ef-
fective feedback at a high level of efficiency.

Keywords: real-time feedback, surgical simulation, random forests

1 Introduction

With the introduction of virtual reality (VR) technologies, simulation-based sur-
gical training has become a powerful platform for surgical training [1–3]. In VR
simulation, trainees can practice on multiple surgical cases in a risk-free, immer-
sive, and interactive learning environment. However, it still requires the super-
vision of human experts to ensure that feedback is provided during training to
facilitate the acquisition of proper surgical skills. To reduce the reliance on the
availability of human experts, the provision of feedback should be automated.

One of the simplest ways of providing real-time feedback in VR simulation is
the “follow-me” approach [1]. It provides a ‘ghost’ drill recorded by an expert to
lead the trainee through the surgery. However, trainees who are unfamiliar with
the procedure may struggle to follow the pace of the ghost expert. Other works
utilised data mining techniques to generate feedback that can change adaptively
in response to trainee’s performance. For example, a pattern mining algorithm
was applied to discover expert and novice skill patterns to support feedback
provision in a surgical simulation [4]. However, experts and novices often share
a considerable amount of similar behaviour which makes it difficult to identify

significant patterns. This effect can be reduced through the use of random forest
(RF) based methods such as Split Voting (SV) [5]. SV first trains a RF pre-
diction model that can distinguish expert skill from novice skill, then uses the
prediction model to formulate feedback. Although this method is efficient, the
effectiveness of formulated feedback in improving novice skill is low. In fact, ex-
tracting feedback from a RF is a NP-hard problem. However, it can be solved by
high-performance ILP solvers when transformed to an integer linear program-
ming (ILP) problem [6]. This approach is highly effective in improving novice
skills as it searches for the global optimal solution but the searching process is
computationally expensive. Recent research shows that neural networks can also
be used to generate feedback for simulation-based training [7].

There are three challenges in providing real-time feedback in a simulation
environment: 1) feedback should be effective so it can improve novice skill to
expert skill, 2) feedback should be provided in real-time (within 1 second) when
novice skill is detected, as delayed feedback may result in confusion or cause
undesirable consequences [5], and 3) feedback should be simple (ideally based
on one aspect of performance) so that the cognitive load is manageable [8].

The ideal feedback formulation method would be highly effective, yet efficient
enough to be used in real-time. Highly effective methods exist but they typically
lack sufficient efficiency and vice versa. Thus, the key in real-time feedback for-
mulation is to find the right balance between the two, which to our knowledge
has not been adequately addressed in the literature. To overcome this, we make
the following contributions: 1) discuss the RF-based feedback formulation prob-
lem from a computational geometric point of view, 2) propose a novel method
to formulate feedback using a RF, and 3) demonstrate that it has near-optimal
effectiveness, is highly efficient, and scalable.

2 Simulation Platform and Problem Definition

The simulation used here is a Temporal Bone Surgery (TBS) Simulator (see Fig.
1). It consists of a 3D temporal (ear) bone model running on a computer and
a haptic device providing tactile resistance to simulate drilling. The surgery we
focus on is cortical mastoidectomy, which involves drilling parts of the tempo-
ral bone. In TBS, surgical skill is defined using characteristics of a stroke (e.g.
length, speed, acceleration, duration, straightness, force). A stroke is a continu-
ous drilling motion in the same general direction that results in material removal
[9]. Feedback is the action that can improve a novice stroke to an expert stroke.

An overview of the feedback formulation process is shown in Fig. 2. The
formulation method is trained offline over labelled (expert/novice) strokes. This
is used in real-time to provide feedback that improves novice behaviour. The
feedback formulation problem is to find the best change in stroke characteristics
that changes a novice stroke to an expert stroke. Let {X,Y } be the dataset with
n strokes (or instances) and d features (or stroke metrics). A stroke is defined
by a feature vector x = (x1, ..., xd) and is associated with a class label y ∈ {0, 1}
(1: expert, 0: novice). The feedback formulation problem can then be defined as:

Fig. 1: A temporal bone surgery simulator Fig. 2: Real-time feedback formulation

Problem 1. Given a prediction model F (x) learnt over {X,Y } and a novice
stroke x, the feedback formulation problem is to find the optimal action A : x→
xf that changes x to a stroke xf under limited cost such that xf has the highest
probability of being in the expert class:

argmax
A: x→xf

F (xf) subject to ‖x− xf‖0 ≤ 1,

where, F (xf) ∈ [0, 1] indicates the probability of xf being in the expert class.
Feedback A : x → xf involves at most one feature change (increase/decrease).
For example, A : (force = 0.2, duration = 0.3) → (force = 0.5, duration =
0.3) is “increase force to 0.5”. ‖x − xf‖0 ≤ 1 is the cost constraint that only
allows a change in a single feature, to minimise cognitive load [8].

3 Random Forest based Feedback Formulation

We propose the use of RF as the prediction model F (x). In contrast to existing
methods [5, 6, 10], we analyse the RF-based feedback formulation problem from
a geometric point of view and introduce an approximation method to solve it.

Geometric View: A RF prediction model is an ensemble of decision trees with
each tree trained over a random subset of labelled strokes and features (see
Fig. 3). The leaf node of the tree can be seen as a hyper-rectangle defined by
the decision path from the root to the node. As in the example, the expert
node (green rectangle with label 1) in Tree 1 can be represented by rectangle
{x1 > 0.5, x2 ≤ 0.2}. Thus, a RF can be seen as a union of hyper-rectangles
overlapping in the data space [11]. Similar to a leaf node, a hyper-rectangle has
an associated class label indicating the expertise level of strokes within it. Let
R1/R0 denote the hyper-rectangle with a expert/novice class label respectively.

A RF divides the data space into expert and novice subspaces. Expert sub-
spaces are small areas that are overlapped by more R1s than R0s. Thus, the
most expert-like strokes can be found in the areas that are overlapped by the
most R1s. Then, feedback can be interpreted as moving a stroke from novice
subspace to areas that are overlapped by the most R1s. However, calculating all
possible intersections between R1s is NP-hard. To overcome this, we propose an
approximation method as follows that uniformly takes a few points from R1 to
represent them and finds a solution based on those representatives.

Fig. 3: An example of a random forest.
Colored view is recommended.

Fig. 4: A 2D approximation example. Col-
ored view is recommended.

Random Forest Discretization: This step discretizes the expert hyper-rectangles
of a RF to a finite number of integer-represented points. This transformation al-
lows the uniform selection of a few points from an expert hyper-rectangle as its
representatives. In a RF, a feature value is automatically segmented into mul-
tiple partitions by the split nodes. Suppose the number of partitions of the d
features are m1, ...,md respectively. We define an integer variable pi ∈ [1,mi]
for feature xi to represent the indices of xi’s partitions. For example, pi = j
represents the jth partition of the ith feature. Thus, a stroke x = (x1, x2, ..., xd)
can be written in integer form as x = (p1, p2, ..., pd). As expert hyper-rectangle
R1 is defined by the partition values, it can also be transformed to integer form
as R1 = {l1 < p1 ≤ r1, ..., ld < pd ≤ rd}, where (li, ri] defines the integer form
of the value range in dimension xi.

In Fig. 3, suppose x1, x2 ∈ [0, 1]. Then, based on where it splits, x1 has parti-
tions: [0, 0.3]1, (0.3, 0.5]2 and (0.5, 1]3 while x2 has partitions: [0, 0.2]1, (0.2, 0.7]2

and (0.7, 1]3. Thus, a stroke x = (x1 = 0.4, x2 = 0.8) can be transformed into
integer form as x = (p1 = 2, p2 = 3) with p1 and p2 denoting the partition num-
ber for their respective features. The expert rectangle R1 = {x1 > 0.5, x2 ≤ 0.2}
can be transformed into R1 = {2 < p1 ≤ 3, 0 < p2 ≤ 1}. As the RF grows
each tree on a random subset of features, the number of features that defines a
hyper-rectangle may be less than the total number of features.

With this transformation, a stroke is discretized to an integer point and an
expert hyper-rectangle is discretized to a finite number of points. For example,
R1 = {1 < p1 ≤ 3, 2 < p2 ≤ 3} is equivalent to R1 = {p1 ∈ {2, 3}, p2 ∈ {3}}
denoting only two points in R1: (p1 = 2, p2 = 3) and (p1 = 3, p2 = 3). As RF
can deal with both numerical and categorical data, this transformation can be
applied to arbitrary datasets. For simplicity, in the rest of this paper, “stroke”
and “hyper-rectangle” denote the discretized integer forms.

Hyper-rectangle Pruning: This process reduces the search space by 1) re-
moving redundant expert hyper-rectangles, and 2) removing redundant points
within the remaining hyper-rectangles so as to increase computational efficiency.
We denote the set of hyper-rectangles that remain after this process by R∗. The

RF feedback formulation problem can now be solved approximately by finding
a new stroke that is in the densest overlapping area of R∗s.
Removing redundant expert hyper-rectangles: For an expert hyper-rectangle to
be used to formulate feedback for a novice stroke x, it should contain at least one
possible solution, i.e., one point that satisfies the cost constraint: ∃xf ∈ R1 such
that ‖x − xf‖0 ≤ 1. When formulating feedback for x, expert hyper-rectangles
that cannot provide any possible solutions can be removed. For example, given
x = (p1 = 2, p2 = 3), the expert hyper-rectangle R1 = {0 < p1 ≤ 1, 4 < p2 ≤ 5}
does not contain any feasible solutions as x has to change two features (p1 and
p2) to be moved into this hyper-rectangle.

Pruning the remaining expert hyper-rectangles: Further, not all points in the
remaining hyper-rectangle are feasible solutions. Consider the same novice stroke
as above and R1 = {1 < p1 ≤ 3, 4 < p2 ≤ 5}. We can change x’s p2 to 5 to move
it into R1. However, there are other possible changes that can also move x into
R1, but require more than one feature change (e.g. changing p1 to 3 and p2 to
5 at the same time). Such changes violate the cost constraint, and as such can
be pruned from the solution space by fixing the value of pi in R1 to its value in
the novice stroke x, i.e., R1 → R∗ = {p1 = 2, 4 < p2 ≤ 5}.

Discrete Approximation: Finding points that are in the densest overlapping
area of R∗s can be done by iterating through all points in each R∗. However, this
approach is again computationally expensive. We avoid this through a discrete
approximation (DA) method that uniformly selects a small number of points
as representatives for R∗, and takes the center of the densest area of these
representatives as an approximation of the optimal solution.

We introduce a parameter α ∈ (0, 1] to indicate the proportion of represen-
tative values selected from each dimension of a hyper-rectangle R∗ = {l1 < p1 ≤
r1, l2 < p2 ≤ r2, ..., ld < pd ≤ rd}. The number of selected values from the ith

dimension can be calculated by:

ni =

{
ri − li if ri − li ≤ 2

dα(ri − li)e+ 2 otherwise
(1)

For a dimension pi that contains only 1 or 2 values, we directly use these
values to represent pi. Otherwise, we divide [li + 1, ri] into ni + 1 equal segments
and take the values in the division positions with li + 1 and ri as representative
values of pi. After extracting these values out of each dimension, we derive∏d

i=1 ni number of points by taking all the possible combinations.
To find the center of the densest area with respect to the representative

points, we consider an area defined by a hyper-sphere with radius γ. Then, based
on a computed Euclidean distance matrix between all representative points, the
point which has the most neighbours with a distance less than or equal to γ is
selected. The selected point is transformed from integer form back to its original
form by taking the corresponding original value in the partition position. The
feedback is then constructed based on the original form.

Fig. 4 illustrates an example where there are 3 expert rectangles (blue, green
and purple) and 2 features: x1 and x2 (p1, p2 are the integer forms of x1, x2

respectively). When taking 3 values in each dimension to represent a rectangle,
we get 9 representative points per rectangle. Thus, with a radius γ = 4, we
can find the red center point xf of the densest area (the red dashed circle)
of representative points. As shown in the figure, xf is also located in the best
expert space (the grey area overlapped by all three expert rectangles) that x
can be changed to. If the original form of x is (x1 = 0.9, x2 = 0.2) and xf

is (x1 = 0.4, x2 = 0.2), then the feedback for x is “decrease x1 to 0.4”. In a
nutshell, this method utilises 9 points to approximate each rectangle and the
red circle with a tunable radius to approximate the grey overlapping area. The
center of the circle is used as an approximation of the solutions in the grey area.

4 Experimental Evaluation

We compared the performance of the proposed DA method with 5 other methods:

1. Split Voting (SV): is the state-of-the-art real-time feedback formulation
method for RF introduced in [5].

2. Integer Linear Programming (ILP): solves the RF feedback formulation
problem by transforming it to an integer linear programming problem [6].

3. Random Selection (Rand-Rand): randomly picks a feature from a novice
stroke and selects a random partition of that feature as the feedback.

4. Random Iteration (Rand-Iter): randomly selects a feature and itera-
tively selects the best partition to change it to as the feedback [6].

5. Iterative Selection (Iter-Iter): iteratively tests all partitions of each fea-
ture while keeping the other features fixed. The overall best combination of
feature and partition is selected as the feedback [6].

The parameters of the DA method were tuned on the training data using a
grid search. The parameter values that showed the best results under the real-
time efficiency requirement of 1 second (α = 0.5 and γ = 2) were chosen. The
methods were evaluated based on the following 3 measures:

1. Success Rate (SR): SR =
|{ xf |F (xf)>0.5}|

|{x}| is the percentage of novice

strokes that are successfully changed to expert strokes. Higher values of SR
denote better performance.

2. Effectiveness (EFF): EFF = F (xf) is the value of the objective function
defined in Problem 1, i.e., the probability of the target stroke being an expert
stroke. It measures how effective the feedback is when applied to change the
novice stroke. Higher values signify better effectiveness.

3. Time-cost (TC): Time (seconds) spent to formulate one feedback, lower is
better. The lower the time-cost, the higher the efficiency.

Experiments were carried out on a typical PC with a 2.40GHz CPU. The ILP
solver used for the ILP method was CPLEX1 as recommended by the authors
[6]. Our dataset consisted of 60K strokes (28K expert strokes and 32K novice
strokes) performed by 7 experts and 12 novices. All methods were evaluated on

1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer

Table 1: Performance (mean±std) comparison between DA and other methods. The
best results are highlighted in bold.

Rand-Rand Iter-Iter Rand-Iter ILP SV DA

success rate 0.21±0.04 0.89±0.00 0.36±0.05 0.89±0.00 0.60±0.05 0.89±0.00

effectiveness 0.18±0.23 0.87±0.06 0.40±0.30 0.87±0.06 0.65±0.33 0.84±0.08

time-cost (s) 0.00±0.00 12.17±0.14 0.36±0.05 32.07±2.57 0.02±0.00 0.26±0.15

a RF with 100 trees and a maximum depth of 5. A 12-fold leave-one-novice-out
cross-validation was used to obtain an unbiased measure. In each fold, we used
all strokes performed by one novice as the test set and trained a RF prediction
model on the remaining strokes. All methods were then applied to formulate
feedback for strokes in the test set using the trained RF. This design simulates
the real-world scenario of an unknown novice using the simulator.

As shown in Table 1, in terms of success rate and effectiveness, the proposed
method (DA) is comparable to Iter-Iter and ILP that find optimal solutions
and outperforms the other methods by a large margin. However, Iter-Iter and
ILP take more than 10 seconds to formulate one feedback, and therefore fail to
meet the real-time efficiency requirement of 1 second. Overall, DA achieves near-
optimal success rate and effectiveness, and is highly efficient, indicating that it
finds the ideal balance for real-time use in TBS simulation.

Parameter and Scalability Analysis: As shown in Fig. 5, the time-cost of the
proposed method DA increases consistently with the increase of the parameter α.
However, the effectiveness is stabilized after α = 0.5. As α controls the number of
representative points, this indicates that using more points for the approximation
is not necessary and the effectiveness-efficiency balance can be achieved by the
use of a smaller α. We also tested the scalability of all methods with regard to
the number of trees in the RF. As shown in Fig. 6, the time-cost of ILP increases
dramatically as the number of trees increases and it takes more than 4 minutes
to formulate one feedback using a RF with 1,000 trees. Iter-Iter is also seen
to have a considerable increase in time-cost with the increase of the number of
trees. However, the other methods, including the proposed method (DA), are
more stable and remain highly efficient for large scale RFs.

Fig. 5: Performance of DA w.r.t. α Fig. 6: Scalability over number of trees

5 Conclusion

In this paper, we discussed the problem of formulating feedback using a random
forest based model for the specific application of virtual reality temporal bone
surgery simulation. We discretized the hyper-rectangles of a random forest into
integer form and proposed a novel method to formulate feedback using these
hyper-rectangles. We also showed that the proposed method outperformed the
state-of-the-art methods in terms of success rate and effectiveness while remain-
ing highly efficient. Moreover, it is consistently efficient for large-scale random
forests. The proposed method can be generalized to other simulation training
platforms where real-time feedback is of importance.

Acknowledgements

This research has received support from the Office of Naval Research Global.

References

1. Rhienmora, P., Haddawy, P., Suebnukarn, S., Dailey, M.N.: Intelligent dental train-
ing simulator with objective skill assessment and feedback. Artificial intelligence
in medicine 52(2), 115–121 (2011)

2. Wijewickrema, S., Copson, B., Zhou, Y., Ma, X., Briggs, R., Bailey, J., Kennedy,
G., OLeary, S.: Design and evaluation of a virtual reality simulation module for
training advanced temporal bone surgery (2017)

3. Ma, X., Wijewickrema, S., Zhou, Y., Copson, B., Bailey, J., Kennedy, G., OLeary,
S.: Simulation for training cochlear implant electrode insertion (2017)

4. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., O’Leary, S., Kennedy, G.:
Pattern-based real-time feedback for a temporal bone simulator. In: Proc. of the
19th ACM Symposium on VRST. pp. 7–16 (2013)

5. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., Kennedy, G., OLeary, S.: Con-
structive real time feedback for a temporal bone simulator. In: MICCAI (2013),
pp. 315–322

6. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: KDD (2015). pp. 179–188

7. Ma, X., Bailey, J., Wijewickrema, S., Zhou, S., Mhammedi, Z., Zhou, Y.,
O’Leary, S.: Adversarial generation of real-time feedback with neural networks
for simulation-based training. arXiv:1703.01460 (2017)

8. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive
science 12(2), 257–285 (1988)

9. Zhou, Y., Ioannou, I., Wijewickrema, S., Bailey, J., Kennedy, G., OLeary, S.: Au-
tomated segmentation of surgical motion for performance analysis and feedback.
In: MICCAI (2015), pp. 379–386

10. Yang, Q., Yin, J., Ling, C., Pan, R.: Extracting actionable knowledge from decision
trees. TKDE 19(1), 43–56 (2007)

11. Breiman, L.: Some infinity theory for predictor ensembles. Tech. rep., Technical
Report 579, Statistics Dept. UCB (2000)

