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Abstract

Medical Subject Headings (MeSH) are used to index the majority of databases gener-

ated by the National Library of Medicine. Essentially, MeSH terms are designed to make

information, such as scientific articles, more retrievable and assessable to users of systems

such as PubMed. This paper proposes a novel method for automating the assignment of

biomedical publications with MeSH terms that takes advantage of citation references to

these publications. Our findings show that analysing the citation references that point to a

document can provide a useful source of terms that are not present in the document. The

use of these citation contexts, as they are known, can thus help to provide a richer docu-

ment feature representation, which in turn can help improve text mining and information

retrieval applications, in our case MeSH term classification. In this paper, we also explore

new methods of selecting and utilising citation contexts. In particular, we assess the effect

of weighting the importance of citation terms (found in the citation contexts) according to

two aspects: i) the section of the paper they appear in, and ii) their distance to the citation

marker.

We conduct intrinsic and extrinsic evaluations of citation term quality. For the intrinsic

evaluation, we rely on the UMLS Metathesaurus conceptual database to explore the semantic

characteristics of the mined citation terms. We also analyse the “informativeness” of these

terms using a class-entropy measure. For the extrinsic evaluation, we run a series of auto-

matic document classification experiments over MeSH terms. Our experimental evaluation

shows that citation contexts contain terms that are related to the original document, and

that the integration of this knowledge results in better classification performance compared

to two state-of-the-art MeSH classification systems: MeSHUP and MTI. Our experiments

also demonstrate that the consideration of Section and Distance factors can lead to statis-

tically significant improvements in citation feature quality, thus opening the way for better

document feature representation in other biomedical text processing applications.

Keywords: Citation contexts, document expansion, biomedical text classification, MeSH
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terms

1. Introduction

Citations are extensively used in academic publications in order to refer to related work,

or to point to extra information complementing what is being said. An example of a citation

is shown in Figure 1. Each citation provides a link to the reference material and a context

that describes some aspect of it. A citation context is the text surrounding citation markers

used to refer to other publications. These text snippets can be a useful source of terms,

such as relevant synonyms and related vocabulary that is not present in the document. For

instance, the term “enrichment” that is used in one of the citations does not occur at all

in the cited document, which refers to this concept with the term “expansion”. The use

of these citations can therefore help to provide a richer document feature representation.

Previous work has identified the usefulness of this source of information for applications

such as Text Mining [1, 2, 3], and Information Retrieval (IR) [4, 5].

In recent times, text analysis applications have been the object of extensive study, spe-

cially in areas such as biomedicine where there has been a huge growth in the amount

of information published. In the biomedical domain alone, around 1,800 new papers are

published daily [6]. As of September 2009, MEDLINE, which is the largest collection of bib-

liographic records on the biomedical literature, contained more than 19 million references,

and it is estimated that the employees of the National Library of Medicine1 (NLM) add

between 1,500 and 3,500 new references to the database every day [7]. In order to make

these publications more accessible, MeSH2 (Medical Subject H eading) terms are used to

index all these entries; a time consuming process which could significantly benefit from an

automatic text classification solution.

Traditionally, text processing techniques represent documents by using the publication’s

original source text, which consists of features such as terms and phrases. Moreover, many

tools, such as text classifiers [8, 9, 10], use the bag-of-words (BOW) model to represent the

1http://www.nlm.nih.gov
2http://www.nlm.nih.gov/mesh/
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Figure 1: An example of a document being cited.

documents in which each feature corresponds to a single word. The BOW model in Natural

Language Processing (NLP) and IR is a popular method for representing documents, as it is

very simple and highly effective. However, this representation ignores semantic relationships

between terms. Hence, the selection and weighting of features must be carefully done.

This paper examines different ways of enriching the feature representation by relying

on external resources such as the text surrounding citations of a scientific publication (i.e.,

citation contexts), and the conceptual relations found in the Unified Medical Language

System (UMLS) Metathesaurus3. The main idea is to explore ways to better extend the

representation of a given document by the terms that are used to refer to it. Looking at

Figure 1, all the text snippets (citation contexts) citing that document are used to enrich the

representation of that document. We also present an analysis of the types of terms that are

3http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
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found in citation contexts, and propose a way to obtain the most benefit from these types

of features in a MeSH term classification task. We explore whether citation contexts are a

useful alternative source of semantically related terms, which can be used to strengthen the

topical focus of a document’s original feature representation. However, these features need

special consideration - in particular with respect to selection and weighting - in order to

achieve an improvement over baseline performance. These are the main questions that we

address in this work:

1. What kind of relationships exist between citation terms and the full-text content of

documents? We analyse and identify the type of terms that are acquired from cita-

tions to better understand their contribution, and also to learn if citation contexts

contain both lexically equivalent terms and many related terms such as synonyms,

near-synonyms and spelling variants.

2. Does document layout information have an impact on the usefulness of those terms?

In other words, are certain sections of a paper more likely to contain useful citation

terms? We investigate weighting the citation terms based on the sections containing

them.

3. Can the distance (in words) of the citation terms to the citation marker influence the

usefulness of those terms? We investigate weighting the citation terms based on the

distance between them and their citation markers.

4. To what extent can the length of citation contexts affect their usefulness? The citation

context is extracted based on a window size parameter. The window size is the number

of extracted terms before and after the citation marker.

By exploring the above questions, we test our hypothesis that these citations character-

istics can be used to optimising a text classification model for scientific publications. We

evaluate this hypothesis by evaluating our new model in the context of MeSH classification

task with respect to two state-of-the-art systems. There are two main novel contributions of

the work presented in this paper. First, we provide a novel intrinsic evaluation methodol-

ogy for determining the quality of citation terms (cf. Section 4) by analysing i) the semantic
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characteristics of the citation terms (e.g. whether they are synonyms/hypernyms) and ii)

the relationships between the following factors:

• The presence of synonyms/hypernyms with respect to the document section in which

they occur.

• Citation term entropy (or informativeness) and the document sections where these

terms occur in.

• Citation term entropy and the distance to their citation markers.

Second, we evaluate the citation terms extrinsically, where the objective is to see if

our observations on citation quality result in better document representation, and hence

more accurate text classification of biomedical publications (more details will be given in

Section 7). We use the terms in the citations to improve document classification, and

analyse the effect of the following parameters: (i) section (and subsections) of the paper

where the citation comes from, (ii) distance of the term to the citation marker, (iii) citation

context window size, and (iv) type of terms (synonyms, hypernyms) in the citation. Hence,

we focus in our experiments on feature engineering, and specifically on how best to select

and weight these features. We also compare our approach to two state-of-the-art MeSH tag

classification systems, namely MTI [11] and MeSHUP [12]. To the best of our knowledge,

this is the first published application of citation contexts in a MeSH classification task.

The remainder of the paper is organised as follows. In Section 2 we discuss related work.

We then introduce the dataset and resources used in our experiments in Section 3. The

intrinsic evaluation over our dataset is presented in Section 4. We then move on to the text

classification task, and describe our document representation, experimental setting, results,

and findings in Sections 5, 6, 7, and 8 respectively. Finally, we present our conclusions and

future work in Section 9.
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2. Related work

In this section, we provide an overview on work that analyses citation contexts, and we

explore how these have been applied to language technology applications. We then discuss

the relationship between citation contexts and anchor text, which has been successfully

applied by the IR community in the area of Web search. Finally, we describe related work

on the text classification task, which we will use for extrinsic evaluation.

2.1. Analysis of citation contexts

Citations and their use have been of great interest to researchers. One of the earliest

studies on the importance of citations for analysis of scientific literature was published by

Garfield in [13]. In more recent work, the study of the text surrounding citations (also

referred as citation sentences or citances [1]) has been used to determine the relationship

between the two papers connected by that citation, defining a citation function [14, 15].

Related work by Teufel and Moens [16, 17], and Nanba et al. [18, 19, 20] automatically

analyses citation contexts. Teufel and Moens develop an argumentative zoning 4 technique,

which is a discourse classification technique that labels sentences according to their role in

the authors’ argument, e.g. contrasting, basis, and background. Their method can identify

the novel claim or contribution of a cited paper by analysing its citations. This classification

technique is used to generate summaries of the cited papers by showing sentences that

support the specific rhetorical role. Their most recent work has shown that the approach

can be applied to fine-grained analysis and different domains with high annotator agreement.

Nanba et.al. published some interesting work that explores characteristics of citations; they

analyse citations of research papers and automatically classify citation links based on their

motivations into three categories, using cue phrases and 160 rules. The three categories

are (i) a comparison to other related papers (either negatively or positively) (ii) building

on other related work (iii) others that do not fall into either of the previous two classes.

This categorization scheme is used to build a system for reviewing and surveying academic

literature.

4Argumentative Zoning [21]; http://www.cl.cam.ac.uk/ sht25/az.html
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Another approach to analyse citation contexts is to study the terms found in them.

Ritchie, Teufel & Robertson [22] identified the words from around the citations that specif-

ically referred to the cited paper, both manually and automatically (using a fixed window

size). They found that there was overlap between the citing terms and important terms in

the original document. Also, combining citing terms with terms in the original document

(using the tf-idf weighting scheme) was found to be useful for ranking relevant terms to

represent a document.

2.2. Applications of citation contexts

Regarding more specific applications of citation contexts, early work by Nakov et al. [1]

focuses on the utility of citations for managing life science literature. They identify a number

of promising applications of citations in this domain: as a source of unannotated compara-

ble corpora, summarisation of the target papers, synonym identification and disambiguation,

entity recognition, relation extraction, and improved citation indexes for document retrieval.

In the same article, Nakov et.al. also introduce the idea of using citation contexts as com-

parable corpora for automatic paraphrase extraction. These citation contexts have been

used to support automatic paraphrasing. Thus, the extracted paraphrases have to cite the

same target article. In particular, the authors propose a paraphrase extraction algorithm

that identifies the relationship between two named entities; such as genes, proteins or MeSH

terms5, such as Neuregulins and Brain-Derived Neurotrophic Factor. In summary, named

entities found in each citation sentence are identified; then, based on a dependency parser,

the path between them is extracted and a paraphrase built. Finally, the candidates of name

entities are ranked to select only those above a given threshold.

Another possible application of citation contexts is automatic summarisation. Moham-

mad et. al. [23] propose a method that produces an automatically generated multi-document

survey. The method is built on four summarisation systems that use citation terms. Com-

5MeSH stands for Medical Subject H eadings which are part of a large controlled vocabulary of topic

terms used for indexing journal articles and books in the Life Sciences arena, and managed by the United

States National Library of Medicine (NLM); http://www.nlm.nih.gov.
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pared with summarisation based on full-text document, citation terms provide additional

information, which cannot be found elsewhere. Elkiss et.al. [3] provided a quantitative

analysis of the benefits of citation contexts with regards to similar applications, such as

summarisation and information retrieval. In particular, they examined the relationship be-

tween the abstract and citation contexts of a given scientific paper. Their experiments show

that citation contexts tend to have extra focused information that is not present in the

abstract. Therefore, they suggest that citation contexts can be utilized as a different kind

of supplementary summary to the traditional abstract.

Also for summarisation of information, a research tool called the Citation-Sensitive In-

Browser Summariser (CSIBS) was introduced by Wan et.al. [24, 25]. When researchers read

the academic literature, to enhance their knowledge and explore new topics and methodolo-

gies, they come across citations to other related works. To save time in deciding whether the

cited work is worth reading or not, a research tool to help manage the literature browsing

task was built. The inventors of CSIBS conducted a user requirements analysis [26] for

researchers (especially, in the biomedical field) while they browsed through the academic

literature. They found that they often lacked the necessary contextual information for in-

terpreting the interestingness of the citations they encountered. Thus, CSIBS was built

to provide researchers with a summary of the cited document. CSIBS can be used as a

web service attached to an existing publication repository. A qualitative evaluation showed

that the generated summaries provide useful information that was sufficient for judging the

relevance of cited documents [26, 25].

A straightforward application of citation contexts, and the one we will explore in this

paper, is text classification. In previous work, citation terms have been used mostly for

document expansion. That is, the document representation of a publication (usually BOW)

is augmented with terms found in sentences surrounding citations of the paper in the rest

of the document corpus [4, 27, 28]. In our previous work, published in [29], we investigated

the usefulness of citation terms in a document clustering task. Our results indicated that

citation terms are, in general, useful when combined with the original representation. Also,

we investigated citation terms based on different levels of topic granularity and found that
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citation terms tend to capture general topic keywords rather than specific ones. However,

the citation terms can introduce noise if they are not related to the general topic of the

cited paper. In our present work, we analyse the relationships between terms in the original

document and citation terms in order to define a better model. We extend our previous work

by also investigating factors that affect the usefulness of the citation terms in a different

text processing task - supervised document classification.

Citation contexts have been also applied to information retrieval (IR). Bradshaw [28, 27]

introduced a novel automatic document indexing scheme based on citations, called Refer-

ence Directed Indexing (RDI). RDI uses terms in citation sentences to index a cited article.

Documents are then ranked with respect to the following metrics: the relevance score be-

tween document index terms (from the citation sentences) and the query terms, and the

number of papers citing that document. Hence, highly cited documents will be ranked

higher than documents with lower numbers of citations even if their term indexes have the

same number of query terms. The performance of RDI was evaluated against the standard

vector-space model, which uses the tf-idf weighting method and the Cosine similarity metric.

RDI achieved better precision on the top 10 retrieved documents (statistically significant at

99.5% confidence) [30, 31, 27].

In a more recent work [5], Ritchie et.al. presented the results of experiments using

terms from citations for scientific literature search. For every document, they combined

terms from the full-text document itself and terms used by other authors to refer to that

document. The influence of weighting citation terms differently relative to document terms

was measured. A set of weights was used to evaluate the citation terms. As a result, the IR

performance is improved when citation terms are weighted more. Also, they used a range

of standard performance measures and t-test for statistical significance and ran the queries

through several standard retrieval models, as implemented in the Lemur Toolkit6: Okapi

BM25, KL-divergence and Cosine similarity. In each run, 100 documents were retrieved per

query. Overall, the IR performance is increased with citation terms, for all models, for all

6http://www.lemurproject.org/
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measures, with the exception of Okapi run [5].

Ritchie et.al. in [4] compare different lengths of citation contexts for IR, including:

no context, the entire citing paper, different fixed window sizes, and sentence boundaries.

The results show that adding citation terms to the full-text representation can improve the

performance of information retrieval systems at different levels. More specifically, longer

citation contexts (but not the whole citing documents) tend to be better. The authors

conclude that applying natural language processing techniques to identify the related citation

terms can bring further improvement.

Our work is related to [5, 4, 3], who used citation terms with original full-text to boost

systems such as IR and text summarisation. The main differences of our approach are our

application task (text classification), the implementation of intrinsic evaluation, and the

reliance on sophisticated term-weighting models based on a variety of parameters: sections

that the terms come from, distance to the citation markers, semantic relationships from a

knowledge-base, and window size.

Finally, a recent body of work has focused on context-aware citation recommendation.

Sugiyama et.al. [32] presented a supervised classification system that takes a draft (unpub-

lished) paper as input and decides whether there are sentences in that paper which need

citations. They conducted their experiments over two supervised classifiers, namely max-

imum entropy (ME) and support vector machines (SVM). Also, they extracted different

kinds of features such as unigrams, bigrams, proper nouns, and previous and next sen-

tence. The results showed high accuracy scores (0.882) when proper noun and previous and

next sentence features are used. Another related citation recommendation system has also

been proposed by He et.al. [33]. They implement a prototype system in CiteSeerX, where

a citation context and the title and abstract are submitted, and a set of ranked relevant

recommendations are retrieved.

2.3. Anchor Text use in Web Retrieval

Anchor text is another way of referring to related information, and consists of a piece

of clickable text that links to a target Web page. More precisely, the anchor text is defined
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as the text encompassed by a ‘<a href ’ tag in an HTML document. For instance, Figure 2

shows an example of a text snippet of an anchor text; where the words ‘The University of

Melbourne’ represent an anchor text snippet, and the words ‘was founded in 1853 and it is

the second oldest university in Australia’ represent the extended anchor text.

Figure 2: An example of an anchor text.

Extended anchor text refers to text surrounding the vocabulary outside of the hyper-

text link, which is defined by a fixed window size. In addition, researchers have included

surrounding headings and other highlighted text fragments in their extended anchor text

definition. Therefore, the anchor text and the extended anchor text in web pages are similar

to the citation marker and citation context in academic documents. The link structure of

the Web, including anchor text and extended anchor text, has been studied extensively in

IR and exploited to advantage in some retrieval tasks [34].

There is a clear parallel between the anchor text (or extended anchor text) and citation

contexts of scientific literature: they both provide a semantic linkage between documents.

However, there are also a number of critical differences between them: (i) anchor text links

in web pages are not always informative, as they may be just commercial or navigational

links, whereas links of citation contexts are curated and purposefully inserted; (ii) links of

anchor text can link to various types of objects, such as web pages and pictures, whereas

links of citation contexts always link to textual documents; (iii) links of anchor text can be

changed at any time, whereas links of citation contexts cannot be changed once the paper

is published in journals or proceedings; and (iv) the window size of extended anchor text is

relatively small compared with the window size of citation contexts.

Many popular literature search engines, such as CiteSeerX7 [35] and Google Scholar8,

7Scientific Literature Digital Library, http://citeseerx.ist.psu.edu
8Google search engine, for peer-reviewed scholarly literature, http://scholar.google.com
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also use the links between articles and documents provided by citations to enhance their

ranked retrieval results. These retrieval systems provide researchers with a means of crawling

and navigating through the network of scholarly scientific articles (that is, the citation

graph) in a particular domain. Citation links have also been used in those search engines

to analyze research trends, and discover the relationships between publications and their

ranking in terms of the number of times they have been cited [36]. There are two well-known

algorithms which exploit link structure in this area: PageRank which is a query-independent

link analysis algorithm [37] and HITS which is a query-dependent algorithm and stands for

Hyperlink Induced Topic Search [38].

Past research on the TREC Web retrieval tasks was not able to show the effectiveness of

anchor text [39]. One of the reasons for this could be that the document collections and link

graphs being used were small. However, the TREC 2009 Web Track collection was very large

compared with previous collections, and using this data Koolen and Kamps [39] re-examined

the importance of anchor text for ad hoc search. They found that at early precision, the use

of anchor text even outperformed full-text. With regards to overall precision, they showed

that the combination of anchor text and full-text achieved the best result. In this article,

the authors also investigated the relationship between the performance and the size of the

dataset (original documents and anchors). They observed a clear decrease of the effectiveness

of anchor text when the number of anchors was reduced by downsampling. However, when

they applied downsampling to the original documents in the collection, they observed that

the relative effectiveness of anchor text decreased over the original full text. As a result,

Koolen and Kamps (2010) concluded that the use of anchor text is most effective for larger

collections.

2.4. Text Classification for the biomedical domain

Finally, we describe related work on text classification for the biomedical domain. There

has been interest from many research groups in developing text mining tools [40, 41, 42]

for the biomedical domain. Cohen and Hersch [43] provide a survey of work on this area.

Some of this work has been centered around the MeSH ontology from the NLM. MeSH
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terms (classes) are used to manually index all the entries (articles) into MEDLINE, which

is the largest collection of bibliographic records of the biomedical literature. These terms

are organised into a hierarchy of 24,000 terms, making automation challenging, and the use

of automatic aids for the process has been pursued for a long time, as the NLM’s Indexing

Initiative9 illustrates. As a result of this initiative the Medical Text Indexer (MTI), based on

ngram search, was built by NLM. MTI is a text processing system which relies on semantic

relationships to retrieve a ranked list of MeSH terms according to a medical journal, using

knowledge from the Unified Medical Language System (UMLS) and information from the

MEDLINE database of citations [11].

Most research on automatic MeSH classification does not consider the full set of MeSH

tags. Instead, techniques focus on a reduced version of the hierarchy, as is the case in [7],

where the categories of MeSH terms (classes) are generalised to the second level of the tree,

resulting in a set of 114 classes. For this system, techniques rely on automatic rule generation,

and their best performances reach an f-score in the high fifties. Other approaches also

decided to focus on a smaller subset of MeSH tags; recent work by the NLM research group

Sohn et.al. [44] involved choosing 20 MeSH terms covering different frequency ranges for

their experiments. Then Sohn et.al. developed an approach motivated by active learning to

construct an “optimal” training set, obtaining an average precision of over 50%, significantly

better than the baseline.

The MeSHUP system, which is developed by [12], explores the combination of different

Machine Learning (ML) approaches to perform classification over the full class-set. Addi-

tionally, they evaluate their results on an IR task, from a ranked output of MeSH terms. The

results show that their method is able to improve the performance of MTI, but a limitation

of the evaluation is that they only present the results for the optimal cut-off of the ranking.

9http://ii.nlm.nih.gov
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3. Dataset and knowledge sources

The corpus used in our experiments is a subset of the TREC Genomic 2006/2007 doc-

ument collection 10, which consists of 162,259 full-text HTML journal articles, published

electronically via Highwire Press. This collection is the largest publicly available collection

of full-text articles; previous collections consisted of titles, abstracts and keywords only,

due to the reluctance of publishers to release pay-per-view content even for academic use.

The TREC Genomic collection is also a valuable resource because these full-text documents

facilitate the identification and collection of citation contexts from the main body of these

publications. Therefore, every document can be represented by two different representations,

namely: original full-text and citation representations. The original full-text representation

consists of terms found in the document itself; whereas the citation representation consists

of terms found in citation contexts from other documents that refer to the target document.

Identifying the right context for each citation is not an easy task. The relevant text to

a marker can be located before or after it, or even both; it can consist of a few words, or

go on for many sentences. In this work we rely on a 50-word window at each side of the

target word (truncated if there is a paragraph break), an approach that has produced good

results in other previous works. For example, Ritchie et.al. in [4] compare different lengths of

citation contexts and investigate the effectiveness of those various lengths of citation context

around the citation markers, in order to better select good terms in the context of document

retrieval task. That range of citation context length includes: no context, the entire citing

paper, different fixed window sizes, and sentence boundaries. Their results show that longer

citation context length (but not the whole citing documents) is better. Note also that in

our work we rely on a BOW representation, and therefore we do not need syntactically valid

sentences. Apart from the 50-word windows, we decided to perform an experiment with

different window sizes in Section 7, including the full paragraph the marker is in.

With regards to the document collection, we only rely on the subset of documents that has

at least one incoming citation in the collection, and that leaves us with 3,475 documents.

10http://ir.ohsu.edu/genomics/
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We did not perform any sophisticated matching of citations to papers, and we built our

dataset based on the explicit references to PubMed-identifiers. This makes us discard some

citations, but allows us to experiment on the most explicit, easy-to-parse references. The

final collection contains 16,090 citation contexts overall, with an average of 4.63 contexts

(the standard deviation is 7.7 contexts) and 33.64 terms for each context.

Each document in the collection has manually-assigned MeSH terms, and this will allow

us to experiment on text classification. Our goal will be to automatically predict these

tags. As was mentioned earlier in Section 2.4, MeSH terms are manually assigned to all

documents in MEDLINE by the NLM, and are organised into a hierarchy of 24,000 terms,

making automation challenging.

In our subset of the TREC Genomic 2006/2007 document collection, we have an un-

balanced class distribution. There are also some MeSH terms (classes) which have been

assigned to only a small number of documents in our dataset. As a result, and like previous

work described in Section 2.4, our experiments will rely on a subset of this tagset, by select-

ing the 20 most frequently occurring MeSH terms in our document collection (see Table 1

for the full list).

Finally, for ontological knowledge, we rely on the Metathesaurus, developed by the NLM,

which contains information about biomedical and health related concepts. Its hierarchical

structure also captures the relationships between concepts, e.g. ‘head trauma’ is a type of

‘injury’. This will allow us to study the relationships between terms from different sources

(original full-text document and citations). We use the UMLS-query Perl module [45] to

interface with the Metathesaurus and extract related words. UMLS version 2009AA was

used for our experiments.

We focus on two types of relationships between terms:

• Synonyms (SYN): Synonyms are distinct lexical forms for identical or very similar

meaning concepts. For example, injury and trauma , or hemorrhage and blood loss.

• Hypernym (HYP): A hypernym is a word whose semantic range includes another

word. For example, injury is a hypernym of burn , and organism is a hypernym of
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bacteria.

4. Analysis of citation term characteristics

In this section we conduct an intrinsic analysis of the kinds of terms that we find in

citation contexts, and the effect of influential factors, such as the Sections they are con-

tained in and the Distance to citation markers, on the “quality” of citation terms. For a

quantitative analysis of these terms, we rely on two indicators: (i) Metathesaurus, an ex-

tensive domain-specific thesaurus that provides links with semantic relationships between

different terms, and (ii) Shannon’s entropy measurement [46], which estimates the average

information content of a message, or in this case a single term. These allow us to intrinsically

evaluate terms found in citation contexts, independently of other applications. In previous

work in [29], we also developed an approach for intrinsic evaluation, by relying on pairwise

similarity between citations and original documents. This method showed that there are

substantial differences between them. Our new approach will provide more insight on the

types of relationships among the terms from different sources, regions of the paper, and

distance to the marker.

Thus, we will first analyse the relationship between the terms in the original full-text

document and the citations, by employing the thesaurus. For our second experiment, we

will rely on both the thesaurus and entropy measures to analyse the type of citation terms

according to two parameters: (i) the Section of the paper they occur in, and (ii) the Distance

to the citation marker.

4.1. Semantic relationships between terms

In this subsection, we rely on the Metathesaurus to study the way in which citation

terms and original terms are related. Two factors are measured: (i) the overlap between the

original full-text representation and the citation contexts, and (ii) the relationship between

novel terms in the citation contexts and the original terms in the full-text representation.

A novel (non-overlapping) term in a citation context is a term that occurs in a citation

context and is not found in the original document’s full-text representation. Our motivation
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is to assess the potential of citations as a source of new and relevant terms for document

expansion. Intuitively, it would be interesting to find many new terms in citations, and for

those terms to be related to the original terms. As a reference, we also built a baseline

method where the sets of citations pointing to a target document were randomly assigned

to a different document. Our aim with this baseline was to measure the amount of new and

related terms that we would expect to find by chance from a random text snippet in the

collection, and compare these numbers to the real citations to see if there is a clear signal.

Our approach to measuring the term relationships between document terms and citation

terms consists of three steps: (i) identify all novel terms in the citation contexts (i.e. the

terms not present in the original documents), (ii) for each term, obtain its synonyms and

hypernym from the Metathesaurus, and (iii) search for these related words in the original

representations; each match implies that the novel term in the citation has an ontological

relationship to a term in the original document. This process allows us to identify the new

citation terms that are synonyms and hypernyms of the terms in the original representation.

In order to define the terms to be used as unit of the analysis, we considered different

approaches. We first explored the use of sliding windows to identify phrases present in the

Metathesaurus. We tested windows up to three terms, and found that a large proportion

of the matches were single tokens. We then applied the MetaMap11 tool from the NLM

to identify relevant phrases in the text; however we found that its phrase segmentation

produced long strings containing UMLS concepts; and using those strings for look-up over

the original documents would be problematic, and would produce an artificial increase in

the amount of novel concepts found in citations. For instance, the phrase “heart size” can

be identified by MetaMap in a citation, and looking up this phrase in the original document

may not produce a match, even if “heart” and “size” are present, however we do not want

to consider “heart size” as a novel concept.

A better way of using MetaMap would be to identify the substrings in the found phrases

that belong to UMLS, but for simplicity in our work citation terms are defined as single

11http://metamap.nlm.nih.gov/
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tokens, although the expansion terms (from the Metathesaurus) can be multi-words. The

use of single words ensures that the terms identified as novel are new concepts not present

in the original document, and not word ngrams

The results are shown in Table 2. We can see that most of the terms found in the citation

contexts do not occur in the original, cited documents. Also an important percentage of

those terms are synonyms or hypernyms of words in the original documents. In contrast,

there are slightly more new terms in random citations, as expected, but less of these have

related terms in the original document. We find less than half the amount of synonyms, and

37% less hypernyms. This suggests that citations can be a useful source of information.

We next look at the distribution of new terms and relationships within different logical

sections in the scientific articles. Our goal is to measure if there are substantial differences

according to the position of the citation in the text. For that, we segment each document

into sections by relying on the headings. We identified eight main section names, and we

map all the headings from all the papers into those eight categories using a set of manually

generated rules. This is done by first listing all unique section headings using the HTML

tags that delimit them; then examining the list manually and mapping each heading into

one of the main headings. In cases where the mapping is not clear from the chosen words, we

access the original paper, and map into the closest section heading after reading the content

(e.g. “Data integration” into “Method”). Note that these cases were rare (less than 5% of

the list).

After normalising the section headings, we analyse the distribution of citation terms in

Table 3. The results show that section types -Discussion, Introduction and Results- contain

the citation contexts with the highest proportion of terms that are semantically related

to terms in the original document text. On the other hand, terms from Conclusion and

Future work are scarce and less related. This information may be useful in the context of

applications, and will be studied further in Section 7.

Our observations indicate that a large proportion of new and related terms (cf. Table 2)

come from the top sections in which we find most of the citations (cf. Table 3). It is not

surprising that most citation terms are found in sections, such as “Discussion”, “Introduc-

19



tion”, and “Results”, as they are most commonly used by authors to compare their work and

findings with other existing research. Authors might be expected to describe other related

research using different words and terminologies in such sections; thus they are very likely

to have new and related citation terms.

Likewise, sections like Methods and Experiments can be used to compare the current tools

and methodologies with one another. These sections were found to have a large proportion

of the new and related terms.

On the other hand, sections like “Conclusion” and “Future work” are less likely to be

used to cite others. Rather, authors seem to use these sections to emphasise their findings

and summarise their work (i.e. in “Conclusion”), and describe some work that they intend

to complete (i.e. in “Future work”).

4.2. Section weight and distance

We will focus now on the class distribution of terms as a way to measure their potential

for text processing applications, such as clustering or text classification. Given a distribution

of classes across documents, we expect the (class) discriminating power of a term to increase

as class entropy lowers. We measure the discriminating power or “quality” of a term using

Shannon’s entropy measurement [46]. For all classes (i.e. MeSH tags), we compute the

entropy of a term in our collection using the following equation:

H(t)=−
∑n

i=1 P(ti) log P(ti) (1)

where P (ti) is the probability that term t appears in class i, and n is the number of classes.

As explained earlier in Section 3, we rely on 20 MeSH terms to form the classes. To

illustrate how class-entropy can be used to distinguish the most relevant terms of a given

class, we show the top 20 terms ranked according to their entropy score (lowest first) in

Table 4. In many cases, we can intuitively see why some terms have a strong relationship with
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certain classes. For example, the term “demography” appears in 37 documents belonging to

class “Humans” out of 37 documents; whereas other classes have one or zero occurrences.

Focusing on the major classes, for the class HUMAN the top terms in the list refer to

information about studies (demography, ethnic, cohort, covariance, gender, multi-vari); the

human body (forearm, supine); and human activities (smoke). While in the case of the class

ANIMAL there are terms about habitat (forage, tank, freshwater, tidal); kinds of animals

(trout, predator); and animal studies (thoracotomy, jugular, doppler, tunnel).

We will now use the class-entropy of terms to analyse two parameters: Section position,

and Distance to the marker. To calculate the correlation coefficient between the class-

entropy of terms and those parameters, we use the CORREL function, which calculates the

Pearson Product-Moment Correlation Coefficient for two sets of values as follows:

CORREL(X, Y )=

∑
(x− x−)(y − y−)√∑

(x− x−)2 ∑
(y − y−)2 (2)

where x− and y− are the sample means of the x and y values, respectively.

Regarding the relationship between entropy and Section position, we define a section-

score for each term, which measures the sections of the text it tends to occur in. The section

weight is simply obtained by measuring the proportion of SYN and HYP terms found in the

section (e.g. the section Discussion has a weight of 0.27, see Table 3 for further details). For

every term, we calculate the average section weight as follows:

AW (t)=

∑nt

i=1 Wt,i

nt

(3)

where AW (t) is the average weight of all sections in which term t appears, Wt,i is the

weight of section i containing t, (if t does not appear in any recognised section, Wt,i=0), and

nt is the number of occurrences of term t in the document.
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Thus, for each term we calculate its class-entropy and average section weight. Next, we

measure the correlation coefficient between the two parameters, obtaining a score of -0.46,

which shows a strong negative correlation. For illustration, Figure 3 shows the relationship

between a term’s average section weight and its entropy. There seems to be a relationship

between entropy and sections in which the terms occur, suggesting that terms with high

average section score tend to have low entropy, and vice versa. This could indicate that

sections with high scores (based on SYN and HYP density) tend to have the most valuable

citation terms. This is a first indication that the section weight could be a relevant pa-

rameter for applying citation terms. For example, a term found in sections like “Results”,

“Discussion” and “Introduction” is likely to be more valuable than if it appears in a section

like “Conclusion”. This seems reasonable, as in general authors compare their work with

related research within sections such as “Discussion” and“Results”, whereas they tend to

summarise their paper’s contributions within the “Conclusion” section. We will explore this

observation further in our text classification task (cf. Section 7) where we weight citation

terms differently based on the sections in which they occur.

Finally, we explore the relationship between the entropy of citation terms with respect to

their average Distance (in words) from their citation marker. For every term, we calculate

the average distance (in words) as follows:

DW (t)=

∑nt

i=1 Dt,i

nt

(4)

where DW (t) is the average distance of term t, Dt,i is the number of terms between term

t and citation marker i, and nt is the number of occurrences of term t in the document.

Looking at Figure 4, in this case the correlation coefficient score is 0.14, which indicates

that there is not clear linear relation between these values. This result may seem somewhat

counter-intuitive.
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Figure 3: Graph showing the relationships between the Average weight of Sections and the Entropy of

citation terms (with correlation coefficient of -0.46).

Generally speaking, in academic literature, there is no universal method which is used

to cite others, so authors place citation markers in different positions even when the scope

of citation is the same. For example, some authors start their citation context with citation

markers, while others place citation markers at the end of citation contexts when they are

finished discussing the related work. Some authors place the citation markers once they

mention the work, then they continue to describe that work and other related findings.

Alternatively, authors describe other work and compare it with theirs, and then they point

to that work. Hence, the most “interesting” terms associated with the paper being cited

are not necessarily closest to the citation marker. We will also test this parameter in our

text classification experiments to confirm the usefulness of the distance information (cf.

Section 7).
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Figure 4: Graph showing the relationships between Distance to citation marker and the Entropy of citation

terms (with correlation coefficient of 0.14).

5. Document representation for text classification

We now present an extrinsic evaluation of the “quality” of our citation terms using

a text classification task, where the goal is to assign one or more semantic tags to each

document, and compare the predictions to the manually-assigned tags. As described in

Section 3, our target tags are MeSH terms, and our document collection is a subset of the

TREC Genomics dataset. We explore different ways to model documents for this task, by

relying on two resources: (i) the Metathesaurus, and (ii) citation contexts. In this section

we first describe the different ways to enrich document representations, and then we explain

weighting schemas for the terms.
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5.1. Document enrichment

Document enrichment (also known as document expansion) is the process of adding re-

lated terms to the representation of the document. When measuring the similarity among

documents, this technique can be used to overcome the problem of vocabulary mismatch,

where a relevant document can be missed because a concept is referred to with a synonym.

In IR for instance, document expansion techniques enrich documents off-line with related

terms during indexing. This type of expansion can reduce the overhead of query expansion

at query time. The drawback of this approach is that the ambiguity of query terms can

introduce noise in the form of terms unrelated to the original sense of the query. In our

work we attack this problem by combining two independent expansion sources: thesauri and

citation contexts.

Thesaural Expansion: In thesaural or ontological based expansion, semantically re-

lated terms are obtained by looking up in the external resource. For instance, if the term

treatment occurs in the original document, its synonym intervention can be added to the

representation. We explore this option by extracting from the Metathesaurus all synonyms

and hypernyms of the terms in the original document. For our basic approach we then

incorporate these terms directly into the document representation, with the same frequency

count as the original term.

In related work, Billerbeck and Zobel [47] proposed two new corpus-based methods for

document expansion. In the first method, each document is treated as a query, and aug-

mented by related terms. In the second method, each single term in the corpus is treated

as a query, augmented by related terms, and used to rank documents accordingly. Overall,

Billerbeck and Zobel’s experiments showed that, compared with query expansion, document

expansion methods achieved relatively poor improvements. That might be because the spe-

cific topic of the original document can be significantly skewed when less relevant related

terms are added.
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Citation Term Expansion: In this expansion strategy we gather the citation con-

texts that refer to the target document, and extract all terms occurring in those to expand

the original representation. The motivation of this approach is twofold: (i) discover new

terms that do not exist in the original representation, and (ii) boost the weight of the terms

already found.

Combining Thesaural and Citation Term Expansion: In this expansion strategy

we combine thesaural information with the terms from citation contexts. Our methodology

is described in the following steps, and illustrated in Figure 5:

1. We first obtain the set of terms in the original representation of the document (D),

and the terms that cite the document (C )

2. We obtain the set of novel terms (N ) by selecting the citation terms that do not occur

in D. (N = C \D)

3. We expand N by obtaining all the synonyms and hypernyms of its terms in the UMLS

database, and create a set of terms E. Note that these terms can be multiwords.

(E = synonyms(N) ∪ hypernyms(N))

4. The expanded term set is reduced to those terms that do not occur in the original

document D. (E ′ = E \D)

5. Each term in the final expansion set E’ is linked back to the term from C that orig-

inated it, and these pairs (ci, ei) of terms will be used for the final representation of

the target documents.

We follow the above steps to build a set of pairs (ci, ei) for each document in the collection.

These pairs will then be applied to build lookup dictionaries for expansion, which we call

citation dictionaries. We implemented two different approaches, depending on the local or

global use of the pair sets, which we describe below, and illustrate in Figure 6:
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Figure 5: Graph showing our document expansion strategy using the Metathesaurus to filter out citation

terms that hold no thesaural relationship with the original document terms.

• Single dictionary : We build a single lookup table (dictionary) for each document

based only on the terms citing the target document. The synonyms and hypernyms

identified in the process described above are used to populate the dictionary for the

target document, and this dictionary is not shared. The advantage of building one

related-term dictionary for each document is that expansion terms are more likely

to be relevant to the document’s topic given that all related terms are drawn solely

from document’s citation contexts. For instance, if we find the word “culture” in

the document, thesauri expansion will use terms related to both “civilisation” and

“laboratory culture”; however when we rely on this combined approach we require

that the expansion terms occur both in citations and as related words. Therefore the

terms related to “culture” will only be used for expansion if they are citing the target

document, and if a paper receives citations regarding “laboratory culture” it is unlikely
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Figure 6: Graph showing our Single and Joint document expansion strategies.

that it will also be cited regarding “civilisation”. The disadvantage of this strategy is

that due to the MetaThesaurus filtering step, we can end up with a situation where

documents have few or even zero related citation terms in their dictionaries, leading

to minimal document expansion.

• Joint dictionary : We build one large lookup table based on all citation terms extracted

for all documents in the collection. For each document, we collect citation terms and

related words as in the previous case, but they are used to construct a single lookup

table that it is shared among all target documents. This strategy nearly assures us

that every document will be expanded with citation terms - and in some cases these

28



citation terms will not have been extracted from their own citation contexts. In this

way, the Joint dictionary can be viewed as a domain specific subset of the larger

MetaThesaurus.

5.2. Term weighting schemas

For each document in our dataset we obtain two separate term-vectors generated a) from

the original document and b) from the citation contexts. These vectors are merged into a

combined representation. Many schemes have been proposed to derive the weights of each

index term in the document representation vector. We apply the tf-idf feature weighting

schema, where the term frequency is multiplied by the inverse document frequency. It is

used to measure the weight of ‘importance’ of terms in a document. The tf-idf basically

stands for the term frequency (tf ) and the inverse document frequency (idf ). The tfi,j (term

frequency of ti in document dj) is defined as follows:

tfi,j=
ni,j∑
k nk,j

(5)

Where ni,j is the number of occurrences of the term ti in document dj, and the denomi-

nator is the sum of the number of appearances of all terms k in document dj.

Thus, the idfi (inverse document frequency of ti in the corpus) is defined as follows:

idfi = log(|D|/|di|) (6)

Where |D| is total number of documents in the corpus, and |di| is the number of docu-

ments in which term (ti) appears. The final tf-idf score is the product of the scores resulting

from the previous two equations.
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Apart from feature weighting, we also experiment with feature selection (filtering). When

the filter is activated, we remove the terms in our stopword lists12, all terms that occur in

more than 70% of documents, and all terms that occur in less than 1% of documents. When

experimenting with abstracts alone, a lower threshold is used: terms that occur in less than

3 documents are removed.

In order to study different parameters, we modify the tf scheme by considering the section

position and the distance of the term to its citation marker. Thus, for a given document,

we follow these steps:

1. The basic tf scheme is applied to the original term vector.

2. The modified tf schemes are applied to its citation vector.

3. The two vectors are combined and the weights for the shared terms are calculated by

adding the corresponding tf values for a term.

For the terms coming from citations, we propose modified tf scores based on two factors:

(i) the section the term comes from, and (ii) the distance between the citation marker and

the term. Thus, instead of a linear increase of the term frequency, we increase it non-linearly

based on these factors.

Section based weighting scheme: We define Section tf with the following formula:

Section tf(t) =
∑nt

i=1(1 + αt,i) (7)

Where nt is the number of occurrences of term t in the document, and αt,i is the weight

of the section i in which term t appears.

12Retrieved from http://www.cs.mu.oz.au/∼jz/resources and from the Simple English Wikipedia (May

2008) http://simple.wikipedia.org/wiki/Wikipedia:Basic English alphabetical wordlist
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The section weight (α) is a density-based value taken from the statistics presented in

Table 3, which showed the collection frequency of synonyms and hypernyms in particular

sections of a document. For example, the section Discussion has about 27% of all synonyms

and hypernyms, hence its weight is 0.27. The weight of the other sections are as follows:

Introduction (0.24), Results (0.23), Methods (0.15), Experiments (0.16), Abstract (0.17),

Conclusion (0.12), and Future work (0.15).

Distance based weighting scheme: Our second term weight modification strategy is

calculated as the distance between the citation term and its citation marker, and is described

by the following equation:

Distance tf(t) =
∑nt

i=1(1 + δt,i) (8)

Where nt is the number of occurrences of term t in the document, and δt,i is the weight

calculated based on the distance between term t and citation marker i in a given document.

Th δt,i value is calculated as follows:

δt,i = 1/dist,i (9)

Where dist,i the number of terms between term t and citation marker i, 1 if adjacent.

Thus, when the term is very close to the citation marker, it will get a higher weight than

other citation terms that are further away.
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Section and Distance based weighting scheme: Finally, we combine the two mod-

ified scores into a single value, with the following equation:

Section&Distance tf(t) =
∑nt

i=1(1 + αt,i + δt,i) (10)

Where nt is the number of occurrences of term t in the document, αt,i is the weight of

the section i in which term t appears, and δt,i is the weight calculated based on the distance

between term t and citation marker i.

6. Text classification

We evaluate our methods extrinsically in the context of a supervised document classi-

fication task where documents are automatically assigned topic tags in the form of MeSH

headings. As described in Section 3, we rely on a subset of the TREC Genomics dataset

(3,475 documents) and the manually-assigned MeSH terms, focusing on the top-20. This

is a multi-label classification problem, where each document will have one or more labels

associated. Our goal is to develop and evaluate automatic classifiers to perform this task.

Since we have access to both abstracts and full-text documents we compare the performance

of our classification techniques on both collections.

We calculate the performance of the classification task based on Precision and Recall.

Thus, for each class, Precision is the number of true positives (i.e. the number of items

correctly labeled as belonging to the positive class) divided by the total number of elements

labeled as belonging to the positive class (i.e. the sum of true positives and false positives).

Recall is given by the number of true positives divided by the total number of elements

that actually belong to the positive class (i.e. the sum of true positives and false negatives).

In order to combine these two scores into one, the F -score metric is used. F -score is the

harmonic mean of Precision and Recall. Since our classification is a multi-class problem,

and requires averaging all results from each class, we use the micro-averaging [41] method,
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which weights each class according to its number of instances. This is the usual approach

when the errors from different classes have the same cost.

For comparison, we also include runs from two publicly available, state-of-the-art sys-

tems: MTI and MeSHUP, previously mentioned in Section 2.4. MTI is the NLM’s currently

deployed classification system, which uses the MetaMap concept parser for discovering MeSH

headings. We use the system’s default settings for MeSH classification, and its online inter-

face13. MeSHUP, on the other hand, combines different ML and thesauri-based techniques

into a hybrid classifier. For MeSHUP we use the open source implementation released by the

authors. The input for these two tools is a fragment of text, and the output is a ranked list

of MeSH terms. Since these systems work for all MeSH classes, we filter out tags not listed

in our 20-class list. Finally, as an easier baseline, we apply the Majority Class approach,

where each document is assigned the single most frequent class from training data.

For our own supervised classifier, we chose Support Vector Machines (SVM) for two

main reasons [48]: i) the SVM performs well with large numbers of features, and ii) the

SVM is especially helpful when there are few training samples in a multi-class classification

task. In this paper we apply SVM using the implementation from the Weka toolkit [49], in

which a document is represented by a vector of weighted terms. We rely on linear kernels

and default parameters. In selected experiments we also apply the Naive Bayes classifier

from the Weka toolkit, in order to see if there are relevant differences in performance. For

all our experiments, we first build a separate binary classifier for each class, and the target

document is assigned all classes tagged as positive.

To calculate the statistical significance of our results, we apply the Wilcoxon signed-rank

test, which is a symmetric and non-parametric test. For two related samples, the Wilcoxon

signed-rank test compares the differences between their measurements but does not need

prior information about the form of the distribution of the measurements [50]. Hence, it is

considered a useful alternative to the t-test when assumptions about the normal distribution

of the data cannot be made.

13http://ii.nlm.nih.gov/mti.shtml
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For our evaluation, we split randomly the dataset into two parts: two thirds for develop-

ment, and the remainder as held-out test data. For the majority of the experiments we rely

on the development dataset in ten-fold cross-validation. This development dataset is used

to explore the effect of the different parameters, and the held-out data is kept untouched to

avoid overfitting. In our final experiment we compare our main systems to the state of the

art using the held-out test data.

In order to obtain the Section weights for the formula, we analyse both training and test

instances, ignoring class labels. Our methodology is reminiscent of Transductive machine

learning [51], or semi-supervised classification [52], both of which take advantage of unlabeled

test data for building a model. In our case, Section information is a novel feature that reflects

the location of citation term occurrences. In order to obtain more accurate estimations for

this feature, we use the whole dataset to calculate the proportion of related terms (SYN and

HYP) found in different sections. Calculation of this feature thus uses both training and

test data, but does not use the class labels of either the training or test. So importantly,

the class label information of the test instances is not being used when building the model.

7. Text classification results

For our first set of experiments we rely on the BOW representation, where only the

terms in the original document are used, with no expansion. We present the results for the

following configurations:

• Classifier used (SVM, Naive Bayes, MeSHUP or MTI)

• Source of terms (full text or abstract only)

• Feature selection (yes or no)

These results are given in Table 5. We can see that MTI performs poorly, while MeSHUP

obtains much higher results and almost full recall. This result is consistent with the experi-

ments reported for MTI and MeSHUP in [12]. MeSHUP performs well both with abstracts

or full-text data, but SVM benefits from the full text. The best f-score is achieved by SVM
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when relying on full text, and feature selection; and this shows that our supervised approach

is able to obtain state-of-the-art results over the development dataset. Naive Bayes obtains

lower f-score than SVM overall, and we will rely on the latter as the baseline to explore the

expansion techniques.

For our next experiment we evaluated the performance of different document enrichment

approaches. For document representation, we use the BOW from the original document and

expand it with the different strategies. Our baseline classifier is the best from the previous

experiment: SVM trained over full text, with tf-idf, and feature selection. The expansion

techniques rely on the following sources, which where described in Section 5.1:

• Citations: all the terms in the citations are added.

• MetaThesaurus: synonyms and hypernyms present in this knowledge base are used

• Combined dictionaries: citation terms are filtered according to the information in the

Metathesaurus, generating individual and joint dictionaries.

We present the performance of the different expansions in Table 6. We can see that there

are small improvements over the baseline, which are statistically significant according to the

Wilcoxon signed-rank test. The best approaches overall are i) using all terms in citations,

and ii) using the Joint dictionary based on synonyms. The expansions contribute to the

precision of the classifier, and not the recall. This could happen because of our reliance on

binary classifiers, which produce less false positives when they have expanded models.

For our next experiment, we combine citation terms with dictionary-based expansions.

We present the results in Table 7. We can see that when using the joint-dictionary both the

precision and recall of citation terms are improved, and we achieve the highest performance

so far over this dataset.

In our next experiment, we analyse the effect of varying the Distance and Section position

parameters on the performance of the citation terms as explained in Subsection 5.2. The

results are presented in Table 8. Our intrinsic analysis (cf. Section 4) showed that there is no

clear relationship between the quality of citation terms and their distance from the citation
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marker. Therefore, we expect no major improvement when this variable is considered in

our experiments. In contrast, we find that section quality can influence the effectiveness of

the citation terms. More specifically, when we boost the significance of terms that occur

in important sections of the paper, a significant improvement can be achieved, reaching an

f-score of 59.1%. This result is also consistent with the analysis performed in Section 4.

We then explore the effect of varying the window size boundary of the citation contexts.

We tested the performance when using the full paragraph, and also different fixed windows

(70, 50, 30, and 10 terms before and after the citation marker). These results are presented

in Table 9. We can see that the window size is like the Distance parameter has no major

effect, and the optimal window size appears to be around 50-terms.

To summarise our cross-validation results over the training data, we achieve our best

performance using the SVM Citations+Joint method (with synonym based citation expan-

sion, section, distance and window size of 50 parameters). This run achieves an f-score of

0.591; a statistically significant improvement over the baseline f-score of 0.575 which does

not employ any citation context information in its feature representations.

In our final set of experiments, we apply our best SVM run configuration (SVM with

citations and the joint dictionary with synonyms) to our test data. The results of these

runs are presented in Table 10, the most important of which is that the expanded system

outperforms two of the state-of-the-art classification systems, MeSHUP and MTI. It also

significantly outperforms both SVM (baseline) and SVM (citations). These results con-

firm our original hypothesis that terms found in citation contexts can be used to enrich

the document representations of the cited documents and improve text classification task

performance; thus opening the way for better document representations for other applica-

tions. For this experiment we also show the performance per class in Figure 7, where we can

see that most classes obtain improvements over the baseline, even though there are large

performance differences depending on the target class.
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Figure 7: F-score over held-out data per class.

8. Findings

Our focus in this work was to empirically analyse the terms found in citation contexts,

evaluate their quality (our intrinsic evaluation) and determine their effectiveness in a MeSH

classification task (our extrinsic evaluation). Regarding the intrinsic evaluation, we observed

that a high number of novel terms can be found, many of which are semantically related

to terms in the original document. We also analysed two aspects of citation terms: (i) the

section they are in, and (ii) the distance to the citation marker. We found that the section

affects the quality of the citation terms, with some sections providing better terms than

others (confirmed in both our intrinsic and extrinsic evaluation). On the other hand, the

distance of citation terms to the marker (inside a fixed window) did not correlate with a

term’s quality (or performance).

Regarding the MeSH classification task, the following points can be drawn from the
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experiments presented in this paper:

1. Using citation terms as expansion terms is a promising strategy and can lead to

improvements over baseline performance in a text classification task. In particular,

weighting citation terms with respect to their section position in the citing document

was found to have a very beneficial effect on our results. We were somewhat surprised

to find that the distance from the citation marker was not as effective a method for

weighting term importance. This result contradicts prior work in the area of Web IR

and anchor text. This result was explored in both our intrinsic and extrinsic evaluation

methods.

2. Using synonyms to expand documents tends to perform better than expansion with

hypernyms (observed in 5 out of 6 experiments). This could be explained because

synonyms naturally tend to be topically closer to the cited document than hypernyms

do.

3. Our citation filtering, and section and distance weighting parameters appeared to

stabilise the effects of varying the citation context window size around the marker.

Specifically, these parameters medicate the possibility of adding unrelated citations

terms to the document representation as the citation context window size increases by

ensuring that only semantically related and highly weighted terms are considered.

4. Our most interesting finding is that our best citation expansion strategy involved using

expansion terms derived from an automatically created domain specific dictionary - or

the Joint dictionary. This dictionary was generated by first filtering out all citation

terms that did not hold either a synonym or hypernym relationship with a term in

the original cited document. This process was repeated for each document in the

collection, and the set of remaining citation terms for each document was added to

the Joint dictionary. Hence, this dictionary can be viewed as a specialised subset of

the Metathesaurus, which captures concept relationships that are specific in to the

Genomic domain. The idea of the Joint dictionary was motivated by our observation

that after filtering, many documents were left without a corresponding set of citation
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expansion terms - as was the case with the Single dictionary expansion strategy. With

the Joint dictionary, this situation is corrected.

In summary, our results show that our expansion techniques can build a document model

that significantly improves performance over state-of-the-art systems in a MeSH categorisa-

tion task. This is a strong indication that other text mining systems will also benefit from

our document modeling method, resulting in improved performance of these systems in the

biomedical domain.

9. Conclusions

In this paper, we investigate the different factors influencing the use of citation terms

as a means of enriching the representation of a document with additional informative syn-

onyms and related terms. First, we conducted an intrinsic evaluation which explored the

types of relationships that exist between original document terms and terms found in the

citation contexts that refer to them. More specifically, we analysed the terms from citation

contexts in our collection and found that they are a rich source of topically related terms,

i.e. synonyms and hypernyms. Interestingly, these terms are in general not found in the

original full-text versions of the scientific articles that we examined.

Next we employed an extrinsic evaluation method which relies on an automatic clas-

sification of MeSH terms for MedLine documents. In these experiments, we explored the

effect of document enrichment using citation terms and ontological terms (taken from the

UMLS Metathesaurus). However, only small increments in performance were observed when

the latter were considered. Our final experimental run combined both citation terms and

Metathesaurus using only citation terms. Classification experiments with this enriched doc-

ument representation achieve a statistically significant improvement over both the baseline

and two state-of-the-art MeSH classification systems: MTI and MeSHUP.

We also explore the different factors affecting citation term effectiveness, including sec-

tion position in the text, and distance from the citation marker, as well as the optimal

window size of the citation context boundary. The section-based weighting scheme showed
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some improvement gains, indicating that consideration of document structure may be an

interesting avenue for future work. However, the distance metric did not provide any notice-

able improvements, which does seem to contradict related work in Web information retrieval

where anchor text terms closer to the hypertext link have been shown to be more topically

relevant to the linked page.

In future work, we plan to explore alternative sources of related terms including: n-gram

term co-occurrence analysis, and the other hierarchical thesaural relationship types. We also

plan to explore different Section (α) and Distance (δ) weighting techniques. The analysis of

features coming from different sources is also in our agenda. Finally, we would like to study

the automatic classification of citation boundaries for a more accurate selection of terms.
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Rank MeSH term # Total Freq˙ Development Held-out

1 Animals 2086 1434 652

2 Humans 1206 809 397

3 Molecular sequence data 690 464 226

4 Mice 606 404 202

5 Rats 593 395 198

6 Amino acid sequence 508 346 162

7 Base sequence 389 264 125

8 Mutation 361 252 109

9 Cells cultured 344 230 114

10 Cell line 334 235 99

11 Kinetics 299 200 99

12 Bacterial proteins 296 197 99

13 RNA messenger 292 197 95

14 Signal transduction 285 194 91

15 Rats sprague-dawley 245 163 82

16 DNA-binding proteins 234 156 78

17 Membrane proteins 223 150 73

18 Recombinant proteins 217 145 72

19 Calcium 211 141 70

20 Cloning molecular 197 131 66

Table 1: 20 most frequent MeSH terms in our collection, and their document-frequencies in our corpus.
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Random-Citation Real-Citation

Terms # % # %

All 30,240 100 30,240 100

New 28,047 92.7 26,512 87.7

Synonyms 2,057 7.3 4,149 15.6

Hypernyms 1,203 4.2 1,904 7.2

Table 2: Semantic analysis of words found in citation contexts. The percentages of synonyms and hypernyms

are calculated over the set of new terms only.

Sections All terms % New % SYN % HYP

Discussion 15,717 83.4 18.6 8.5

Introduction 14,063 78.8 16.7 7.2

Results 12,712 82.0 16.0 7.3

Methods 10,062 84.5 9.8 4.7

Experiments 3,976 84.5 10.2 5.7

Abstract 2,090 70.7 11.7 5.0

Conclusion 638 66.3 7.8 3.8

Future work 223 44.4 13.1 2.0

Table 3: Semantic analysis of words found in citation contexts per section. For each section, we provide the

number of unique terms, the percentage of new terms, and the percentages of semantically-related terms

(synonyms and hypernyms) in the new terms. The highest numbers per column are given in bold.
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Order Term Entropy # Classes # Docs Top ordered classes (# occurrences)

1 demography 0.284 7 37 Humans(37); Molecular(1); RNA, Messenger(1); Ani-

mals(1) Rats(1)

2 forage 0.589 10 34 Animals(31); Mice(3); Molecular Sequence Data(3);

Base Sequence(2); Bacterial Proteins(2)

3 Doppler 0.610 8 37 Animals(26); Humans(11); Mice(5); Rats(2); Kinet-

ics(2)

4 smoke 0.665 13 64 Humans(57); Animals(10); RNA, Messenger(6);

Cells, Cultured(5); Kinetics(3);

5 ethnic 0.671 11 40 Humans (38); Mutation(5); Animals(5); Mice(4);

Base Sequence(3);

6 trout 0.687 10 35 Animals(34); Molecular Sequence Data(5); Amino

Acid Sequence(5); Kinetics(5); Base Sequence(4);

7 forearm 0.716 13 37 Humans(31); Animals(9); Rats(4); Kinetics(3); Rats,

Sprague-Dawley(2)

8 predator 0.727 13 50 Animals(47); Humans(8); Molecular Sequence

Data(8); Amino Acid Sequence(6); Mice(5); Base

Sequence(3);

9 Thoracotomy 0.730 10 43 Animals(42); Mice(13); Rats(10); RNA, Messen-

ger(5); Calcium(4);

10 supine 0.730 11 55 Humans(34); Animals(22); Mice(9); Kinetics(4);

Rats(4);

11 cohort 0.741 15 94 Humans(74); Animals(26); Mice(10); Mutation(6);

Rats(5);

12 covariance 0.746 11 49 Humans(28); Animals(19); Mice(9); Kinetics(4);

Amino Acid Sequence(3);

13 gender 0.755 15 86 Humans (52); Animals(44); Mice(25); Cells, Cul-

tured(6); Rats(4); RNA, Messenger(3);

14 tidal 0.760 12 40 Animals(37); Mice(13); Humans (8); Rats(7); Rats,

Sprague-Dawley(4);

15 jugular 0.768 13 78 Animals(76); Rats(38); Rats, Sprague-Dawley(26);

Mice(23); Humans(11); RNA, Messenger(7);

16 Multi-Vari 0.773 14 49 Humans(33); Animals(15); Mice(4); Bacterial Pro-

teins(3); RNA, Messenger(3);

17 tank 0.778 15 45 Animals(37); Humans(10); Molecular Sequence

Data(3); Amino Acid Sequence(3); Rats(3)

18 freshwater 0.779 12 34 Animals(31); Molecular Sequence Data(7); Amino

Acid Sequence(6); Mutation(4); Membrane Pro-

teins(4);

19 tunnel 0.785 14 36 Animals (32); Mice(12); Rats(7); Humans(4); Molec-

ular Sequence Data(2)

20 Hyperinsulinemia 0.794 13 61 Animals(40); Humans(30); Rats(23); Rats, Sprague-

Dawley(12); Kinetics(8); Mice(4);

Table 4: The top-20 terms ranked according to entropy (lowest first) and frequency. The terms are taken

from the original document’s full-text representation.
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System Ft. Sel. Full-text Abstract

P R F P R F

Majority Class - 0.142 0.220 0.173 0.142 0.220 0.173

MeSHUP - 0.399 0.978 0.567 0.403 0.966 0.569

MTI - 0.515 0.319 0.394 0.526 0.257 0.346

Naive Bayes No 0.526 0.610 0.565 0.457 0.628 0.529

Naive Bayes Yes 0.537 0.582 0.559 0.455 0.626 0.527

SVM No 0.597 0.518 0.555 0.567 0.505 0.534

SVM Yes 0.610 0.543 0.575 0.560 0.504 0.531

Table 5: Performance of classifiers when relying on BOW for feature representation (Ft. Sel.: Feature

Selection, Ft. Weight: Feature Weighting). The best result per column is highlighted in bold.

System P R F

Baseline 0.610 0.543 0.575

Citations 0.637‡ 0.535 0.582‡

MetaThesaurus (syn) 0.629‡ 0.533 0.577

MetaThesaurus (hyp) 0.617 0.538 0.575

MetaThesaurus (syn&hyp) 0.627‡ 0.529 0.574

Single-dic (syn) 0.615 0.538 0.574

Single-dic (hyp) 0.616 0.542 0.577

Single-dic (syn&hyp) 0.622‡ 0.540 0.578

Joint-dic (syn) 0.626‡ 0.541 0.581‡

Joint-dic (hyp) 0.623‡ 0.536 0.577

Joint-dic (syn&hyp) 0.627‡ 0.531 0.575

Table 6: Performance of SVM using different document enrichment strategies. All statistical significance

improvements over the SVM (baseline) are indicated by ‡(<=0.05).
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System P R F

Citations+MetaThesaurus(syn) 0.637‡ 0.527 0.577

Citations+MetaThesaurus(hyp) 0.629‡ 0.528 0.574

Citations+MetaThesaurus(syn&hyp) 0.637‡ 0.526 0.576

Citations+Single-dic(syn) 0.628‡ 0.531 0.576

Citations+Single-dic(hyp) 0.625‡ 0.532 0.575

Citations+Single-dic(syn&hyp) 0.630‡ 0.530 0.576

Citations+Joint-dic(syn) 0.640‡ 0.539 0.585‡

Citations+Joint-dic(hyp) 0.630‡ 0.531 0.576

Citations+Joint-dic(syn&hyp) 0.634‡ 0.527 0.575

Table 7: Performance of SVM after combining citations and other document expansions. Statistical signifi-

cance over original result indicated by ‡(<=0.05).

System Section (α) Distance (δ) P R F

Citations+Joint-dic(syn) N N 0.640‡ 0.539 0.585‡

Citations+Joint-dic(syn) N Y 0.643‡ 0.539 0.587‡

Citations+Joint-dic(syn) Y N 0.654‡* 0.539 0.591‡

Citations+Joint-dic(syn) Y Y 0.654‡* 0.540 0.591‡

Table 8: Performance of SVM with Citations+Joint-dic(syn) according to the distance and section param-

eters. Statistical significance over original result indicated by ‡; and over Citations+Joint-dic(syn) result

indicated by * (<=0.05).
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System Window Size P R F

Citations+Joint-dic(syn) Full Paragraph 0.653‡ 0.540 0.591‡

Citations+Joint-dic(syn) 70 0.653‡ 0.539 0.590‡

Citations+Joint-dic(syn) 50 0.654‡ 0.540 0.591‡

Citations+Joint-dic(syn) 30 0.652‡ 0.539 0.590‡

Citations+Joint-dic(syn) 10 0.645‡ 0.537 0.586‡

Table 9: Performance of our classifiers after combining citation and Metathesaurus (based on citation terms

only) expansions. Statistical significance over original result indicated by ‡(<=0.05).

System P R F

MeSHUP 0.396 0.976 0.563

MTI 0.559 0.334 0.417

SVM (baseline) 0.606 0.548 0.576

SVM (citations) 0.635‡ 0.538 0.582

SVM (Citation+Joint-dic(syn)) 0.665‡* 0.553 0.604‡*

Table 10: Performance of optimised text classification runs on test data. Statistical significance over

MeSHUP run indicated by ‡; and over SVM (citations) result indicated by * (<=0.05).
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